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Abstract 

Two-photon fluorescence calcium imaging allows recording the activity of large neural populations with subcellular 
spatial resolution, but it is typically characterized by low signal-to-noise ratio (SNR) and poor accuracy in detecting 
single or few action potentials when large number of neurons are imaged. We recently showed that implementing a 
smart line scanning approach using trajectories that optimally sample the regions of interest increases both the SNR 
fluorescence signals and the accuracy of single spike detection in population imaging in vivo. However, smart line 
scanning requires highly specialised software to design recording trajectories, interface with acquisition hardware, 
and efficiently process acquired data. Furthermore, smart line scanning needs optimized strategies to cope with 
movement artefacts and neuropil contamination. Here, we develop and validate SmaRT2P, an open-source, user-
friendly and easy-to-interface Matlab-based software environment to perform optimized smart line scanning in two-
photon calcium imaging experiments. SmaRT2P is designed to interface with popular acquisition software (e.g., Scan-
Image) and implements novel strategies to detect motion artefacts, estimate neuropil contamination, and minimize 
their impact on functional signals extracted from neuronal population imaging. SmaRT2P is structured in a modular 
way to allow flexibility in the processing pipeline, requiring minimal user intervention in parameter setting. The use of 
SmaRT2P for smart line scanning has the potential to facilitate the functional investigation of large neuronal popula-
tions with increased SNR and accuracy in detecting the discharge of single and few action potentials.
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1  Introduction
Information is encoded in the brain in the form of the 
coordinated activity of large populations of neurons with 
remarkably fine spatio-temporal resolution [1–5]. In par-
ticular, both single cell features, such as the identity of 
each neuron and the timing of small number of spikes or 
even of individual spikes [6–16], as well as the functional 
correlations among neurons [14, 16–20], are relevant 
for sensory information encoding and perception [21, 
22]. Furthermore, the information encoding properties 

of populations of neurons are fully revealed only when 
analysing large populations [23, 24]. Thus, to understand 
how neural networks encode and transmit information it 
is essential to record from large populations of neurons 
ideally with single cell and single action potential resolu-
tion [25].

Since its introduction in neuroscience, two-photon 
(2P) calcium imaging [26, 27] has become one of the 
preferred techniques to collect data from populations of 
neurons, because it allows recording activity from hun-
dreds (up to several thousands) of genetically identi-
fied neurons [11, 23, 28, 29] with subcellular resolution 
[30–32]. Furthermore, 2P calcium imaging is suitable for 
long-term studies, since cells can be tracked across dif-
ferent experimental sessions in longitudinal experiments 
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[11, 33]. However, the acquisition rates of many 2P cal-
cium imaging systems using the galvanometric mirror-
based raster scanning modality result in a relatively slow 
temporal resolution, that does not allow fully capture cal-
cium dynamics and fully realize the potential offered by 
2P calcium imaging [34]. Another important limitation 
is related to the signal-to-noise ratio (SNR) of the fluo-
rescence signal, which depends on several experimental 
parameters, such as reporter type and expression level, 
excitation laser power, local tissue properties, optical and 
electronic hardware, and acquisition parameters [35]. 
Recently developed genetically encoded calcium indica-
tors (GECI) are characterized by excellent SNR and they 
achieve high accuracy in single action potential detection 
[36]. However, they do so under optimized experimental 
conditions that cannot be easily extended to large popula-
tion imaging in the conventional raster scanning modal-
ity [37, 38]. To address this limitation, we [38] recently 
introduced Smart Line Scanning (SLS), an approach to 
image populations of neurons with improved tempo-
ral resolution and high signal quality. SLS combines the 
line scan imaging approach [39, 40] with a “smart” pixel 
selection strategy based on the optimization of the SNR 
of individual regions of interest (ROIs). SLS achieves 
higher imaging sampling rates, increased SNR, and larger 
detection accuracy of individual spikes compared with 
conventional raster scanning approaches when applied to 
neuronal population imaging.

As for conventional raster scanning, SLS requires a 
sequence of data processing steps to infer action poten-
tials from the recorded fluorescence signals. For con-
ventional raster scanning a number of tools have been 
developed to perform the various data processing stages 
(e.g., motion correction and frame registration [41–45], 
ROI segmentation [46–54], background subtraction 
[50], neuropil decontamination [55, 56], calcium activity 
deconvolution [50, 57–60]) and efficient toolboxes and 
libraries are available to pre-process 2P calcium imaging 
data sets [52, 61–66]. While some of the pre-processing 
strategies and tools developed for raster scanning data 
are applicable also to process SLS data (e.g., for calcium 
activity deconvolution), motion correction and neuro-
pil subtraction in SLS data set specific challenges, which 
require the conceptual development and implementa-
tion of novel dedicated strategies. While we experimen-
tally validated the effectiveness of SLS in our recent work 
[38], we did not provide a user-friendly optimized algo-
rithm for the generation and analysis of SLS data sets in 
our previous work. The lack of standardized open-source 
available processing tools is a limitation preventing the 
community to benefit from the advantages of SLS.

Here, we introduce SmaRT2P, an open-source stan-
dalone and ready-to-use Matlab-based interface for the 

generation of SLS trajectories and the offline process-
ing of SLS data. The SmaRT2P interface processes con-
ventional raster acquisitions using existing standardised 
algorithms [44, 50], builds SLS trajectories based on ref-
erence images acquired with raster scanning, and intro-
duces novel dedicated methods for processing SLS data. 
In particular, SLS trajectories are determined using a 
genetic algorithm to find the optimal path connecting 
all ROIs and the shortest path within each ROI. Further-
more, a surround region can be added to the ROIs to 
ensure robustness to artefacts and improve the perfor-
mance of the processing algorithm. The interface allows 
the detection of large motion artefacts, the extraction of 
activity time series for each ROI, the correction of small 
local motion artefacts, and the reduction of background/
neuropil signal from ROI traces. The motion correc-
tion algorithms, which we implemented in SmaRT2P, 
are line-by-line strategies specifically designed for local 
small motion artefacts detected in SLS data, which rep-
resent SLS-specific alternatives to the frame-by-frame 
motion corrections for raster acquisitions. They include 
the method (based on a pixels selection criterion aimed 
at maximizing the signal SNR) already implemented in 
[38] and a novel strategy, based on an efficient state-of-
the art motion correction algorithm for raster data [44]. 
With respect to our previous implementation of SLS [38], 
SmaRT2P thus integrates the processing pipeline with the 
novel motion correction algorithm, introduces flexibility 
in the application of the processing steps and evaluates 
the processing quality using two different metrics, pro-
viding a user-friendly software for a complete process-
ing pipeline for SLS data. We describe SmaRT2P in detail 
and we validate it by systematically applying SmaRT2P to 
a large data set of spontaneous or stimulus driven neural 
activity collected from head-fixed anesthetized or awake 
mice, which we make publicly available [67] to support 
further development, validation, and benchmarking of 
related algorithms.

2 � Materials and methods
2.1 � General overview
SmaRT2P is a Matlab (R2019a) toolbox to design and 
process SLS acquisitions. It is composed by two main 
blocks (Fig.  1a): the processing of conventional raster 
acquisitions and building of SLS trajectories; and the pro-
cessing of SLS acquisitions.

