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Abstract 

In clinical practice, several standardized neuropsychological tests have been designed to assess and monitor the 
neurocognitive status of patients with neurodegenerative diseases such as Alzheimer’s disease. Important research 
efforts have been devoted so far to the development of multivariate machine learning models that combine the dif‑
ferent test indexes to predict the diagnosis and prognosis of cognitive decline with remarkable results. However, less 
attention has been devoted to the explainability of these models. In this work, we present a robust framework to (i) 
perform a threefold classification between healthy control subjects, individuals with cognitive impairment, and sub‑
jects with dementia using different cognitive indexes and (ii) analyze the variability of the explainability SHAP values 
associated with the decisions taken by the predictive models. We demonstrate that the SHAP values can accurately 
characterize how each index affects a patient’s cognitive status. Furthermore, we show that a longitudinal analysis of 
SHAP values can provide effective information on Alzheimer’s disease progression.
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1  Introduction
Alzheimer’s disease (AD) is a neurodegenerative pathol-
ogy caused by multiple factors whereby neurological 
changes in the brain could occur several decades before 
cognitive impairment arises [1]. Typically, a long time 
may elapse between the onset of the disease (character-
ized by memory problems and difficulties in learning 
new information) and the full manifestation of symp-
toms of dementia in which patients become unable to 

complete basic daily life activities [2]. The progression of 
the disease is naturally described as a continuous spec-
trum ranging from preclinical and prodromal stages to 
the dementia syndrome onset [3, 4]. Nevertheless, the 
high variability affecting this spectrum during aging in 
both performance levels [5] and cognitive functions [6], 
makes the use of broad categories, such as cognitively 
normal, mild cognitive impairment (MCI) and demen-
tia, a convenient representation [7]. In particular, MCI 
is considered a transitional stage between healthy aging 
and dementia. MCI patients have complaints of cogni-
tive deficits that do not interfere significantly with daily 
life activities [8, 9]. However, using a single diagnostic 
category for a condition that can affect heterogeneous 
domains (e.g., memory, attention, executive functions, 
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language and visuospatial abilities [10]) to very different 
extents is controversial [11–14]. In this context, testing 
cognition in a large elderly population regularly, before 
major memory loss, might help to capture and under-
stand the cognitive variability between normal and MCI 
conditions at risk of later developing dementia. Thus, a 
deeper understanding of the mechanisms of this variabil-
ity could help physicians make decisions about treatment 
options or patients’ enrollment in cognitive rehabilitation 
programs as well as clinical trials for novel drugs [15, 16].

Several tests provide information about the neuropsy-
chological conditions of patients and are commonly 
adopted to assess the severity of the most important 
symptoms of AD [17]. The most commonly used cogni-
tive indexes include: the Alzheimer’s Disease Assessment 
Scale cognitive total score (ADAS), Mini Mental State 
Exam score (MMSE) and the Rey Auditory Verbal Learn-
ing Test (RAVLT) which measures cognitive impairment, 
attention, language and visuospatial functions, and mem-
ory deficits. Different scores resulting from neuropsy-
chological evaluations have been widely used to model 
disease progression [18, 19], for early diagnosis of AD 
[20] and to detect subtypes of dementia [21]. In particu-
lar, in the last 2 decades, there has been an exponential 
growth in machine learning (ML) applications for both 
the prognosis and diagnosis of dementia. Both supervised 
and unsupervised methods have been effectively used to 
perform multiclass classification of different diagnostic 
categories [22, 23], to predict the risk of conversion from 
mild cognitive impairment to Alzheimer’s disease [24, 
25] and to categorize and cluster the clinical data [26, 27].

Although ML models for the diagnosis and progno-
sis of cognitive decline and Alzheimer’s disease have 
reached very high-performance levels, most works have 
devoted little attention to the explainability of these mod-
els. Indeed, although these models achieved tremendous 
predictive performance, they are not gaining popularity 
in clinical practice due to their high inner complexity. 
Explainability is the ability to explain AI decision-mak-
ing in human-understandable ways to a wider variety of 
end-users [28]. Of course, different end-users are inter-
ested in different aspects of explainability. For example, 
data scientists and developers could be more interested 
in the explainability of the algorithms, while medical pro-
fessionals and physicians could be primarily concerned 
with clinical prediction. More recently, eXplainable Arti-
ficial Intelligence (XAI) methods have been developed to 
estimate the contribution of individual features towards 
specific predictions, thus generating a set of feature 
importances for each patient [29]. The field of eXplain-
able Artificial Intelligence has rapidly advanced in recent 
years as ML models are becoming more and more popu-
lar in different application areas. As a result, a huge and 

increasing number of issues are being addressed, includ-
ing the negative aspects of automated applications such 
as possible biases and failures, which in turn have led to 
the development of new ethical guidelines and regula-
tions [30, 31]. In April 2019, the European Commission 
High-Level Expert Group on AI presented “Ethics Guide-
lines for Trustworthy Artificial Intelligence” and three of 
the guidelines directly refer to explainability [31]. Several 
criteria exist to classify XAI methods. Although a unified 
taxonomy has not been established, basically, XAI meth-
ods can be grouped into intrinsic or post-hoc [32]. The 
first group includes machine learning techniques that are 
interpretable due to their internal structure, such as lin-
ear models and decision trees, while the second category 
includes methods for analyzing the ML models after they 
have been trained [33]. Different local post-hoc XAI algo-
rithms have been developed to provide single instance 
explanations regardless of the specific predictive model, 
making these techniques fully adaptable to the clinical 
context and personalised medicine, including individual-
ised interventions and targeted treatments [34–36].

