Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420. https://doi.org/10.1038/nrn3241
Article
Google Scholar
Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14(11):770–785. https://doi.org/10.1038/nrn3599
Article
Google Scholar
Lopes da Silva F (2013) EEG and MEG: relevance to neuroscience. Neuron 80(5):1112–1128. https://doi.org/10.1016/j.neuron.2013.10.017
Article
Google Scholar
Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13(2):121–134. https://doi.org/10.1038/nrn3137
Article
Google Scholar
Cohen MX (2017) Where does EEG come from and what does it mean? Trends Neurosci 40(4):208–218. https://doi.org/10.1016/j.tins.2017.02.004
Article
Google Scholar
Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780195050387.001.0001
Book
Google Scholar
Başar E (1980) EEG-brain dynamics: relation between EEG and brain evoked potentials. Elsevier, Amsterdam
Google Scholar
Mitra P, Bokil H (2007) Observed brain dynamics. Oxford University Press, Oxford
Book
Google Scholar
Mahmud M, Vassanelli S (2016) Processing and analysis of multichannel extracellular neuronal signals: state-of-the-art and challenges. Front Neurosci 10:248. https://doi.org/10.3389/fnins.2016.00248
Article
Google Scholar
Martínez-Cañada P, Noei S, Panzeri S (2021) Inferring neural circuit interactions and neuromodulation from local field potential and electroencephalogram measures. In: Mahmud M, Kaiser MS, Vassanelli S, Dai Q, Zhong N (eds) Brain informatics. Lecture notes in computer science. Springer, Berlin, pp 3–12. https://doi.org/10.1007/978-3-030-86993-9_1
Chapter
Google Scholar
Wang X-J, Krystal John H (2014) Computational psychiatry. Neuron 84(3):638–654. https://doi.org/10.1016/j.neuron.2014.10.018
Article
Google Scholar
Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE, Srinivasan R (2018) Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nat Neurosci 21(7):903–919. https://doi.org/10.1038/s41593-018-0171-8
Article
Google Scholar
Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225. https://doi.org/10.1146/annurev-neuro-062111-150444
Article
Google Scholar
Buzsaki G (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929. https://doi.org/10.1126/science.1099745
Article
Google Scholar
Jadi MP, Sejnowski TJ (2014) Regulating cortical oscillations in an inhibition-stabilized network. Proc IEEE 102(5):830–842. https://doi.org/10.1109/jproc.2014.2313113
Article
Google Scholar
Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24. https://doi.org/10.1016/s0006-3495(72)86068-5
Article
Google Scholar
Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38(3):315–336. https://doi.org/10.1016/s0167-8760(00)00173-2
Article
Google Scholar
Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(1):49–65. https://doi.org/10.1016/s0896-6273(00)80821-1
Article
Google Scholar
Wang X-J (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3):1195–1268. https://doi.org/10.1152/physrev.00035.2008
Article
Google Scholar
Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 88(1):220–235. https://doi.org/10.1016/j.neuron.2015.09.034
Article
Google Scholar
Buzsáki G, Schomburg EW (2015) What does gamma coherence tell us about inter-regional neural communication? Nat Neurosci 18(4):484–489. https://doi.org/10.1038/nn.3952
Article
Google Scholar
Scheeringa R, Fries P (2019) Cortical layers, rhythms and BOLD signals. Neuroimage 197:689–698. https://doi.org/10.1016/j.neuroimage.2017.11.002
Article
Google Scholar
Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, Panzeri S (2008) Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28(22):5696–5709. https://doi.org/10.1523/jneurosci.0009-08.2008
Article
Google Scholar
Donner TH, Siegel M (2011) A framework for local cortical oscillation patterns. Trends Cogn Sci 15(5):191–199. https://doi.org/10.1016/j.tics.2011.03.007
Article
Google Scholar
Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113. https://doi.org/10.1126/science.1154735
Article
Google Scholar