While the processing of raster data mostly relies on 
existing algorithms, the possibility to design SLS trajec-
tories and to process SLS data represents the novelty of 
the software. The SLS processing pipeline implementa-
tion is highly flexible (Fig.  1b) to adapt to a wide range 
of acquisition conditions (e.g., in anesthetized or awake 
mice, for spontaneous or stimulus driven activity) and 
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data quality. The presence of an intuitive user-friendly 
graphical interface (GUI, Additional file  1: Figure S1a) 
makes SmaRT2P available to users with no or basic pro-
gramming experience.

Detailed information about SmaRT2P, a practical 
user guide and code is available at https://​github.​com/​
moni90/​SmART​2P.

2.2 � Raster acquisitions
2.2.1 � Data import
SmaRT2P supports importing raw raster acquisitions 
either from a sequence of.tiff files (each file correspond-
ing to a single frame) or from a single.tiff file (one file 
containing multiple images). This is a format widely 
used for 2P-imaging experiments, and widely used open-
source software (e.g., ImageJ/FIJI [68, 69]) can convert 
to.tiff imaging data acquired in other popular formats.

Together with the raster data, the user must provide 
a series of parameters specifying the spatial and tem-
poral resolution of the acquisition: pixel size (μm per 

pixel), single frame imaging period (s), single line imag-
ing period (s) and dwell time (μs). Users can insert these 
parameters manually or load them from metadata stored 
during the acquisition. The current version of SmaRT2P 
allows extracting metadata from.xml documents saved by 
the Prairieview acquisition software (version 5.4, Ultima 
II scanhead, Bruker Corporation, Milan) or directly from 
the.tiff files recorded using ScanImage (version 2018b) 
[70].

Users can also import already processed raster acquisi-
tions (previously exported from the SmaRT2P GUI and 
saved as Matlab files (.mat)). Thanks to the modularity 
of SmaRT2P, users can easily customize the interface to 
allow importing different data formats.

2.2.2 � Motion artefacts correction
Efficient algorithms for the correction of motion arte-
facts are available for raster data [41–45]. We integrated 
in SmaRT2P a state-of-the art motion correction algo-
rithm [44]. Users can choose between a rigid motion 

Fig. 1  Schematic of the software. a Software is designed to process raster (top) and SLS (bottom) acquisitions. Dashed lighter boxes represent 
optional processing steps. b Pipeline for SLS data processing is flexible and can consist of one or many processing steps

https://github.com/moni90/SmART2P
https://github.com/moni90/SmART2P
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correction, that shifts the entire field of view (FOV) and 
a non-rigid motion correction, that splits the FOV in 
multiple patches and shifts each patch separately. The 
template to which frames are registered is the tempo-
ral average of the first acquisition frames. The number 
of frames used to compute the template as well as other 
parameters for the motion correction can be manually 
set from the GUI.

2.2.3 � ROIs segmentation
For the segmentation of ROIs in the FOV, SmaRT2P 
provides three options: importing existing ROIs, auto-
matically detecting ROIs or manually drawing ROIs. The 
segmentation obtained with any of these options can be 
further modified manually by users.

Import ROIs. Our software allows importing ROIs in 
various ways.

ROIs can be imported from segmentations performed 
in ImageJ/FIJI: ROIs from ImageJ must have been drawn 
using the ROI Manager tool and saved as.roi or.zip files. 
They are imported in SmaRT2P using the code provided 
in [71] and are overlapped to the FOV.

ROIs can also be imported from segmentations per-
formed with other software/libraries: ROIs segmented 
using other software or libraries must be organized in a 
matrix of size [number of FOV pixels]x[number of ROIs], 
where each column corresponds to a ROI and has non-
negative values in the rows corresponding to the ROI’s 
pixels, as in [50] and saved in.csv or.txt format. Imported 
ROIs are overlapped to the FOV.

Finally, ROIs can be imported from other FOVs already 
processed with SmaRT2P. In the case of longitudinal 
imaging sessions, ROIs imported from previously pro-
cessed raster acquisitions on a given FOV (in the fol-
lowing indicated as original FOV) can be automatically 
adjusted to fit the current imaging session on the same 
area through rigid shifts and rotations. To perform the 
adjustment, the correlation projection of the current 
FOV is registered to the correlation projection of the 
original FOV. The transformation that minimizes the 
mean square error between the FOVs projections is then 
applied to the ROIs segmented on the original FOV and 
the transformed ROIs are overlapped to the current FOV. 
When importing ROIs, users are asked whether the auto-
mated adjustment must be performed. After the auto-
mated adjustment, users can visualize the aligned ROIs 
and choose whether they want to import the aligned 
ROIs or the original (not aligned) ones. Users can further 
edit the imported ROIs by adding or removing ROIs as 
described in the Manual Segmentation paragraph.

Automated segmentation. We integrated in SmaRT2P 
the possibility to perform an automated segmentation of 
the FOV adapting the algorithms and the codes provided 

in the Matlab implementation of CaImAn [61]. To seg-
ment the FOV, users are asked to manually set a putative 
number of ROIs and their size.

SNR maximization criterion. After ROIs have been 
imported or automatically segmented, users can further 
filter the pixels belonging to each ROI according to an 
SNR-maximization criterion. This allows reducing the 
number of segmented pixels and increasing the signal 
quality. SNR is defined as

where f (t; x) denotes the fluorescence extracted at time 
t and averaged across pixels x = [x1, x2, . . . , xN ] and 
f25(t; x) denotes all the fluorescence values below the 25th 
percentile of the fluorescence distribution extracted from 
the same pixels. For each ROI, pixels are sorted accord-
ing to decreasing SNR. The SNR of the ROI fluorescence 
trace is computed as a function of increasing number of 
pixels (starting with highest SNR pixels) and only pixels 
maximizing ROI SNR are included in the final segmenta-
tion. This SNR optimization step is performed indepen-
dently for each cell in the FOV resulting in a complete 
segmentation mask to be used for the generation of the 
SLS scan path.

Manual segmentation. Alternatively, users can manu-
ally segment raster acquisitions in a dedicated window 
(Additional file 1: Fig. S1b). Users can visualize the aver-
age projection, the max–min projection and the corre-
lation projection of the full acquisition, or alternatively 
visualize the average projection and the max–min projec-
tion of a small number of frames (set manually by users). 
Alternatively, users can browse through the acquisition, 
scrolling consecutive frames. Users can draw and visu-
alize ROIs both on individual raster frames and on the 
projections. Each ROI can be segmented by manually 
drawing the contour or by selecting a bounding box. If 
the contour is manually drawn, an ellipse is fitted to the 
drawn shape. Pixels falling within the ellipse or within the 
bounding box are sorted for decreasing SNR [Eq. (1)] and 
the same SNR-maximization criterion described in the 
SNR maximization criterion paragraph is used to assign 
pixels to the ROI. After the automated pixels assignment, 
users can manually adjust the pixels selection. After a 
first segmentation, users can modify the segmentation by 
adding new ROIs or removing existing ones.