While these XAI approaches have proved useful in 
certain medical AI fields, notably in visualization, vir-
tual reality and other Big data problems [37, 38], their 
application to the domains of cognitive and computa-
tional neuroscience is still in its infancy. In addition, no 
unified quantitative metrics have been defined to evalu-
ate the reliability of the methods, raising questions about 
the consistency of numerical explanations depending on 
the specific applications. For example, in clinical classi-
fication tasks, several issues may arise when using XAI 
methods: (1) to what extent are explainability values 
related to the efficiency of the ML algorithms? (2) Do 
groups of subjects with similar characteristics actually 
exhibit similar explainability scores? (3) Can XAI values 
in turn be used to provide insights into the state of dis-
ease progression?

In this paper, we present a framework based on ML, 
XAI and statistical analysis to perform a three-classes 
classification between healthy control subjects, indi-
viduals with different levels of cognitive impairment, 
and subjects with dementia by using different cognitive 
indexes and to analyze the variability of the explain-
ability values associated with the decisions taken by the 
predictive models. The present work aims to: (i) relate 
the performance of the ML algorithm to the variabil-
ity of the extracted XAI values by applying a local post-
hoc algorithm; (ii) analyze any potential differences 
between the explainability values associated with both 
correctly and incorrectly classified subjects; (iii) identify 
subgroups of subjects by applying unsupervised algo-
rithms to their explainability values in order to provide 
the physicians with a set of predictors most associated 
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with the subgroups; (iv) examine the longitudinal varia-
tions of the XAI values to identify the cognitive indexes 
whose importance is most variable in subjects convert-
ing from one diagnostic category to another and provide 
the clinicians with a list of cognitive indexes best suited 
to track cognitive variations across the spectrum of 
neurodegeneration.

We hypothesise that the explainability indexes could 
themselves be considered markers to describe both the 
change in cognitive status of patients during nominal and 
pathological ageing and to reliably quantify the contribu-
tion of each functional cognitive domain to the overall 
condition of each patient. Thus, XAI scores could provide 
personalized neurodegeneration patterns, explaining the 
heterogeneous contributions of the functional domains 
to AD. This latter aspect is particularly crucial to identi-
fying an optimal set of predictors to classify AD.

2 � Related works
So far, XAI methods have been applied to computa-
tional neuroscience in a few cases to explore how differ-
ent brain regions affect age prediction or to predict the 
onset of cognitive decline. These aspects are particularly 
relevant given the risk that cognitive impairment could 
convert to AD.

Specifically, Beebe-Wang et  al. [39] developed a 
machine learning model and tested it in an aging cohort 
study with an extensive set of longitudinal clinical vari-
ables to highlight at-risk individuals with better accuracy 
than other approaches. They selected a subset of highly 
predictive cognitive tests and used XAI scores to provide 
individualized prediction explanations that retain non-
linear feature effects present in the data.

El-Sappagh et  al. [40] developed a ML model for AD 
diagnosis and progression detection by integrating 11 
modalities of 1048 subjects from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) dataset. The model was 
designed as a two-layer framework with a random forest 
(RF) classifier algorithm. In the first layer, the model car-
ries out a multi-class classification for the early diagno-
sis of AD patients. In the second layer, the model applies 
binary classification to detect possible MCI-to-AD pro-
gression within three years from the baseline diagnosis. 
Moreover, for each layer, instance-based explanations of 
the RF classifier were provided by the SHapley Additive 
exPlanations (SHAP) to indicate the feature importance.

In a previous work [41], we exploited an explainable 
Deep Learning-based framework to both maximize the 
brain age prediction accuracy and achieve high inter-
pretability of the contribution of each brain morphologi-
cal feature extracted from magnetic resonance imaging 
(MRI) of a healthy cohort of subjects to the final pre-
dicted age by exploiting local XAI algorithms.

In addition, different visual XAI techniques have been 
developed to quantify the interpretability of the latent 
representations of CNNs for the classification of demen-
tia and cognitive impairment, such as the layer-wise Rel-
evance Propagation (LRP) technique [42], saliency maps, 
and Gradient-weighted Class Activation Mapping (Grad-
CAM) [43]. Such methods can be used to produce coarse 
localization maps, highlighting the important regions 
in each MRI scan by exploiting voxel-level information. 
More recently, Generative Adversarial Network (GAN)-
based methods are gaining popularity for understanding 
the areas of T1 scans that affect the classification pro-
cess of AD and MCI. Yu et al. [44] proposed a tensoriz-
ing GAN with High-order pooling to assess MCI and AD 
in a semi-supervised manner taking advantage of both 
labelled and unlabeled MRI scans while automatically 
extracting significant features in a self-attention manner. 
The authors also implemented a multidirectional map-
ping mechanism for a novel GAN architecture to provide 
class discriminative maps of the whole brain [45].

