Ekman P (1993) Facial expression and emotion. Am Psychol 48(4):384

Article
Google Scholar

Parrott WG (2001) Emotions in social psychology: essential readings. Psychology Press, London

Google Scholar

Frijda NH et al (1986) The emotions. Cambridge University Press, Cambridge

Google Scholar

Tomkins SS (1984) Affect theory. Approaches to emotion 163(163–195):31–65

Chakravorty P (1998) Hegemony, dance and nation: the construction of the classical dance in India. South Asia J South Asian Stud 21(2):107–120

Article
MathSciNet
Google Scholar

Sharma PB (2013) Painting: a tool of non-verbal communication. Lang India 13(7):312–318

Google Scholar

Mehta T (1995) Sanskrit play production in ancient India. Motilal Banarsidass Publ, New Delhi

Google Scholar

Kothare SV (2014) Atlas of EEG Patterns, 2nd edn. Neurology 83(7):668. https://doi.org/10.1212/WNL.0000000000000696

Yang K, Tong L, Shu J, Zhuang N, Yan B, Zeng Y (2020) High gamma band EEG closely related to emotion: evidence from functional network. Front Hum Neurosci 14:89

Article
Google Scholar

Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

Article
Google Scholar

Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2(8):539–550

Article
Google Scholar

Landau AN, Esterman M, Robertson LC, Bentin S, Prinzmetal W (2007) Different effects of voluntary and involuntary attention on EEG activity in the gamma band. J Neurosci 27(44):11986–11990

Article
Google Scholar

Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C (2005) Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex 15(5):654–662

Article
Google Scholar

Peng Y, Qin F, Kong W, Ge Y, Nie F, Cichocki A (2021) Gfil: a unified framework for the importance analysis of features, frequency bands and channels in eeg-based emotion recognition. IEEE Trans Cogn Dev Syst

Li M, Lu B-L (2009) Emotion classification based on gamma-band EEG. In: 2009 Annual international conference of the IEEE engineering in medicine and biology society, pp. 1223–1226. IEEE

Zheng W-L, Lu B-L (2015) Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev 7(3):162–175

Article
Google Scholar

Ray WJ, Cole HW (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228(4700):750–752

Article
Google Scholar

Pan C, Shi C, Mu H, Li J, Gao X (2020) EEG-based emotion recognition using logistic regression with gaussian kernel and Laplacian prior and investigation of critical frequency bands. Appl Sci 10(5):1619

Article
Google Scholar

Klados MA, Frantzidis C, Vivas AB, Papadelis C, Lithari C, Pappas C, Bamidis PD (2009) A framework combining delta event-related oscillations (EROS) and synchronisation effects (ERD/ERS) to study emotional processing. Comput Intell Neurosci 2009:549419

Article
Google Scholar

Li X-J, Yang G-H (2016) Graph theory-based pinning synchronization of stochastic complex dynamical networks. IEEE Trans Neural Netw Learn Syst 28(2):427–437

Article
MathSciNet
Google Scholar

Sun S, Li X, Zhu J, Wang Y, La R, Zhang X, Wei L, Hu B (2019) Graph theory analysis of functional connectivity in major depression disorder with high-density resting state EEG data. IEEE Trans Neural Syst Rehabil Eng 27(3):429–439

Article
Google Scholar

Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1–2):56–78

Article
Google Scholar

Bassett DS, Bullmore E (2006) Small-world brain networks. Neuroscientist 12(6):512–523

Article
Google Scholar

Bassett DS, Gazzaniga MS (2011) Understanding complexity in the human brain. Trends Cogn Sci 15(5):200–209

Article
Google Scholar

van Straaten EC, Stam CJ (2013) Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI. Eur Neuropsychopharmacol 23(1):7–18

Article
Google Scholar

Zhang J, Zhao S, Huang W, Hu S (2017) Brain effective connectivity analysis from EEG for positive and negative emotion. In: International Conference on Neural Information Processing, pp. 851–857. Springer

Li P, Liu H, Si Y, Li C, Li F, Zhu X, Huang X, Zeng Y, Yao D, Zhang Y et al (2019) EEG based emotion recognition by combining functional connectivity network and local activations. IEEE Trans Biomed Eng 66(10):2869–2881