2.2.4 � Calcium activity deconvolution
For the segmented ROIs, the raw fluorescence trace 
is computed as the average fluorescence across pixels 
belonging to each ROI. The normalized fluorescence is 
then computed as

(1)SNR
(

f ; x
)

=

max
t

f (t; x)−meant
(

f25(t; x)
)

stdt
(

f25(t; x)
) ,



Page 5 of 19Moroni et al. Brain Informatics            (2022) 9:18 	

where f50(t) denotes all the fluorescence values below 
the 50th percentile (or median) of the fluorescence dis-
tribution. For automatically detected ROIs, the decon-
volved calcium activity is automatically extracted during 
the segmentation [64]. For ROIs imported or segmented 
manually, the same algorithm is implemented to extract 
the deconvolved calcium activity. The normalized fluo-
rescence is fitted with an autoregressive model of first 
order in case the imaging acquisition rate is lower than 
2 Hz, of second-order otherwise.

2.2.5 � Data export
Processed data can be exported and saved as Matlab.mat 
files. A single data structure is saved with all the process-
ing information. The same structure can be imported in 
the interface for further processing of the data.

2.2.6 � SLS trajectory computation
Starting from a raster segmentation, the software allows 
drawing a SLS trajectory that travels through all the seg-
mented ROIs (Additional file 1: Fig. S1c). The trajectory 
is computed to intercept each segmented pixel inside a 
ROI then to move to the next ROI. Among all the pos-
sible trajectories connecting segmented pixels and ROIs, 
SmaRT2P produces a path with minimal length inside 
each ROI and between ROIs [38]. We formulated the 
problem of finding the path with minimal length cross-
ing all ROIs as an application of the Travelling Salesman 
Problem (TSP). The TSP is known to be an NP-hard 

(2)dF/F0(t) =
f (t)−meant

(

f50(t)
)

meant
(

f50(t)
) ,

problem whose brute-force solution implies to compute 
(n  −  1)!/2 permutations and becomes computationally 
unfeasible for a large n, where n denotes the number of 
ROIs [72]. To solve the problem an approximate solu-
tion was computed, based on a genetic algorithm with 
a population of 100 individuals and 1000 generations. 
To create the next generation from the current one, the 
following mutations are applied to selected individuals: 
flipping, swapping and sliding. This allowed to generate 
SLS trajectories in less than 10 s. The pseudocode of the 
algorithm used to generate SLS trajectories is reported in 
Table 1.

For robustness purpose, users can add a surround of an 
arbitrary number of pixels around each ROIs and a ref-
erence box of arbitrary size at the end of the trajectory. 
ROIs mask and the SLS trajectory are exported automati-
cally after the drawing of the trajectory: ROIs are saved 
as a.mat file, while trajectories are saved as an.xml file 
compatible with the Prairieview software (version 5.4), 
as a Matlab.m file compatible with ScanImage (version 
2018b) and as a Matlab.mat file.

2.3 � SLS acquisitions
2.3.1 � Data import and ROIs registration
SmaRT2P allows importing SLS acquisitions recorded 
using Prairieview (version 5.4) or ScanImage (version 
2018b).

SLS data acquired with Prairieview are stored as a 
sequence of.tiff files, each of them containing multiple 
acquisitions of the SLS trajectory. When importing the 
acquisition in SmaRT2P, users can select the number 
of.tiff (from one to the total number of files set for the 

Table 1  Pseudocode for SLS trajectories optimization and generation

Input: random path through all ROIs (path0), labels indicating which ROI corresponds to each path0 pixel (tags)

Step 1. Find unique ROIs

For ROI in unique(tags):
    Find ROI centroid

Step 2. Find optimal path through ROIs centroids (pathTSP) applying genetic algorithm to solve TSP

Randomly initialize a population of 100 individuals (random paths through all ROIs)
Find minimum path length minglob and the individual than minimize path length (pathTSP)
For generation in [1:1000]:
    Compute the path length for each individual
    If exist a path shorter then minglob, then update minglob and pathTSP
    Randomly split population in groups of 4 individuals
    For each group of 4 individuals:
        Find the individual with shortest path
        Create 4 mutations (original, flip, swap, slide) of the individual for the next generation

Step 3. Compute pathSLS

Initialize empty trajectory pathSLS

For ROI in pathTSP:
    Find path through all ROI’s pixels (pathROI) using a greedy algorithm
    Append pathROI to pathTSP

Return: pathTSP
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acquisition) which will be concatenated. SLS acquisi-
tions can also be imported as raster acquisitions. Each 
SLS line is replaced by a two-dimensional FOV with 
same size of the original raster acquisition, whose pix-
els contain either the recorded fluorescence or gauss-
ian noise (with mean and standard deviation estimated 
from the fluorescence of SLS trajectory pixels), depend-
ing on whether the pixel belongs to the SLS trajec-
tory or not. If SLS data are imported as raster, only a 
maximum of two.tiff files can be concatenated to avoid 
problems due to large data structures. SLS acquisi-
tions imported as raster can be later processed as ras-
ter acquisitions. Together with the.tiff files the.xml file 

containing metadata and generated during the imaging 
must be provided.

SLS data acquired with ScanImage are stored in a.txt 
file, containing metadata and information about the 
acquisition, and a.dat file, containing the fluorescence 
values. Both files should be provided to SmaRT2P.

During the import of a SLS acquisition, users can 
select the reference segmentation, that is the seg-
mentation used to build the trajectory. In case a ref-
erence segmentation is selected, each pixel in the SLS 
trajectory is automatically assigned to one of the fol-
lowing classes according to its distance from the refer-
ence segmentation (Fig.  2b): (i) ROI: trajectory pixels 

Fig. 2  Schematic of the processing algorithms. a Schematic of the algorithm for large artefacts detection. The dimensionality of SLS data is 
reduced using PCA and the PC1 scores vector is fitted using an autoregressive model of second order (AR(2)). If the sliding correlation (computed 
in a 10 s window) between the PC1 scores vector and its fit drops below a given threshold (set to 0.3), a large artefact is detected (red star). b Left: 
an SLS trajectory (yellow line) with a surround of 4 pixels is overlapped to a projection of the corresponding raster acquisition and its reference 
segmentation (red ROIs). A reference box (yellow square) is scanned at the end of the SLS trajectory. Right top. Pixels assignment for an example 
ROI (red box in left panel). Pixels can be assigned to the ROI (red dots), to its outer ring (yellow dots), to its surround (green dots), or to background 
(black dots). Right bottom. Pixels assignment for an example ROI of a SLS trajectory without ROIs surround. c Schematic of the algorithm for 
background activity subtraction. A 1-rank representation of the fluorescence activity of trajectory pixels labelled as background (black pixels) is 
computed using PCA. The across-pixels averaged low-rank representation is considered as a proxy of background activity, multiplied by 0.7 and 
subtracted from the fluorescence of all the pixels. d Schematic of the small and local artefacts correction algorithm based on NoRMCorre. Activity 
recorded from the reference box (optionally smoothed in time by averaging in a sliding window of arbitrary width) is considered as a raster 
acquisition to estimate planar displacement using the NoRMCorre algorithm [44]. The estimated displacements are then applied back to the full 
trajectory. e Schematic of the small and local artefacts correction based on SNR. For each ROI, pixels labelled as belonging to the ROI, its outer 
ring or its surround are considered. In a sliding window of 10 s the SNR of each pixel is computed, pixels are sorted for decreasing SNR, and only a 
fixed number of high-SNR pixels is used to extract the fluorescence activity. Pixels are selected line-by-line considering the SNR computed in the 
subsequent 10 s window
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within one pixel distance from the reference ROI (ii) 
ROI’s outer ring: trajectory pixels whose distance from 
the reference ROI is between one and two pixels (iii) 
ROI’s surround: trajectory pixels whose distance from 
the reference ROI is between two and four pixels (iv) 
Background: trajectory pixels whose distance from any 
reference ROI is larger than four pixels.