3 � Materials
3.1 � Study cohort
In this study, we exploited a dataset obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (http://adni.loni.usc.edu/). ADNI research-
ers collected several types of data from study volunteers 
throughout their participation in the study. Data col-
lection was performed using a standard set of protocols 
and procedures to eliminate inconsistencies. Subjects 
have been recruited from over 57 sites across the US and 
Canada. The study was conducted according to the Good 
Clinical Practice guidelines, the Declaration of Helsinki, 
and US 21 CFR Part 50 (Protection of Human Subjects), 
and Part 56 (Institutional Review Boards). Subjects were 
willing and able to undergo test procedures, including 
neuroimaging and follow-up, and written informed con-
sent was obtained from participants.

We used the ADNIMERGE R package to download the 
data on June 1, 2021 (see www.adni-info.org). Up to the 
date of June 1, 2021, 15,304 samples belonging to 2306 
adults, ranging in age from 55 to 90, have been collected. 
In this study, we employed data collected at baseline vis-
its and longitudinal data at successive visits. Initial pre-
processing of the data revealed that the pattern of data 
missingness was correlated with the diagnosis, as, for 
example, some measurements were missing more often 
in healthy subjects. We, therefore, kept clinical and neu-
ropsychological variables and samples with no missing 
entries. This step led to a reduction in the number of 
variables to 10 and the number of samples from 15,304 
to 6285.
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The 6285 samples (53.3% male) were categorized into 
three groups according to the diagnosis given at the exam 
date: (a) normal controls (NC): 2408 samples (38.3%), (b) 
MCI: 2912 samples diagnosed as MCI (46.3%), (c) AD: 
965 samples diagnosed with dementia (15.4%). Demo-
graphic, clinical and neuropsychological information of 
the samples is reported in Table 1. All the analyses were 
performed using R (version 3.6.2) software.

3.2 � Clinical and neuropsychological assessment
The ADNI database contains more than 40 variables 
resulting from different cognitive and functional assess-
ments. In this work, the 10 indexes: ADAS11, ADAS13, 

MMSE, MoCA, FAQ, RAVLT-immediate, RAVLT-learn-
ing, RAVLT-percforgetting, ECogPt total and ECogSP 
total were selected to reflect the condition and function-
ality of each subject at each visit. The selected indexes 
encompass scores of different neuropsychological tests’ 
ratings and standard questionnaires both of participant 
or study partner (SP), and are widely adopted as screen-
ing tools to detect memory deficits and behavioral symp-
toms associated with dementia. The indexes are briefly 
described in Table 2. More details about the assessments 
and procedures administered to the subjects can be found 
on the web page of the Procedures Manual of the study 
(http://adni.loni.usc.edu/wp-content/uploads/2012/10/
ADNI3-Procedures-Manual_v3.0_20170627.pdf).

4 � Methods
Figure  1 shows the proposed workflow to both clas-
sify and quantify the cognitive variability in the selected 
cohort. The proposed approach comprises three main 
steps:

•	 The clinical and neuropsychological indexes are used 
to train a Random Forest (RF) classifier and predict 
the diagnosis of each subject at each visit (i.e., NC, 
MCI or AD);

•	 The SHAP algorithm is applied to explain the deci-
sions made by RF for each sample. The output of 
SHAP is a vector of feature importance for each sub-
ject at a specific visit;

•	 Several statistical analyses are carried out within the 
framework of both a non-retrospective and a retro-
spective study. As part of the non-retrospective anal-

Table 1  Demographic, clinical and neuropsychological 
information on the selected cohort

NC MCI AD

Age (years) 75.2± 7.1 74.5± 7.9 76.5± 7.5

Education (years) 16.6± 2.4 16.1± 2.7 15.9± 2.5

Gender (M/F) 1082/1326 1691/1221 577/388

ADAS11 6.7± 3.2 9.6± 4.7 20.6± 7.3

ADAS13 10± 4.7 15.1± 7.1 30.9± 9

MMSE 29± 1.2 27.8± 1.9 22.5± 3.6

RAVLT immediate 46.5± 10.8 36.6± 11.2 22.5± 7.9

RAVLT learning 5.9± 2.4 4.5± 2.6 1.9± 2.8

RAVLT percforgetting 34.2± 29.7 56.7± 47.2 90.2± 25.6

FAQ 0.2± 0.9 2.7± 3.9 15.4± 7.2

MOCA 25.9± 2.5 23.5± 3.2 17.3± 4.7

EcogPtTotal 1.4± 0.3 1.7± 0.5 1.9± 0.6

EcogSPTotal 1.2± 0.2 1.7± 0.6 2.9± 0.6

Table 2  Description of the selected clinical and neuropsychological indexes

Index Description

ADAS11 A test that is composed of 11 tasks to assess cognitive functioning of memory, praxis and language. Specific tasks include Naming Objects, 
Word Recall, Fingers, Commands, Orientation, Word Recognition, Constructional Praxis, Ideational Praxis and Language. [46]

ADAS13 A test including all elements of ADAS11 as well as a test of delayed word recall and a number cancellation or maze task [47]

MMSE The mini-mental state examination rates various cognitive domains, including memory, attention and language. Scores for MMSE range from 
0 to 30; lower scores indicate greater cognitive dysfunction.[48]