Article
Google Scholar

Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

Article
Google Scholar

He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23(4):341–350

Article
Google Scholar

Pessoa L, McMenamin B (2017) Dynamic networks in the emotional brain. Neuroscientist 23(4):383–396

Article
Google Scholar

Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst Neurosci 4:16

Google Scholar

Tripathi R, Mukhopadhyay D, Singh CK, Miyapuram KP, Jolad S (2019) Characterization of functional brain networks and emotional centers using the complex networks techniques. In: International conference on complex networks and their applications, pp. 854–867. Springer

Li X, Song D, Zhang P, Zhang Y, Hou Y, Hu B (2018) Exploring EEG features in cross-subject emotion recognition. Front Neurosci 12:162

Article
Google Scholar

Kaneshiro B, Nguyen DT, Norcia AM, Dmochowski JP, Berger J (2020) Natural music evokes correlated EEG responses reflecting temporal structure and beat. Neuroimage 214:116559

Article
Google Scholar

Thirumalai M (2001) An introduction to Natya Shastra-gesture in aesthetic arts. Lang India 1(6):27–33

Google Scholar

Uppal C (2018) Rasa: natyashastra to bollywood. Western indology on Rasa: a purvapaksha, 201–225

Kumar CB (2014) The popularity of the supporting cast in Hindi cinema. South Asian Popul Cult 12(3):189–198

Article
Google Scholar

Uppal C (2018) Rasa: natyashastra to bollywood. Western indology on Rasa: a Purvapaksha, 179–199

Uppal C (2018) Rasa: natyashastra to bollywood. Western indology on Rasa: a Purvapaksha, 89–177

Beitmen LR (2014) Neuroscience and Hindu aesthetics: a critical analysis of vs ramachandran’s “science of art”. FIU electronic theses and dissertations. 1198. https://digitalcommons.fiu.edu/etd/1198

Ghosh M (1967) The Natyasastra ascribed to Bharata-Muni

Chang C-Y, Hsu S-H, Pion-Tonachini L, Jung T-P (2019) Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Trans Biomed Eng 67(4):1114–1121

Article
Google Scholar

Vinck M, Oostenveld R, Van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4):1548–1565

Article
Google Scholar

Hardmeier M, Hatz F, Bousleiman H, Schindler C, Stam CJ, Fuhr P (2014) Reproducibility of functional connectivity and graph measures based on the phase lag index (pli) and weighted phase lag index (WPLI) derived from high resolution EEG. PLoS ONE 9(10):108648

Article
Google Scholar

Lau TM, Gwin JT, McDowell KG, Ferris DP (2012) Weighted phase lag index stability as an artifact resistant measure to detect cognitive EEG activity during locomotion. J Neuroeng Rehabil 9(1):1–9

Article
Google Scholar

Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L et al (2013) Meg and EEG data analysis with MNE-python. Front Neurosci 7:267

Article
Google Scholar

Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci 103(51):19518–19523

Article
Google Scholar

Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

Article
MathSciNet
MATH
Google Scholar

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

Article
MATH
Google Scholar

Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

Article
Google Scholar

Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8(9):418–425

Article
Google Scholar

McMenamin BW, Langeslag SJ, Sirbu M, Padmala S, Pessoa L (2014) Network organization unfolds over time during periods of anxious anticipation. J Neurosci 34(34):11261–11273

Article
Google Scholar

Lee Y-Y, Hsieh S (2014) Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9(4):95415

Article
Google Scholar

Vecchio F, Miraglia F, Rossini PM (2017) Connectome: graph theory application in functional brain network architecture. Clin Neurophysiol Pract 2:206–213

Article
Google Scholar

Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195

Article
Google Scholar

Song X, Hu X, Zhou S, Xu Y, Zhang Y, Yuan Y, Liu Y, Zhu H, Liu W, Gao J-H (2015) Association of specific frequency bands of functional MRI signal oscillations with motor symptoms and depression in parkinson’s disease. Sci Rep 5(1):1–7

Google Scholar

Moran LV, Hong LE (2011) High vs low frequency neural oscillations in schizophrenia. Schizophr Bull 37(4):659–663

Article
Google Scholar

Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R (2009) Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci 106(28):11747–11752