Pixels falling in more than one group are not 
assigned to any class and are discarded for further pro-
cessing. The availability of a reference segmentation is 
not required to import SLS data but is necessary for 
pixels classification and for most of the following pro-
cessing steps (background activity subtraction, local 
artefacts correction, local neuropil subtraction).

2.3.2 � Large artefacts detection
The first step of the SLS pre-processing pipeline con-
sists in the detection of large motion artefacts. These 
are defined as FOV displacements occurring during 
the acquisition associated with a shift of the ROIs away 
from the scanned area/trajectory. Under the assump-
tion that such motion artefacts affect the entire SLS 
acquisition producing sudden (and not physiological) 
signal transients in all trajectory pixels, we devised 
the following strategy to detect a large motion artefact 
(Fig. 2a). We performed principal component analyses 
(PCA) to reduce the dimensionality of the SLS acqui-
sition and fitted the score vector of the first principal 
component (PC1) with an autoregressive model of sec-
ond order [50, 59] commonly used to model calcium 
activity. If the correlation between the PC1 scores 
vector and its fit, computed in a sliding window of 
10  s width, drops below a threshold of 0.3 at a given 
timepoint, a large artefact is detected and all the data 
acquired after the threshold crossing are discarded.

2.3.3 � Background activity subtraction
Pixels assigned to the background are used to estimate 
contamination of ROIs activity (Fig.  2c). The back-
ground subtraction strategy implemented here resem-
bles the background estimate performed in [50], where 
pixels not segmented as ROIs were used to compute 
a global background activity. We considered the fluo-
rescence activity of pixels labelled as background and 
we applied PCA to compute a low-rank representation 
of their activity (we kept only PC1, rank = 1). We then 
averaged across pixels the background low-rank rep-
resentation, multiplied it by 0.7 [36] and subtracted it 
from all the SLS pixels activity. Potential negative val-
ues stemming from this procedure were set to zero.

2.3.4 � Small and local motion artefacts correction
The algorithm implemented for large artefacts detec-
tion is not suited to deal with small (i.e., global events of 
moderate magnitude not fulfilling conditions in the Large 
artefacts detection paragraph) or local motion artefacts, 
defined as FOV displacements that do not cause a global 
misalignment between the imaged tissue and the SLS tra-
jectory, do not result in sudden changes in fluorescence 
dynamics, but might nevertheless be detrimental for 
the quality of the extracted signal. We, therefore, imple-
mented two strategies for the line-by-line correction of 
small and local motion artefacts.

The first strategy requires the user to define a refer-
ence box at the end on the SLS trajectory, ideally contain-
ing clear anatomical features (Fig. 2d). The fluorescence 
activity recorded from the reference box is processed as 
a canonical raster acquisition and the algorithm NoR-
MCorre [44] is applied to estimate the planar displace-
ment of the small portion of tissue corresponding to the 
reference box. Users can perform a temporal smooth-
ing (and optional down-sampling) of the reference box 
activity before the application of NoRMCorre, by aver-
aging across multiple “frames” (the temporal window for 
smoothing and down-sampling is manually set by users). 
The estimated displacement is then applied to each ROI 
patch of the smoothed and optionally down-sampled SLS 
trajectory (i.e., the patch composed by pixels labelled as 
belonging to a ROI, including up to its outer ring and its 
surround).

The second strategy consists in the local reassign-
ment of pixels based on the SNR of the extracted sig-
nal (Fig.  2e). For each ROI, pixels labelled as belonging 
to the ROI, to its outer ring and to its surround are 
pooled together. The algorithm computes, in a 10 s slid-
ing window, the SNR of each single pixel, sorts the pix-
els by descending SNR and relabels as belonging to the 
ROI only the pixels with highest SNR. The number of 
pixels assigned to each ROI is set to the number of pix-
els belonging to that ROI in the reference segmentation. 
However, the identity of the pixels assigned to a ROI 
can vary in time as a result of small motion artefacts or 
displacements.

2.3.5 � Neuropil decontamination
We implemented two strategies for neuropil decontami-
nation. The first method implements the algorithm of 
[36]. Pixels in the surround of each ROI are used to esti-
mate the neuropil activity. The average value of fluores-
cence intensity in the pixels belonging to the surround 
region is then multiplied by a contamination ratio of 0.7, 
estimated in [36], and subtracted from the average value 
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of pixels belonging to the ROI. If pixels have been reas-
signed to correct local artefacts, then all the not-assigned 
pixels (that are variable in time) are used to compute the 
local neuropil. The second strategy estimates a global 
neuropil signal based on ROIs activity. In detail, a fluo-
rescence signal is extracted for each ROI by averaging 
the fluorescence across all pixels assigned to the ROI and 
to its surround. Then, PCA is applied to compute a low-
rank (rank = 1) representation of the ROIs activity, inter-
pretable as a neuropil global signal. This neuropil global 
signal is finally subtracted from each ROI’s activity and 
potential negative values stemming from this procedure 
are set to zero.

2.3.6 � Deconvolution
The fluorescence activity of each ROI is computed by 
averaging the processed fluorescence activity (i.e., the flu-
orescence after background subtraction and/or neuropil 
decontamination) across all pixels labelled as belonging 
to the ROI at the end of the processing pipeline. Decon-
volution of this signal to estimate spike rates is then 
performed by fitting an autoregressive model of second 
order [64].

2.3.7 � Processing pipeline: validation metrics
To quantify the results obtained with our software on real 
neural data, we considered two measures: the SNR of the 
fluorescence traces and the average pairwise correlations. 
Since these values vary across ROIs, for each acquisi-
tion we computed these values at fixed ROI (or ROI pair) 
and then we averaged across all ROIs (or ROI pairs). The 
reported results are the average and standard error of the 
mean (SEM) across acquisitions.

3 � Results
To demonstrate the features and performance of our 
software, here we present the results of processing 
SLS acquisitions of real 2P calcium imaging data using 
SmaRT2P. The data used for this purpose were recorded 
in mice expressing GCaMP6s in layer IV of barrel cortex 
(depth ~ 400 μm), using methods fully described in [38]. 
In brief, we used a 2P microscope equipped with galva-
nometric mirrors to perform raster and SLS acquisitions 
in anesthetized or awake head-restrained animals. In 
both conditions, recordings were performed both during 
spontaneous and sensory-evoked activity (air puff stimu-
lation of the whisker pad). We made these data publicly 
available [67] to enable further tests and validations of 
this software and of new developments.

We first used SmaRT2P to manually segment refer-
ence raster acquisitions and compute SLS trajectories. 
Then, we acquired SLS data and characterized how the 
extracted signals are affected by each step of the SLS 

processing pipeline and how the SLS trajectory features 
(see below) impact on the quality of extracted signals. We 
further quantified how the SNR and pairwise correlations 
of ROIs depended on the processing steps. We reasoned 
that an effective scanning and analysis pipeline should 
increase (or at least maintain) the SNR as well as reduce 
(or at least maintain) the average level of pairwise cor-
relations (too high values of correlations could reflect an 
incomplete removal or artificial covariation factors due 
to contaminations from global fluorescence fluctuations 
and neuropil activity [34, 46, 65]).