MOCA The Montreal cognitive assessment comprises 12 individual tasks (grouped into cognitive domains, including visuospatial and executive 
functioning, attention, language, abstraction, naming, delayed memory recall and orientation), which are mostly binary, and are assessed and 
summed with a 6-item orientation screening and an educational correction to determine a total score reflecting global cognitive functioning.
[49]

FAQ The Functional Activities Questionnaire evaluates the instrumental activities of daily living (IADLs), such as preparing meals and managing 
personal finances. The sum scores range in the 0-30 interval and the cut-point equal to 9 (dependent on 3 or more activities) is recom‑
mended to denote potential cognitive impairment.[50]

RAVLT The Rey auditory verbal learning test involves five presentations of a 15-word list (List A), each followed by an attempted recall. This is fol‑
lowed by a second 15-word interference list (List B), followed by a recall of List A. It rates different aspects of episodic memory such as the 
learning rate (RAVLT learning and RAVLT immediate) and delayed recall (RAVLT percent forgetting) [51]

Ecog The Everyday Cognition scale is an informant-rated questionnaire that includes one global factor and six domain-specific factors. The psycho‑
metric properties in the ECog scale address everyday function and cognition mild impairments reported from both participant (EcogPt) and 
study partner (ECogSP) [52]
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ysis, statistical comparisons were performed to: (i) 
relate the classification probabilities associated with 
the diagnostic category (as it was established by RF) 
for each example to the explanations associated with 
that decision; (ii) examine the similarity of SHAP 
indexes between groups of samples (both correctly 
and incorrectly classified); (iii) identify potential sub-

groups in the diagnostic groups provided by the RF 
classifier. Regarding the retrospective investigation, 
a statistical analysis was performed to compare the 
similarity of SHAP values between the first and the 
last visit of each participant in order to identify the 
cognitive index that best reflects the potential con-

Fig. 1  Workflow of the proposed analysis. The clinical and neuropsychological indexes (i.e., S features) are used to train a Random Forest (RF) 
classifier and predict the diagnosis of each subject at each visit with a leave-one-subject-out cross-validation strategy; for each cross-validation 
round the training set was randomly under-sampled U = 100 times by selecting a fixed amount of NTRAIN = 500 samples for each diagnostic 
category to handle class imbalance; the SHAP algorithm was used to explain the predictions of RF models for each sample; different statistical 
analyses were performed by using both probability scores resulting from RF and SHAP values to: (i) relate the performance of RF to the variability of 
the SHAP scores, (ii) analyze the variability of the SHAP scores between diagnostic categories, (iii) examine the longitudinal variability of the SHAP 
scores
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version of subjects from one diagnostic category to 
another.

Each step is detailed in the following sections.

4.1 � Predictive models
In this work, the RF algorithm was selected to predict the 
diagnostic label of each sample from a set of S = 10 clini-
cal and neuropsychological indexes. Given the dataset 
D = {Xi, yi}

N
i=1 , where Xi is the vector of S features and yi 

is the target label for sample i, RF is an ensemble learner 
of decision tree base learners that individually predict the 
target response to output both the final prediction prob-
ability score and the target class of each sample by using 
a majority-voting mechanism [53]. Each decision tree 
is trained on bagged data (sampling with replacement) 
using a random subset of mtry candidate predictors. 
Random forest is one of the most widely used machine 
learning algorithms for the detection and classification of 
AD and MCI as it overcomes some of the disadvantages 
of decision trees such as multicollinearity and overfitting 
problems [54, 55].

In order to obtain clinically unbiased results, we 
adopted a leave-one-subject-out cross-validation strat-
egy. According to this validation scheme, the dataset is 
split into as many sets as the number of subjects: one 
subject is randomly selected for testing while the oth-
ers are used to train the model, and the procedure is 
repeated until all the subjects have been used as test [56, 
57]. In our case, each subject has multiple samples that 
consist of a set of clinical and neuropsychological indexes 
measured at multiple visits, and all the samples belonging 
to the same subject are used within each test round.

Moreover, since in general, the ML algorithms can be 
sensitive to changes in the training set, returning unsta-
ble performance, for each cross-validation round we ran-
domly under-sampled the training set U = 100 times by 
selecting a fixed amount of NTRAIN = 500 samples for 
each diagnostic category from the training set. This step 
can also handle class imbalance. A RF model was trained 
within each cross-validation round based on the grid 
search and nested k-fold stratified cross-validation (CV), 
with k = 3 . The entire training process has two loops: an 
inner loop for hyperparameter tuning (number of trees 
and mtry), and an outer loop for evaluating the trained 
model with the selected parameters on the unseen fold. 
This nested CV strategy has been adopted to avoid the 
use of the same data for parameter tuning and model 
evaluation and therefore to avoid overfitting. The tuned 
model was tested on each sample of the test subject to 
predict the diagnostic class, producing U = 100 prob-
ability scores for each class for each independent sample. 

Finally, each sample is assigned a label after averaging 
the U = 100 probability values for the three classes and 
selecting the class with the greatest probability score. 
This step was performed in order to maximize the gen-
eralization of the predictive models and obtain a highly 
stable final decision for each sample, possibly independ-
ent of the training set variability. We used the h2o.ran-
domForest function implemented in the h2o (v.3.34.0.1) 
R package.