Article
Google Scholar

Wei L, Duan X, Zheng C, Wang S, Gao Q, Zhang Z, Lu G, Chen H (2014) Specific frequency bands of amplitude low-frequency oscillation encodes personality. Hum Brain Mapp 35(1):331–339

Article
Google Scholar

Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States)

Breiman L (2001) Random forests. Mach Learn 45(1):5–32

Article
MATH
Google Scholar

Molinaro AM, Simon R, Pfeiffer RM (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15):3301–3307

Article
Google Scholar

Ojala M, Garriga GC (2010) Permutation tests for studying classifier performance. J Mach Learn Res 11(6)

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

MathSciNet
MATH
Google Scholar

Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11)

Lin Y-P, Wang C-H, Jung T-P, Wu T-L, Jeng S-K, Duann J-R, Chen J-H (2010) EEG-based emotion recognition in music listening. IEEE Trans Biomed Eng 57(7):1798–1806

Article
Google Scholar

Soleymani M, Pantic M, Pun T (2011) Multimodal emotion recognition in response to videos. IEEE Trans Affect Comput 3(2):211–223

Article
Google Scholar

Zheng W-L, Zhu J-Y, Lu B-L (2017) Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans Affect Comput 10(3):417–429

Article
Google Scholar

Müller MM, Keil A, Gruber T, Elbert T (1999) Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin Neurophysiol 110(11):1913–1920

Article
Google Scholar

Kortelainen J, Väyrynen E, Seppänen T (2015) High-frequency electroencephalographic activity in left temporal area is associated with pleasant emotion induced by video clips. Comput Intell Neurosci 2015

Matsumoto A, Ichikawa Y, Kanayama N, Ohira H, Iidaka T (2006) Gamma band activity and its synchronization reflect the dysfunctional emotional processing in alexithymic persons. Psychophysiology 43(6):533–540

Article
Google Scholar

Tang Y, Li Y, Wang J, Tong S, Li H, Yan J (2011) Induced gamma activity in eeg represents cognitive control during detecting emotional expressions. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1717–1720. IEEE

Güntekin B, Basar E (2007) Emotional face expressions are differentiated with brain oscillations. Int J Psychophysiol 64(1):91–100

Article
Google Scholar

Onton JA, Makeig S (2009) High-frequency broadband modulation of electroencephalographic spectra. Front Hum Neurosci 3:61

Article
Google Scholar

Martini N, Menicucci D, Sebastiani L, Bedini R, Pingitore A, Vanello N, Milanesi M, Landini L, Gemignani A (2012) The dynamics of EEG gamma responses to unpleasant visual stimuli: from local activity to functional connectivity. Neuroimage 60(2):922–932

Article
Google Scholar

Zheng W-L, Dong B-N, Lu B-L (2014) Multimodal emotion recognition using eeg and eye tracking data. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5040–5043. IEEE

Tonoyan Y, Looney D, Mandic DP, Van Hulle MM (2016) Discriminating multiple emotional states from EEG using a data-adaptive, multiscale information-theoretic approach. Int J Neural Syst 26(02):1650005

Article
Google Scholar

Schubring D, Schupp HT (2021) Emotion and brain oscillations: high arousal is associated with decreases in alpha-and lower beta-band power. Cereb Cortex 31(3):1597–1608

Article
Google Scholar

Vabalas A, Gowen E, Poliakoff E, Casson AJ (2019) Machine learning algorithm validation with a limited sample size. PLoS ONE 14(11):0224365

Article
Google Scholar

Russell JA (1980) A circumplex model of affect. J Pers Soc Psychol 39(6):1161

Article
Google Scholar

Tomkins SS (1962) Affect, imagery, consciousness: cognition: duplication and transformation of information, vol 4. Springer, Berlin

Google Scholar

Qi C, Li M, Wang Q, Zhang H, Xing J, Gao Z, Zhang H (2018) Facial expressions recognition based on cognition and mapped binary patterns. IEEE Access 6:18795–18803

Article
Google Scholar

Feldman Barrett L, Russell JA (1998) Independence and bipolarity in the structure of current affect. J Pers Soc Psychol 74(4):967

Article
Google Scholar