The availability of a single stand-alone toolbox to 
process raster and SLS data allowed us to easily switch 
between the raster and the line scan modalities in the 
same experimental session. This is especially useful for 
long experimental sessions, where some displacement 
of the FOV across different recordings might occur. In 
this latter case, a possible strategy is to alternate SLS 
acquisitions with short raster acquisitions, align the ini-
tial raster segmentation to the novel raster acquisitions 
(keeping the same ROIs but correcting for possible dis-
placements), and recompute SLS trajectory over time 
according to the movements recorded by the alternat-
ing raster acquisitions. Since ROIs previously segmented 
using SmaRT2P are automatically imported and aligned 
to the raster FOV, this procedure contributes to generat-
ing more robust SLS data at small cost.

3.1 � Detection of large motion artefacts
The effect of planar motion artefacts can be very different 
between raster scan and SLS. In raster scan acquisitions, 
an image retaining all topological features of the FOV is 
usually available. Thus, planar motion artefacts can be 
compensated for with a frame-by frame iterative process, 
using a reference image of the FOV and a rigid or non-
rigid approach. These strategies are in general efficient 
against moderate artefacts for most of the ROIs [44, 62]. 
In SLS acquisition, planar displacements of the FOV of 
size comparable to a pixel can cause a mismatch of cellu-
lar structures with respect to the set of pixels selected for 
the scanning trajectory. Consequently, the set of pixels in 
each ROI scanned by SLS might no longer be optimized 
based on the collective SNR of the ROIs. In case of large 
motion artefacts (> 5 µm), this displacement can be large 
enough to exclude the cells of interest from the SLS tra-
jectory, in particular when no ROIs surround is included 
[38]. Since a complete bidimensional image of the cells 
of interest is lacking in SLS, we cannot use topological 
features of the acquisition nor a reference FOV image to 
estimate the planar displacement. We thus defined large 
motion artefacts based on functional features, ensuring 
that the recorded signals otherwise fluctuate smoothly 
in time and follow dynamics that are characteristic of 
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calcium activity (see “Large artefacts detection” section). 
In our experimental setup, large artefacts were seldom 
detected in SLS acquisitions in anesthetized animals 
(num. detected artefacts = 16 out of n = 258 SLS acquisi-
tions from n = 22 mice), while they were more frequent 
in awake and running head-restrained animals (num. 
detected artefacts = 7 out of n = 28 SLS acquisitions from 
n = 4 mice).

We investigated whether the presence and the size of 
a surround (i.e., the inclusion in the SLS of a region sur-
rounding the ROI identified based on pixel SNR; sur-
round dimension: 1, 2, 3 pixels) improved the robustness 
of SLS acquisitions to large motion artefacts (Fig. 3). We 

restricted the analyses to SLS data from awake animals, 
where detected large artefacts were less rare and a refer-
ence box (see “SLS trajectory computation” section) at 
the end of the SLS trajectory was always available. We 
considered the reference box pixels as a raster acquisition 
and we applied the NoRMCorre algorithm [44] to this 
small FOV portion to obtain an estimate of the amount of 
planar displacement of the FOV. We then estimated the 
fraction of SLS acquisition discarded a-posteriori using 
a linear mixed model in which the size (in pixels) of the 
ROI surround ( pxsurr ) was treated as a fixed effect covari-
ate, and the estimated planar displacement was treated as 
a random effect: 

(3)discardedSLSlines

acquiredSLSlines
= (β0 + β1 ∗ pxsurr)+

(

β0,shift + β1,shift ∗ pxsurr |shift
)

+ ε

Fig. 3  Large artefacts detection. a, b SLS trajectories (yellow line) with a surround of 4 pixels (a) and without surround (b) are overlapped to a 
projection of the corresponding raster acquisition and to their reference segmentation (red ROIs). c, d Large artefact detection for the acquisition 
in a, b. From top to bottom. Raster of the SLS acquisition. Each row represents the fluorescence trace of a pixel in the trajectory. Pixels are ordered 
according to their position in the trajectory, from the first (top) to the last (bottom). Reduced representation of SLS dynamics using only the scores 
vector of the first PC (PC 1, grey line) and fit with an AR(2) model (black line). Correlation between the first PC scores vector and its fit. Displacement 
along the horizontal (black) and vertical (grey) direction estimated applying the NoRMCorre algorithm [44] to the reference box. The dashed red line 
in d denotes the detection of a large artefacts
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This model distinguishes the specific contribution of 
the SLS surround size on the large motion artefact detec-
tion ( β0 + β1 ∗ pxsurr ) from the contribution due to the 
effective FOV displacement, estimated using the NoR-
MCorre algorithm ( β0,shift + β1,shift ∗ pxsurr |shift ). We 
expect that larger planar displacements in the acquired 
FOV will increase the fraction of discarded lines and we 
aim to understand whether adding a surround has any 
effect on the amount of discarded data. We found that 
the part of the model capturing the effect of surround 
size predicted that larger surrounds led to a significant 
decrease in the fraction of SLS acquisition to discard 
( β1 = −0.08 , p value = 0.036, model predictions with 
95% confidence intervals and residuals q–q plot in Addi-
tional file  1: Figure S2). This suggests that SLS trajecto-
ries with surrounds are more robust to motion artefacts 
(Fig. 3a,c). This was confirmed by the further finding that 
SmaRT2P detected large motion artefacts mostly for the 
acquisitions without surround (Fig.  3b, d; Table  2). The 
increased robustness to motion artefacts was obtained 
at the cost of decreasing the single line sampling rate 
because of the larger number of pixels to scan when the 
surround is included (Table 2).

3.2 � Background activity subtraction
In 2P imaging experiments, it is common practice to subtract 
global background activity, i.e., the signal generated by neigh-
bouring unspecified fluorescent structures [34, 50, 62]. In 
conventional raster scanning, global background activity can 
be computed from global fluctuations of the whole FOV or 
of FOV regions without ROIs (for example, the background 
components in [50]). In SLS acquisitions, a smaller number 
of pixels not belonging to ROIs are acquired, thus restricting 
the surface available for background estimation. We devel-
oped a strategy to estimate and subtract global background 

fluctuations using the available pixels and assessed its effec-
tiveness by computing pairwise correlations between ROIs 
fluorescence traces before and after the subtraction of the 
global background activity (Fig.  4). A significant reduction 
in pairwise correlations after background activity subtrac-
tion was observed both in anesthetized and awake animals 
(Fig.  4b,c), suggesting that our strategy was effective in 
removing simultaneous fluctuations in ROIs fluorescence 
(Table 3).

3.3 � Small and local motion artefacts correction
As discussed above, rigid and non-rigid motion correc-
tion techniques developed for raster scanning data do 
not generalize to SLS data. We, therefore, developed two 
line-by-line motion correction strategies for SLS data, 
which compensate small or local displacements that 
might take place during the acquisition.