The performance of the models for each class j was 
evaluated by using the following metrics:

•	 Accuracy: 

•	 Sensitivity: 

•	 Specificity: 

•	 Precision: 

Additionally, we reported the receiver operating char-
acteristic (ROC) curves and the area under the ROCs 
(AUROCs) of one-versus-rest (OVR) decisions [58].

4.2 � Explainable machine learning
We selected the SHAP algorithm to explain the predic-
tions of RF models for each sample. Indeed, SHAP is a 
local model-agnostic post-hoc explainer algorithm based 
on the Shapley value concept from game theory [59, 60]. 
It employs the output of a classifier, regardless of the spe-
cific model, and it learns an interpretable linear model at 
the local decision level, allowing one to explore the con-
tributions of individual feature values on each prediction 
for a given test sample.

Let D be a dataset of samples, D = [(x1 , y1), (x2 , y2), ..., (xN , yN )] , 
where xi represents the feature vector for the sample i 
and yi the corresponding label. Let f be a classifier and fxi 
the prediction for the test instance i which corresponds 
to the predicted label.

The goal is to explain the contribution of each feature 
j among the S features as the average marginal contri-
bution of the feature value across all possible coalitions, 

(1)ACCj =
TPj + TNj

TPj + FPj + TNj + FNj

(2)SENSj =
TPj

TPj + FNj

(3)SPECj =
TPj + TNj

TPj + FPj + TNj + FNj

(4)PRECj =
TPj

TPj + FPj
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i.e., all possible sets of feature values with and without 
the feature j. In particular, a coalition, F, is defined to be 
a subset of S ( F ⊆ S ). If we denote with fxi(F) the pre-
diction for fxi given the subset F, the following equation 
represents the marginal contribution of adding the j-th 
feature value to F:

To compute the exact Shapley value, all possible sub-
sets of feature values excluding the j-th feature value 
F ⊆ S − {j} have to be considered, hence:

where |F|! represents the number of permutations 
of feature values positioned before the j-th feature, 
(|S| − |F | − 1)! represents the number of permutations of 
feature values that appear after the j-th feature value and 
|S|! is the total number of permutations [59].

The Shapley values are defined according to principles 
from cooperative game theory so that the resulting expla-
nations satisfy some properties such as local accuracy, 
missingness, and consistency [59]. It is worth noting that, 
for a large number of variables S, the exact computation 
of the Shapley values could result not be feasible. Hence, 
different implementations of computations of Shapley 
values have been proposed, such as the Monte Carlo esti-
mator [61] and TreeSHAP for tree-based models [59]. In 
this work, we adopted the DALEX R package to compute 
the SHAP scores for each test instance [62].

The absolute value of each SHAP score expresses 
how much each feature contributes to the final predic-
tion [63]. It is important to note that local XAI methods 
considerably differ from feature selection techniques. 
Indeed, feature selection methods aim to determine the 
importance of each feature on a performance metric by 
using the training set. Thus, a single final feature impor-
tance vector is obtained, whereas SHAP returns one fea-
ture importance vector for each test instance.

4.3 � Statistical analysis of XAI scores
4.3.1 � Non‑retrospective analysis
In the non-retrospective analysis, we used all the sam-
ples from each subject to compare the distributions of 
SHAP values between the different clinical categories. 
Specifically, we divided the samples into seven classes 
according to the true and the predicted final label, i.e., 
(a) NC-NC (NC subjects correctly classified as NC), (b) 
NC-MCI (NC subjects incorrectly classified as MCI), (c) 
MCI-NC (MCI subjects incorrectly classified as NC), (d) 
MCI-MCI (MCI subjects correctly classified as MCI), (e) 
MCI-AD (MCI subjects incorrectly classified as AD), (f ) 

(5)[fxi(F ∪ j)− fxi(F)]

(6)
∑

F⊆S−{j}

|F |!(|S| − |F | − 1)!

|S|!
[fxi(F ∪ j)− fxi(F)],

AD-MCI (AD subjects incorrectly classified as MCI) and 
(g) AD-AD (AD subjects correctly classified as AD). The 
classes NC-AD and AD-NC were not considered due to 
the small number of subjects belonging to them.

We then assessed the similarity between each couple of 
samples within each class by computing the cosine dis-
tance between their SHAP vectors. A similarity network 
for each class has been defined for each class by including 
all the similarity scores between the samples within the 
class. Significant differences between the similarity net-
works across the classes were evaluated based on post-
hoc comparisons ( p < 0.05 ), following one-way analysis 
of variance (ANOVA) ( p < 0.05).

Moreover, the stability-based k-medoid criterion pro-
posed by [64] was applied to each similarity network 
to find the best partition into clusters. This criterion 
assesses the clusterwise stability of a dataset by resa-
mpling it several times with different methods such as 
bootstrapping or subsampling and by identifying the 
most stable clusters across the iterations. An important 
advantage of this method relies on the automatic assess-
ment of the number of clusters through the stability cri-
terion. We used the clusterboot function implemented in 
the fpc (v.2.2-9) R package, setting the bootstrap method 
and the number of clusters from 1 to 20. For each original 
feature, we compared the distributions of the resulting 
clusters by using one-way analysis of variance (ANOVA) 
or the Kruskal–Wallis test significant at p < 0.05 depend-
ing on the number of clusters. The main objective of this 
step was to investigate the heterogeneity of the categories 
provided by the classifier by detecting possible subgroups 
in each class and to explore the causes of the heterogene-
ity of the SHAP values as a function of the original fea-
ture values.