Steriade M, Hobson J (1976) Neuronal activity during the sleep-waking cycle. Prog Neurobiol 6(3–4):155–376
Google Scholar
Ungerleider L, Ray S, Maunsell JHR (2011) Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000610
Article
Google Scholar
Veit J, Hakim R, Jadi MP, Sejnowski TJ, Adesnik H (2017) Cortical gamma band synchronization through somatostatin interneurons. Nat Neurosci 20(7):951–959. https://doi.org/10.1038/nn.4562
Article
Google Scholar
Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56. https://doi.org/10.1038/nrn2044
Article
Google Scholar
Brunel N, Wang X-J (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90(1):415–430. https://doi.org/10.1152/jn.01095.2002
Article
Google Scholar
Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L-H, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667. https://doi.org/10.1038/nature08002
Article
Google Scholar
Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337. https://doi.org/10.1038/338334a0
Article
Google Scholar
Belitski A, Panzeri S, Magri C, Logothetis NK, Kayser C (2010) Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands. J Comput Neurosci 29(3):533–545. https://doi.org/10.1007/s10827-010-0230-y
Article
MATH
Google Scholar
Juergens E, Guettler A, Eckhorn R (1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129(2):247–259. https://doi.org/10.1007/s002210050895
Article
Google Scholar
Kayser C, König P (2004) Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials. Eur J Neurosci 19(2):485–489. https://doi.org/10.1111/j.0953-816X.2003.03122.x
Article
Google Scholar
Kayser C, Petkov CI, Logothetis NK (2007) Tuning to sound frequency in auditory field potentials. J Neurophysiol 98(3):1806–1809. https://doi.org/10.1152/jn.00358.2007
Article
Google Scholar
Henrie JA, Shapley R (2005) LFP power spectra in V1 cortex: the graded effect of stimulus contrast. J Neurophysiol 94(1):479–490. https://doi.org/10.1152/jn.00919.2004
Article
Google Scholar
Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 5(8):805–811. https://doi.org/10.1038/nn890
Article
Google Scholar
Frien A, Eckhorn R, Bauer R, Woelbern T, Gabriel A (2000) Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey. Eur J Neurosci 12(4):1453–1465. https://doi.org/10.1046/j.1460-9568.2000.00025.x
Article
Google Scholar
Mazzoni A, Brunel N, Cavallari S, Logothetis NK, Panzeri S (2011) Cortical dynamics during naturalistic sensory stimulations: experiments and models. J Physiol Paris 105(1–3):2–15. https://doi.org/10.1016/j.jphysparis.2011.07.014
Article
Google Scholar
Bosman Conrado A, Schoffelen J-M, Brunet N, Oostenveld R, Bastos Andre M, Womelsdorf T, Rubehn B, Stieglitz T, De Weerd P, Fries P (2012) Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75(5):875–888. https://doi.org/10.1016/j.neuron.2012.06.037
Article
Google Scholar
van Kerkoerle T, Self MW, Dagnino B, Gariel-Mathis M-A, Poort J, van der Togt C, Roelfsema PR (2014) Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. Proc Natl Acad Sci 111(40):14332–14341. https://doi.org/10.1073/pnas.1402773111
Article
Google Scholar
Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316(5831):1609–1612. https://doi.org/10.1126/science.1139597
Article
Google Scholar
Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32(1):209–224. https://doi.org/10.1146/annurev.neuro.051508.135603
Article
Google Scholar
Kohn A, Besserve M, Lowe SC, Logothetis NK, Schölkopf B, Panzeri S (2015) Shifts of gamma phase across primary visual cortical sites reflect dynamic stimulus-modulated information transfer. PLOS Biol. https://doi.org/10.1371/journal.pbio.1002257
Article
Google Scholar
Ferro D, van Kempen J, Boyd M, Panzeri S, Thiele A (2021) Directed information exchange between cortical layers in macaque V1 and V4 and its modulation by selective attention. Proc Natl Acad Sci 118(12):e2022097118. https://doi.org/10.1073/pnas.2022097118
Article
Google Scholar
Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878. https://doi.org/10.1038/nature06976
Article
Google Scholar
Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012) The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32(4):1395–1407. https://doi.org/10.1523/jneurosci.3985-11.2012
Article
Google Scholar
Engel AK, Fries P (2010) Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol 20(2):156–165. https://doi.org/10.1016/j.conb.2010.02.015
Article
Google Scholar
Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, Noto T, Lara AH, Wallis JD, Knight RT, Shestyuk A, Voytek B (2020) Parameterizing neural power spectra into periodic and aperiodic components. Nat Neurosci 23(12):1655–1665. https://doi.org/10.1038/s41593-020-00744-x
Article
Google Scholar
Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Article
MathSciNet
MATH
Google Scholar
Quian Quiroga R, Panzeri S (2009) Extracting information from neuronal populations: information theory and decoding approaches. Nat Rev Neurosci 10(3):173–185. https://doi.org/10.1038/nrn2578
Article
Google Scholar
Pola G, Thiele A, Hoffmann KP, Panzeri S (2003) An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network 14(1):35–60. https://doi.org/10.1088/0954-898x/14/1/303
Article
Google Scholar
Bringuier V, Fdr C, Glaeser L, Frégnac Y (1999) Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283(5402):695–699. https://doi.org/10.1126/science.283.5402.695
Article
Google Scholar
Nauhaus I, Busse L, Carandini M, Ringach DL (2008) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12(1):70–76. https://doi.org/10.1038/nn.2232
Article
Google Scholar
Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14(5):2545–2568. https://doi.org/10.1523/jneurosci.14-05-02545.1994
Article
Google Scholar
Sato Tatsuo K, Nauhaus I, Carandini M (2012) Traveling waves in visual cortex. Neuron 75(2):218–229. https://doi.org/10.1016/j.neuron.2012.06.029
Article
Google Scholar
Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron 36(4):739–750. https://doi.org/10.1016/s0896-6273(02)01029-2
Article
Google Scholar
Roerig B, Chen B (2002) Relationships of local inhibitory and excitatory circuits to orientation preference maps in ferret visual cortex. Cereb Cortex 12(2):187–198. https://doi.org/10.1093/cercor/12.2.187
Article
Google Scholar
Kisvarday Z (1997) Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb Cortex 7(7):605–618. https://doi.org/10.1093/cercor/7.7.605
Article
Google Scholar
Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, Migliore M, Ness TV, Plesser HE, Schürmann F (2019) The scientific case for brain simulations. Neuron 102(4):735–744. https://doi.org/10.1016/j.neuron.2019.03.027
Article
Google Scholar
Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol 4(12):e1000239. https://doi.org/10.1371/journal.pcbi.1000239
Article
MathSciNet
Google Scholar
Compte A (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10(9):910–923. https://doi.org/10.1093/cercor/10.9.910
Article
Google Scholar
Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319(5869):1543–1546. https://doi.org/10.1126/science.1150769
Article
Google Scholar
Deco G, Thiele A (2011) Cholinergic control of cortical network interactions enables feedback-mediated attentional modulation. Eur J Neurosci 34(1):146–157. https://doi.org/10.1111/j.1460-9568.2011.07749.x
Article
Google Scholar
Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol 93(3):1671–1698. https://doi.org/10.1152/jn.00915.2004
Article
Google Scholar
Mazzoni A, Whittingstall K, Brunel N, Logothetis NK, Panzeri S (2010) Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model. Neuroimage 52(3):956–972. https://doi.org/10.1016/j.neuroimage.2009.12.040
Article
Google Scholar
Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HDI, Sejnowski TJ, Laurent G (2001) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30(2):553–567. https://doi.org/10.1016/s0896-6273(01)00284-7
Article
Google Scholar