The first strategy, which is novel with respect to the 
algorithms presented in [38], is the SLS line-by-line 
analog of the rigid frame-by-frame motion correction 
for raster acquisitions. It can be implemented only when 
a reference box is available at the end of the SLS trajec-
tory and it uses the reference box as a raster acquisition 
to estimate the planar displacement. Ideally, the refer-
ence box should contain clear anatomical features that 
remain available for all the duration of the recording, 
otherwise the motion estimate algorithm would try to 
match noise to a template and fail. Since the displace-
ment computed in a small FOV portion is then applied 
back to the full trajectory, this procedure assumes 
that the FOV is not altered by deformations but rigidly 
shifts within the imaged plane. We did not explicitly 
verify this assumption, but we believe it could be satis-
fied for SLS acquisitions, because they are characterized 
by high sampling rates, while non-rigid deformations 

Table 2  Sampling rate and large artefacts detection. Mean ± SEM

Anesthetized

Surr = 0 Surr = 1 Surr = 2 Surr ≥ 3

N SLS 146 54 41 17

Sampling rate (Hz) 42.7 ± 1.6 29.2 ± 2.3 23.3 ± 2.3 18.7 ± 2.6

N SLS with large artefacts 8 5 3 0

Fraction of cropped lines 0.65 ± 0.27 0.76 ± 0.14 0.63 ± 0.27 N.A

Awake

Surr = 0 Surr = 1 Surr = 2 Surr ≥ 3

N SLS 16 3 2 7

Sampling rate (Hz) 29.5 ± 4.1 28.2 ± 12.1 16.1 ± 0 16.6 ± 0.2

N SLS with large artefacts 6 0 0 1

Fraction of cropped lines 0.68 ± 0.34 N.A N.A 0.11 ± 0.00
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are in general associated with slow acquisition rates [41, 
43, 44]. To make the motion correction algorithm more 
robust against noise, we also estimated motion using 
a smoothed version of the data, obtained by averaging 
activity in a sliding window (width = 1 and 10 s).

The second strategy, already applied in [38], has been 
developed ad-hoc for SLS acquisitions. It is implemented 
locally around each ROI and aims at maximizing signal 
quality by considering only pixels with high SNR. Such 
strategy allows getting a different displacement for each 
ROI, therefore, releasing the assumption of a rigid FOV. 
This algorithm provides, therefore, a line-by-line pixel 
reassignment for each ROI, but it integrates information 
from a larger time window (to compute SNR) to compute 
single-line corrections. It must be noted that the success 
of this algorithm might be limited for those ROIs charac-
terized by long silent periods. In fact, during such peri-
ods there is no signal available to compute the SNR and 
the estimated displacements would be based on noise 
fluctuations.

We applied both strategies after the global background 
subtraction to all the SLS acquisitions, where a reference 
box was available and we observed that the SNR-based 
strategy leads to a small but consistent increase in the 
SNR of the extracted traces, independently from the sur-
round size and the animal condition (Fig. 5b; Table 4) and 
to small or non-significant increase in the pairwise cor-
relations between ROIs (Fig. 5b; Table 4). In general, the 
increase in signal quality is larger and more significant 
for larger surrounds, which suggests that adding sur-
rounds to the segmented ROIs might not only increase 
robustness with respect to large motion artefacts but also 
improve the performance of the local motion artefacts 
correction algorithm. The strategy based on the NoR-
MCorre algorithm [44] had heterogeneous performance, 
depending on the size of the surround and the tempo-
ral smoothing. In terms of SNR, it performed better for 
faster acquisitions without temporal smoothing and with 
small or no surround (Table 4). When it was successful in 
increasing the SNR, the improvement was larger than the 

Fig. 4  Background activity subtraction. a Top. Fluorescence activity of the ROIs segmented in an example SLS acquisition. Each row in the raster 
corresponds to the activity of a ROI. Bottom. Fluorescence activity of the same ROIs after the subtraction of the background activity. b Pairwise 
correlations between ROIs in a before (top) and after (bottom) the subtraction of the background activity. c. Average SNR (blue, left) and pairwise 
correlations (red, right) difference between background-subtracted and raw data for anesthetized (top) and awake animals (bottom). Extended 
values in Table 3

Table 3  Background subtraction. Difference in pairwise correlations before and after background subtraction

Only acquisitions with a reference raster segmentation are considered. Mean ± SEM (and p values for Wilcoxon signed rank test)

Anesthetized Awake

Surr = 0 Surr = 1 Surr ≥ 2 Surr = 0 Surr ≥ 1

N SLS 146 53 57 16 12

∆ SNR − 1.62 ± 0.21
(2.3e−13)

− 2.35 ± 0.39
(1.9e−6)

− 2.47 ± 0.37
(2.6e−7)

− 5.25 ± 4.26
(0.0023)

− 3.16 ± 1.56
(4.9e−4)

∆ pairwise correlations − 0.35 ± 0.01
(1.0e−25)

− 0.42 ± 0.01
(2.4e−10)

− 0.43 ± 0.01
(5.1e−11)

− 0.20 ± 0.04
(0.0019)

− 0.30 ± 0.04
(0.0005)
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one obtained using the SNR-based strategies. However, 
it was also accompanied by a larger increase in pairwise 
correlations, which might suggest that some background 
activity is retained in the ROIs traces (Table 4).

To further understand the different performance of 
the two strategies, we computed the correlation between 
the (planar) displacements estimated by each algorithm 
(Fig.  5c). In the SNR-based strategy, which is charac-
terized by local and non-rigid artefacts correction, we 
defined a planar displacement for each ROI, as the planar 
shift of the centre of the ROI spatial footprint. We then 
computed correlations between each ROI’s SNR-based 
displacement and the NoRMCorre-based displacement 
and considered the maximum value of correlation across 

ROIs as a measure of similarity between the displace-
ments estimated using the two strategies. We found that 
correlation values where higher between the SNR-based 
displacement and the NoRMCorre-based displacement 
with smoothing at 0.1  Hz (correlation values. x-axis: 
0.42 ± 0.01, y-axis: 0.46 ± 0.01, mean ± SEM, n = 162 
anesthetized. Correlation values. x-axis: 0.25 ± 0.03, 
y-axis: 0.41 ± 0.04, mean ± SEM, n = 28 awake). This 
might be explained by the fact that the temporal window 
considered for the SNR computation and the smoothing 
applied before the NoRMCorre-based correction have 
the same width. The correlation values obtained when 
considering smaller or no smoothing windows were 
smaller.

Fig. 5  Small and local artefacts correction and neuropil decontamination. a Fluorescence activity of the same ROIs of Fig. 2a after the correction 
of artefacts obtained through the reassignment of those pixels that maximize the SNR (top) or through the correction strategy that uses the 
displacements estimated using the NoRMCorre algorithm [44] on the reference box with a smoothing window of 10 s (bottom). b Effects of 
different artefacts corrections strategies on the SNR and pairwise correlation of fluorescence traces for different surrounds and animal states. 
Extended values in Table 4. c Correlations between the displacement along the x-axis (left) or y-axis (right) estimated using different strategies 
in anesthetized (top) and awake (bottom) animals. d Effects of neuropil decontamination strategies on the SNR and pairwise correlation of 
fluorescence traces for different surrounds and animal states. Extended values in Table 5
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3.4 � Neuropil decontamination
Fluorescence signal from out of focus sources or from 
subresolved structures (i.e., neuropil) might contami-
nate the ROIs signals and generate false detections 
of calcium transients when using SLS or raster scans 
[11, 36, 73]. State-of-the-art techniques for neuropil 
decontamination in raster acquisitions provide accu-
rate estimates of the neuropil signal by leveraging on 
the fluorescence extracted from pixels in each ROI 
surround [36, 55, 56]. In SLS acquisitions, ROIs sur-
rounding regions are not necessarily scanned or might 
contain too few pixels and available strategies thus can-
not be applied. We then implemented two strategies for 
neuropil decontamination in SLS acquisitions: a local 
strategy, which estimates a neuropil signal for each ROI 

by averaging across the available neighbouring pixels 
and a global strategy, which provides a single estimate 
of the neuropil signal using dimensionality reduction. 
We applied both neuropil decontamination strategies 
as final step of multiple processing pipelines (Fig.  1b) 
to all SLS acquisitions with a reference box. Pooling 
results together across different pipelines showed that 
both neuropil decontamination strategies led to sig-
nificant decreases in pairwise correlations (Fig.  5d; 
Table 5), suggesting they are effective in reducing arti-
ficial covariations likely due to neuropil contamination.