4.3.2 � Retrospective analysis
In the retrospective analysis, we only analysed subjects 
with a number of visits ≥ 3 . For each subject, we calcu-
lated the cosine distance between the SHAP vectors of 
the first visit and the last visit. We then considered the 
following classes of subjects: (a) stable NC (diagnosed NC 
at baseline who remained NC at the last visit), (b) stable 
MCI (diagnosed as MCI at baseline who remained MCI), 
(c) stable AD (diagnosed AD at baseline who remained 
AD), (d) NC conv MCI (diagnosed NC at baseline visit 
who progressed to MCI), (e) NC conv AD (diagnosed NC 
at baseline visit who progressed to AD), (f ) MCI conv AD 
(diagnosed MCI at baseline visit who progressed to AD). 
Significant differences of the cosine distance between the 
first and last visit across classes were evaluated based on 
post-hoc comparisons ( p < 0.05 ), following a one-way 
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analysis of variance with demographic variables as covar-
iates (ANCOVA) ( p < 0.05).

A non-parametric permutation test was also performed 
to identify the indexes that are significantly associated 
with conversion from one diagnostic category to another. 
Specifically, we assessed the statistical significance of the 
above-chance average cosine distance between the SHAP 
scores of the first and last visit for each class by using 
1000 permutations.

5 � Results
5.1 � Performance of the predictive models
The performance of the RF models is shown in Table 3. 
Figure 2 shows the confusion matrix for the three-classes 
classification problem over the entire dataset and the 
AUC curves for each class obtained with a one-versus-
rest (OVR) strategy. As expected, the best performance 
is obtained for the AD class, which is the most distin-
guishable from the other two classes (AUC = 0.97). How-
ever, a large percentage of the samples from this class 
( 22.5% ) are systematically classified as belonging to the 
MCI class, showing a high overlap of the neuropsycho-
logical scores with MCI subjects. Similarly, 20.8% of the 
samples belonging to the MCI class are systematically 
classified as NC and 26.2% of the NC samples are incor-
rectly classified as MCI. These outcomes show that, from 
the cognitive perspective, the three diagnostic categories 
are not markedly separate, but substantial overlaps can 
be observed between certain classes, prompting further 
analysis of their explainability.

5.2 � Statistical analysis of XAI scores
5.2.1 � Non‑retrospective analysis
After obtaining a single vector of SHAP values for each 
sample, we constructed a similarity matrix for each diag-
nostic category, both correctly classified and system-
atically misclassified, by calculating the cosine distance 
between the SHAP vectors of each possible pair of sub-
jects belonging to each category. Figures  3 and 4 show 
the boxplots of the distributions of the decision probabil-
ity scores of the RF algorithm and of the cosine distance 
values for the categories.

Between-group comparisons and post-hoc analy-
sis (bottom parts of Figs.  3 and 4) revealed that the 

probability scores of the RF models for the correctly clas-
sified samples are significantly different from the decision 
probability values of the misclassified categories, and in 
particular, the RF models show the highest probability 
scores for the AD-AD class. However, the distribution 
of the cosine distances between the SHAP vectors of the 
samples of the class AD-AD is not statistically different 
from the distribution of the MCI-AD category, show-
ing heterogeneous importance of clinical and cognitive 
scores similar to that of the samples belonging to the 
MCI-AD group.

In Fig. 5 we also reported the variable importance plot 
for each class, showing the SHAP values for each index 
averaged over the samples within that class. This plot 
allows an immediate comparison of the importance rank-
ing of the clinical and cognitive variables for each class 
obtained from the classifier. Very similar patterns of 
importance ranking can be noted between NC-NC and 

Table 3  Performance metrics of the RF models

Model Accuracy Specificity Sensitivity Precision AUC​

NC 74± 4% 84± 3% 73± 4% 70± 8% 0.88

MCI 75± 3% 75± 4% 75± 4% 70± 7% 0.82

AD 72± 5% 97± 2% 72± 3% 80± 5% 0.97

Global 75% 85% 74% 73% 0.89

Fig. 2  Performance of RF models: confusion matrix (top) and ROC 
curves (bottom)
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MCI-NC; NC-MCI, MCI-MCI, and AD-MCI; MCI-AD, 
and AD-AD.

By applying the stability algorithm to each similarity 
network, we identified two clusters for the categories. For 
each original feature, we compared the distributions of 
the resulting clusters by using Student’s t-test, significant 
at p < 0.05 . Additional file 1: Table S1 shows that the two 
clusters identified in the similarity network of NC-MCI 
samples differ in almost all clinical and cognitive indexes, 
highlighting that this classification category is actually 
composed of two groups with very different clinical and 
cognitive profiles. For the other two categories, signifi-
cant differences occur between the two subgroups for a 

limited subset of cognitive indexes which overlap almost 
completely (such as ADAS11, MMSE and FAQ).