Buehlmann A, Deco G (2010) Optimal information transfer in the cortex through synchronization. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000934
Article
MathSciNet
MATH
Google Scholar
Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4(8):e1000092. https://doi.org/10.1371/journal.pcbi.1000092
Article
Google Scholar
Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J (2003) Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J Neurophysiol 89(5):2707–2725. https://doi.org/10.1152/jn.00845.2002
Article
Google Scholar
Mazzoni A, Linden H, Cuntz H, Lansner A, Panzeri S, Einevoll GT (2015) Computing the local field potential (LFP) from integrate-and-fire network models. PLoS Comput Biol 11(12):e1004584. https://doi.org/10.1371/journal.pcbi.1004584
Article
Google Scholar
Martinez-Canada P, Ness TV, Einevoll GT, Fellin T, Panzeri S (2021) Computation of the electroencephalogram (EEG) from network models of point neurons. PLoS Comput Biol 17(4):e1008893. https://doi.org/10.1371/journal.pcbi.1008893
Article
Google Scholar
Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada SJ, Grün S, Diesmann M, Einevoll GT (2016) Hybrid scheme for modeling local field potentials from point-neuron networks. Cereb Cortex 26(12):4461–4496. https://doi.org/10.1093/cercor/bhw237
Article
Google Scholar
Næss S, Halnes G, Hagen E, Hagler DJ, Dale AM, Einevoll GT, Ness TV (2021) Biophysically detailed forward modeling of the neural origin of EEG and MEG signals. Neuroimage. https://doi.org/10.1016/j.neuroimage.2020.117467
Article
Google Scholar
Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT, Wójcik DK (2017) Corrected four-sphere head model for EEG signals. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2017.00490
Article
Google Scholar
Brunel N (2000) Phase diagrams of sparsely connected networks of excitatory and inhibitory spiking neurons. Neurocomputing 32–33:307–312. https://doi.org/10.1016/s0925-2312(00)00179-x
Article
MATH
Google Scholar
Huang Y, Parra LC, Haufe S (2016) The New York Head—a precise standardized volume conductor model for EEG source localization and tES targeting. Neuroimage 140:150–162. https://doi.org/10.1016/j.neuroimage.2015.12.019
Article
Google Scholar
Trakoshis S, Martínez-Cañada P, Rocchi F, Canella C, You W, Chakrabarti B, Ruigrok ANV, Bullmore ET, Suckling J, Markicevic M, Zerbi V, Consortium MA, Baron-Cohen S, Gozzi A, Lai M-C, Panzeri S, Lombardo MV (2020) Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex differently in autistic men versus women. Elife 9:e55684. https://doi.org/10.7554/eLife.55684
Article
Google Scholar
Martínez-Cañada P, Panzeri S (2021) Spectral properties of local field potentials and electroencephalograms as indices for changes in neural circuit parameters. In: Mahmud M, Kaiser MS, Vassanelli S, Dai Q, Zhong N (eds) Brain informatics. Lecture notes in computer science. Springer, Berlin, pp 115–123. https://doi.org/10.1007/978-3-030-86993-9_11
Chapter
Google Scholar
Zaldivar D, Goense J, Lowe SC, Logothetis NK, Panzeri S (2018) Dopamine is signaled by mid-frequency oscillations and boosts output layers visual information in visual cortex. Curr Biol 28(2):224–235. https://doi.org/10.1016/j.cub.2017.12.006
Article
Google Scholar
Canella C, Rocchi F, Noei S, Gutierrez-Barragan D, Coletta L, Galbusera A, Vassanelli S, Pasqualetti M, Iurilli G, Panzeri S, Gozzi A (2020) Cortical silencing results in paradoxical fMRI overconnectivity. bioRxiv. https://doi.org/10.1101/2020.08.05.237958
Article
Google Scholar
Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O (2018) The locus coeruleus is a complex and differentiated neuromodulatory system. Neuron 99(5):1055-1068.e1056. https://doi.org/10.1016/j.neuron.2018.07.037
Article
Google Scholar
Noei S, Zouridis IS, Logothetis NK, Panzeri S, Totah NK (2020) Distinct ensembles in the noradrenergic locus coeruleus evoke diverse cortical states. bioRxiv. https://doi.org/10.1101/2020.03.30.015354
Article
Google Scholar