3.5 � Processing pipeline
Since there is no standard processing for SLS acquisi-
tions, we combined the processing steps described above 

Table 4  Small artefacts motion correction

Difference in SNR and pairwise correlations before and after motion correction with different methods. Only acquisitions with a reference raster segmentation and a 
reference box in the SLS trajectory are considered. Mean ± SEM (and p values for Wilcoxon signed rank test)

Anesthetized Awake

Surr = 0 Surr = 1 Surr ≥ 2 Surr = 0 Surr ≥ 1

N SLS 101 33 28 16 12

SNR ∆ SNR 1.28 ± 0.05
(3e−18)

2.39 ± 0.19
(5e−7)

5.72 ± 0.50
(4e−6)

1.07 ± 0.14
(0.0004)

4.46 ± 1.35
(0.0005)

∆ pairwise correlations 0.016 ± 0.001
(3e−14)

0.023 ± 0.003
(4e−6)

0.016 ± 0.005
(0.0094)

0.003 ± 0.002
(0.0627)

0.028 ± 0.007
(0.0005)

NoRMCorre 0.1 Hz ∆ SNR − 0.55 ± 1.11
(8e−7)

− 2.11 ± 0.67
(5e−7)

− 1.68 ± 0.53
(4e−6)

8.14 ± 12.61
(0.0494)

− 1.74 ± 3.79
(0.0640)

∆ pairwise correlations 0.201 ± 0.024
(8e−8)

0.065 ± 0.029
(0.5143)

0.011 ± 0.017
(0.0256)

0.29 ± 0.07
(0.0052)

0.12 ± 0.05
(0.0923)

NoRMCorre 1 Hz ∆ SNR 3.46 ± 1.38
(0.8244)

− 1.80 ± 1.44
(0.0064)

− 3.87 ± 1.42
(7e−5)

13.86 ± 5.54
(0.0131)

4.41 ± 3.30
(0.3013)

∆ pairwise correlations 0.430 ± 0.019
(3e-−18)

0.233 ± 0.035
(2e−6)

0.156 ± 0.034
(4e−4)

0.39 ± 0.06
(0.0004)

0.42 ± 0.04 (0.0005)

NoRMCorre ∆ SNR 11.01 ± 0.94
(2e−15)

4.81 ± 0.94
(9e−5)

1.83 ± 1.74
(0.3275)

7.44 ± 4.84
(0.2553)

12.67 ± 2.31
(0.0015)

∆ pairwise correlations 0.521 ± 0.012
(3e−18)

0.370 ± 0.022
(5e−7)

0.321 ± 0.022
(4e−6)

0.46 ± 0.04
(0.0004)

0.41 ± 0.02
(0.0005)

Table 5  Local neuropil subtraction

Difference in SNR and pairwise correlations before and after local neuropil subtraction with different methods. Only acquisitions with a reference raster segmentation 
and a reference box in the SLS trajectory are considered. Mean ± SEM (and p values for Wilcoxon signed rank test)

Anesthetized Awake

Surr = 0 Surr = 1 Surr ≥ 2 Surr = 0 Surr ≥ 1

N SLS 1010 330 280 120 160

Local surround ∆ SNR 9.15 ± 5.93
(4e−46)

10.45± 5.49
(6e−8)

– 3.82 ± 0.47
(8e−24)

− 4.19 ± 2.95
(7e−4)

− 1.36 ± 3.82
(4e−3)

∆ pairwise correlations − 0.337 ± 0.006
(2e−159)

− 0.324 ± 0.011
(9e−54)

− 0.263 ± 0.010
(1e−45)

− 0.313 ± 0.017
(5e−26)

− 0.287 ± 0.018
(2e−19)

PCA ∆ SNR 6.76 ± 0.35
(3e−75)

− 4.28 ± 0.33
(2e−32)

− 5.18 ± 0.43
(8e−28)

− 10.51 ± 2.30
(4e−13)

− 9.98 ± 1.09
(3e−11)

∆ pairwise correlations − 0.532 ± 0.008
(9e−160)

− 0.495 ± 0.012
(1e−53)

− 0.495 ± 0.013
(1e−45)

− 0.418 ± 0.022
(9e−26)

− 0.448 ± 0.022
(2e−19)
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in different ways and assessed the effect of the full pro-
cessing pipeline measuring the changes of SNR and 
pairwise correlations with respect to raw data (Fig.  6). 
As expected, processing pipelines comprising only local 
corrections for signal optimization (denoted by SNR 
and NoRM in Fig. 6) were not effective in reducing pair-
wise correlations. This suggests that background and/
or neuropil contamination might still be present, which 
advises against the choice of such processing pipeline. 

Most other processing pipelines, in general, resulted in 
a decrease in pairwise correlations associated with more 
or less marked decrease in SNR. For our data, we found 
that the pipeline composed by background subtraction 
followed by SNR-based local motion artefacts correc-
tion and, optionally, local neuropil decontamination was 
the most effective in reducing correlations with respect 
to the raw data while preserving signal quality (detailed 

Fig. 6  Processing pipelines comparison. Evaluation of the signal quality after different processing pipelines for SLS with different surrounds in 
anesthetized (n = 101, 33, 28 for surround 0,1, ≥2) and awake animals (n = 16, 12 for surround 0, ≥1). Blue boxplots show the SNR distributions 
for each pipeline, red boxplots show the pairwise correlations distributions for each pipeline. The continuous blue and the orange lines show, 
respectively, the SNR and pairwise correlation median value for the processing pipeline composed by background subtraction followed by 
SNR-based artefacts correction (red box). The dashed light blue and light orange lines correspond to no changes in SNR and pairwise correlations, 
respectively, with respect to raw data. Extended values in Additional file 1: Table S1
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values for all pipelines are reported in Additional file 1: 
Table S1).