5.2.2 � Retrospective analysis
Figure  6 shows the boxplots of the distributions of the 
cosine distance between the SHAP vectors of the first 
and last visits of the subjects for the diagnostic longitu-
dinal categories. Between-group comparisons and post-
hoc analysis in the bottom part of Fig. 6 revealed that the 
stable NC and NC converter to AD were significantly 
different from other groups. In particular, the stable NC 
subjects show the lowest variability between the SHAP 
values of the first and last visits, meaning more similar 

Fig. 3  Comparisons of probability scores across diagnostic classes: boxplots (top) and table with p values resulting from post-hoc analysis with 
average and standard deviations for each class (bottom)
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contributions of the clinical and neuropsychological 
scores to the RF decisions. In contrast, the NC subjects 
converter to AD show the highest distance between the 
score contributions of the first and last visit. In addition, 
the cosine similarity values of the stable MCI subjects 
were significantly lower than those of the MCI converter 
to AD subjects. These findings highlight that SHAP 
scores reflect the extent of conversion and therefore 
could be appropriately used to track longitudinal changes 
in the contributions of the distinct cognitive domains to 
the patient’s condition.

Figure 7 shows the radar plots of the average SHAP val-
ues for the first and last visit for each category and each 
cognitive index.

The indexes with significant longitudinal changes in 
SHAP values are underlined in red ( p < 0.05 resulting 
from the permutation test). The highest number of sig-
nificant longitudinal changes in the SHAP values was 
found for the NC subjects converting to AD, while no 
significant longitudinal changes were detected for stable 
categories.

Fig. 4  Comparisons of cosine distances between the SHAP vectors of each possible pair of subjects belonging to each class: boxplots (top) and 
table with p values resulting from post-hoc analysis with average and standard deviations for each class (bottom)
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6 � Discussion
In this work, we explored the predictive power of dif-
ferent neuropsychological measures to discriminate 
between different degrees of cognitive impairment. 
Accordingly, we set up a three-class classification prob-
lem (i.e., NC/MCI/AD) following the diagnostic catego-
ries assigned to patients at each visit based on the ADNI 
consortium criteria. Although a reduced subset of fea-
tures was selected in this study for the benefit of larger 
sample size, the RF model achieves state-of-the-art per-
formances [65, 66]. In particular, our results showed that 
with 10 features, we achieved an overall accuracy of 70% 
and AUC=0.89. In accordance with other works, we 
reached the maximum specificity and AUC performance 
value for the AD class, indicating that the selected cog-
nitive scores are most effective in detecting Alzheimer’s 
disease that corresponds to the latter part of the neuro-
degeneration spectrum. On the other hand, our findings 
also indicate that a discrete classification approach may 
fail to capture information on the cognitive impairment 
across the spectrum and some subjects may be repeat-
edly misclassified due to intermediate cognitive condi-
tions between two diagnostic categories [67]. In order to 
exploit both clinical information and investigate the pres-
ence of intermediate classes between the discrete diag-
nostic categories, we also considered the misclassification 
labels, i.e., CN-MCI, MCI-CN, MCI-AD, and AD-MCI. 
Indeed, the developed framework consists of retrain-
ing U = 100 models that are tested on each independent 

subject, and consequently, if a sample is misclassified a 
large number of times, it is reasonably considered as “sys-
tematically misclassified” according to a robust quantita-
tive criterion.

We investigated the heterogeneity of the impact of dif-
ferent cognitive and neuropsychological indexes on the 
prediction of the clinical outcome using the local XAI 
SHAP method. The main objective of this step was to 
understand if the whole XAI vector of feature impor-
tance can be exploited as a new derived cognitive marker 
across the cognitive spectrum instead of using a set of 
original features. Indeed, this method would allow a 
more conscious use of artificial intelligence methods 
in clinical practice. As a first step, we, therefore, exam-
ined the intra-group similarity of XAI vectors through 
the cosine distance measure. The statistical analysis car-
ried out on the different groups of subjects showed that 
the healthy subjects (i.e., those belonging to the NC-NC 
class) presented the lowest intra-group variability of the 
XAI vectors as reported in Fig. 4. This finding highlights 
that the SHAP vectors exhibit high sensitivity by show-
ing a marked separation of the cosine distance distribu-
tions of the other classes. On the other hand, the AD-AD 
and MCI-AD classes were found to be the most hetero-
geneous categories since their intra-group distribution of 
cosine distance values was significantly higher than those 
of the other diagnostic categories. This result indicates 
that cognitive decline in the latter part of the neurode-
generation spectrum is more varied in accordance with 

Fig. 5  Variable importance plot showing the average SHAP values for each index within each class
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the observed larger degree of cognitive variability among 
individuals with AD dementia compared to individuals 
in predementia stages [68]. Interestingly, the intra-class 
variability of the SHAP vectors does not have a trivial 
correspondence with the classifier’s probability scores: 
although the NC-NC and AD-AD classes have the high-
est probability values, they show very different cosine 

distance distributions. We further examined the intra-
class variability of the SHAP vectors through clustering 
analysis. The results show that only some inter-diagnos-
tic groups such as MCI-AD, AD-MCI, and MCI-NC are 
further separable into two other subgroups. For each 
original feature, the distributions of the resulting clus-
ters were compared by using Student’s t-test, significant 

Fig. 6  Comparisons of cosine distances between the SHAP vectors of the first and last visits of the subjects for the diagnostic longitudinal 
categories: boxplots (top) and table with p values resulting from post-hoc analysis with average and standard deviations of probability scores for 
each category (bottom). p values in bold are statistically significant

Fig. 7  Radar plots reporting the average SHAP values for the first and last visit for each category and each cognitive index
(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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at p < 0.05 . As reported in Additional file  1: Table  S1, 
we found that despite the two clusters within each of 
the two classes MCI-AD and AD-MCI differ in quite the 
same indexes that refer to memory domain values within 
general cognitive assessment (e.g., ADAS11 and MMSE), 
they exhibit different average values, showing a marked 
further categorization of the classes.