4 � Discussion
Two-photon calcium imaging is a leading technique for 
functional readout of neural activity, enabling the record-
ing of the activity of populations of neurons with high 
spatial information in depth and across multiple experi-
mental sessions. New calcium indicators have been engi-
neered [36, 74] and a wide array of software and analysis 
tools have been developed by the computational neuro-
science community for the post-processing and advanced 
analysis of these data [35, 44, 51, 53, 55, 62, 64, 66]. Using 
these tools and under optimized imaging conditions (i.e., 
while imaging one or a few cells at high frame rate), the 
detection of the discharge of one or few action potentials 
in individual cells has been demonstrated [36]. However, 
achieving similar performance while recording large 
populations of neurons or at increased acquisition rates 
requires the improvement of scanning procedures to 
acquire data from the regions of interest with the high-
est possible speed and SNR. To this aim, we recently 
introduced Smart Line Scanning and we demonstrated 
that it improves the temporal resolution and signal qual-
ity of two-photon calcium imaging data [38], improving 
the accuracy of single spike detection when recording 
neural population activity from awake animals. Here, we 
complement that effort providing a novel open-source 
software toolbox, SmaRT2P, which greatly simplifies 
the implementation of smart line scanning in standard 
2P microscopes. Our toolbox is provided with a range 
of tools for both the design and implementation of the 
smart line scanning, and for the data processing. The 
implications of our work are discussed in what follows.

4.1 � Software block for raster acquisitions
SmaRT2P is composed by two main blocks. The first 
block processes raster acquisitions. We added the raster 
data processing to SmaRT2P not only to have a stand-
alone tool, but also because an initial raster scanning 
imaging section is needed to design the SLS, and because 
users may want to use either type of scanning depending 
on the experimental conditions or scientific questions. 
SmaRT2P was designed to easily allow computing SLS 
trajectories from raster scanning data and switching from 
raster acquisitions to line scan acquisitions with minimal 
requirements.

The raster scanning block of SmaRT2P is largely 
based on existing algorithms. However, and impor-
tantly, SmaRT2P adds the possibility of importing ras-
ter acquisitions, which are already segmented. In this 
way, users can segment raster data using their preferred 

and independent tool, ensuring full compatibility of 
SmaRT2P with raster scanning procedures already estab-
lished in each laboratory. The first SmaRT2P block differs 
from available toolboxes for the possibility of drawing of 
SLS trajectories, which cross through all the ROIs identi-
fied from raster acquisitions. Before generating the SLS 
trajectory, the users have the option to add a surround 
to each ROI and to add a reference box at the end of the 
trajectory, that is scanned in a raster-like modality. The 
users can manually set the width of the surround, the size 
of the reference box, and its position within the FOV.

4.2 � Software block for designing and implementing SLS 
trajectories

Once the ROIs are segmented in the raster scanning 
software block, SmaRT2P optimizes the SLS trajecto-
ries in an automated way. Finding an optimal trajectory 
is particularly important for recordings of large popula-
tions. In this case, scanning the ROIs in a sub-optimal 
way might result in numerous jumps of the laser within 
the FOV and reduce the acquisition speed and the advan-
tages provided by the SLS approach. However, the prob-
lem of finding the optimal trajectory is computationally 
hard, is well studied in the literature as the TSP, and its 
complexity increases steeply with the number of ROIs. 
We, therefore, used a genetic algorithm to compute 
an approximate solution instead of the optimal one. To 
make SLS trajectories more robust to motion artefacts 
and to background/neuropil contamination, ROI’s sur-
round regions and a reference box can be included in the 
SLS trajectory. The presence of the surround regions and 
of the reference box decreases the speed of SLS acquisi-
tions but might be particularly useful for data acquired 
in awake animals, where the presence of these artefacts 
might limit the applicability of line-scan approaches.

Importantly, the second block of SmaRT2P provides 
various tools for the processing and analysis of data 
acquired with SLS. To our knowledge, SmaRT2P repre-
sents the first open-source tool available for this type of 
analyses. It combines algorithms used in [38] (but not 
shared in an open-source toolbox) with a novel algorithm 
for the correction of local artefacts in SLS data. More 
specifically, SmaRT2P allows detecting large motion arte-
facts in SLS acquisitions, to subtract background and 
neuropil contamination, and to detect and correct small 
and local artefacts. The users can choose to apply one or 
multiple processing steps to SLS data according to their 
needs.

SmaRT2P is equipped with a graphical interface, which 
facilitates its use to people without programming expe-
rience. The graphical interface includes methods for 
the generation of SLS trajectories and for a complete 
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processing of SLS data (i.e., motion artefacts detection and 
correction, background subtraction, and neuropil decon-
tamination). We designed SmaRT2P to be flexible, to adapt 
to data acquired under different experimental conditions. 
A first degree of flexibility is provided in the design of the 
SLS trajectories, where users can set a trade-off between 
increased temporal resolution and robustness to motion 
artefacts. Then, in the SLS data processing, SmaRT2P is 
organized in a modular way and different processing pipe-
lines can be implemented. We did not set a preformatted 
processing pipeline, because smart line scan acquisitions 
and smart line scan processing tools are sensitive to tra-
jectory characteristics and to experimental conditions. 
The processing pipeline should then be tuned according to 
the features of the acquired data. Furthermore, a modular 
approach is open to extension, modifications, and inser-
tion of further developments of the processing algorithms.

4.3 � Results on benchmarking SmaRT2P on real data
We benchmarked the performance of SmaRT2P on an 
extensive 2P GCaMP6s data set recorded from layer IV 
of the barrel cortex in anesthetized and awake mice. This 
data set was larger than the one used in [38]. We selected 
the SNR of the extracted signals and their average pair-
wise correlations as indicators of the algorithms’ perfor-
mance, and we computed changes in these two measures 
as a function of each processing step and of different pro-
cessing pipelines (i.e., combinations of multiple process-
ing steps in a given order). Results of this benchmarking 
indicated that combining SLS and SmaRT2P allows suc-
cessfully acquiring data with high sampling rate and high 
signal quality. A careful choice of few parameters in the 
design of the SLS trajectories (ROIs surround and refer-
ence box) improves the performance and effectiveness 
of the SLS processing techniques and allows reaching a 
trade-off between fast and robust recordings. A systematic 
study of the effect of variations in the processing pipeline 
showed how to optimize the pipeline depending on the 
data set type and suggested that combining a background 
or neuropil subtraction algorithm with an artefact correc-
tion algorithm should successfully improve the signal qual-
ity and remove global fluctuations and artefacts that might 
mask relevant single cell activity. Importantly, we made the 
benchmarking 2P data set fully available with this article, 
to enable open-source development of new raster scan 
tools and to facilitate an open and fair comparison of per-
formance with future algorithms.

4.4 � Hardware requirements
On the hardware side, SLS acquisitions can be per-
formed using the same setup used for conventional raster 

acquisition. This is possible, because SLS trajectories are 
mapped on the FOV acquired in raster mode and are 
tuned to the characteristics of the microscope used for 
raster acquisitions. When moving from one pixel to the 
adjacent one, mirrors, therefore, perform the same type 
of movements required for raster acquisition.

5 � Conclusions
The growth and flourishing of 2P calcium imaging for 
studying neural population activity has been paralleled by 
major computational effort for the development of open-
source toolboxes for the analysis of such data. Thus, the 
development of analytical tools for 2P calcium imaging is 
a major frontier in current computational neuroscience 
[44, 45, 48, 51, 53–56, 61, 62, 64, 66, 75]. However, less 
attention has been given to the development of open-
source toolboxes that improve the scanning and acqui-
sition procedures. Our open-source toolbox, SmaRT2P, 
contributes to filling this gap and will facilitate further 
development in the field. Our validations of SmaRT2P on 
real data suggest that SmaRT2P will improve the resolu-
tion and accuracy with which neural population codes 
can be extracted from 2P imaging experiments.
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