We showed the variable importance plots in Fig.  5 
for the global interpretability of the indexes. It can be 
observed that both the FAQ and EcogSPTot indices pre-
vail for NC-NC and MCI-NC. Moreover, for the MCI 
categories (correctly classified and misclassified), the 
importance of all the other variables increases, and for 
the categories classified as AD (correctly classified and 
misclassified), the index ADAS13 also becomes particu-
larly relevant, thus indicating that this variable is par-
ticularly important for detecting the last spectrum of 
neurodegeneration.

A retrospective analysis of the SHAP scores was per-
formed to investigate the longitudinal variation of the 
SHAP vectors for different diagnostic categories. In 
particular, we compared the similarity of SHAP values 
between the first and the last visit of each participant for 
both converting and stable clinical classes. In this case, 
stable NC subjects show the least variability (see Fig. 6), 
indicating that cognitive ageing trajectories are markedly 
less variable in subjects without neurodegenerative dis-
eases. On the contrary, for stable MCI and AD subjects, 
we found similar longitudinal variability of the SHAP 
vectors, showing more varied cognitive ageing trajecto-
ries. Interestingly, the highest longitudinal variability of 
SHAP vectors is observed for the class of NC converter 
to AD, showing that the cosine distance between the 
explainability values could effectively reflect the degree 
of conversion. By using the non-parametric statistical 
tests, we obtained the list of indexes with SHAP scores 
significantly associated with the longitudinal cognitive 
variability: as shown in Fig.  7, no index has significant 
variation in stable subjects of any diagnostic category, 
with the exception of AD subjects, for which significant 
longitudinal variation of the SHAP scores is observed in 
the indexes MMSE, RAVLTimmediate and EcogPtTot. 
For the NC-to-MCI converters, we found that EcogSPT-
tot was the only cognitive index whose SHAP values var-
ied significantly longitudinally, confirming that the study 
partner report can discriminate between, and predict 
progression from, cognitively normal status to mild cog-
nitive impairment [69, 70]. Finally, it is noteworthy that 
the highest number of cognitive indexes whose impact is 
significantly different between the first and the last visit 
was found in NC subjects with rapid conversion to AD, 
highlighting that these subjects have evident impairment 
in almost all the cognitive and functional domains.

7 � Limitations and future perspective
In this work, SHAP achieves to explain the internals of 
a RF classifier trained on cognitive and clinical infor-
mation, thus showing a possible link between diagnosis 
and patterns of feature relevancy. However, neuropsy-
chological assessment represents a preliminary step for 
the clinical diagnosis of AD and using other exams and 
neuroimaging data might largely improve the diagnos-
tic results and add validity to the interpretation of pre-
dictions. Several works have shown that the accuracy 
resulting from the three-class (AD vs. MCI vs. HC) clas-
sification task can be considerably increased by using 
MEG data, PET, SPECT and MRI imaging modalities 
properly integrated with convolutional architectures and 
deep learning models [71–73]. In future developments, 
we will examine the XAI scores resulting from the clas-
sification with neuroimaging data to investigate the pat-
terns of feature relevancy for the biological variables. In 
addition, we will perform a correlation analysis between 
the importance of clinical and cognitive variables and 
those derived from the imaging modalities to provide 
deeper insights into the connection between the cogni-
tive status and the biological features throughout the 
neurodegenerative process.

8 � Conclusions
In this work, we provided a ML framework to explore 
the contribution of cognitive and clinical measures for 
the automatic classification of mild cognitive impair-
ment and Alzheimer’s disease. We demonstrated that 
explainability must be related to ML efficiency in order to 
obtain reliable characterisations of patients’ cohorts. This 
is of paramount importance for XAI to provide valuable 
insights about the disease progression. Hence, we devel-
oped a robust ML algorithm with a XAI module to shed 
more light on the impact of cognitive and clinical indexes 
on the diagnostic category assigned to patients at each 
visit. A statistical analysis of the XAI vectors revealed 
that diagnostic categories in the last part of the neurode-
generative spectrum have the greatest variability, which 
can be explained by the existence of different subcatego-
ries within those considered in the study. Moreover, a 
retrospective analysis clearly outlined that the impact of 
cognitive and clinical indexes does not vary substantially 
for stable subjects, regardless of the starting diagnostic 
category, and that for specific converting categories of 
subjects, it might be more appropriate to consider only 
the limited set of indexes that show a significant longitu-
dinal change in their impact on the final prediction of the 
diagnosis. Our findings allow us to state that the SHAP 
values can effectively characterise the impact of each 
index on the cognitive status of patients and quantify the 
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variation of such impact over time, keeping track of lon-
gitudinal changes and providing continuous information 
about progression to AD, in line with the current 2018 
NIA-AA research framework that has transitioned to 
defining AD as a continuum.
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