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Individual differences in skill acquisition 
and transfer assessed by dual task training 
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Abstract 

Assessment of expertise development during training program primarily consists of evaluating interactions between 
task characteristics, performance, and mental load. Such a traditional assessment framework may lack consideration 
of individual characteristics when evaluating training on complex tasks, such as driving and piloting, where operators 
are typically required to execute multiple tasks simultaneously. Studies have already identified individual character-
istics arising from intrinsic, context, strategy, personality, and preference as common predictors of performance and 
mental load. Therefore, this study aims to investigate the effect of individual difference in skill acquisition and transfer 
using an ecologically valid dual task, behavioral, and brain activity measures. Specifically, we implemented a search 
and surveillance task (scanning and identifying targets) using a high-fidelity training simulator for the unmanned air-
craft sensor operator, acquired behavioral measures (scan, not scan, over scan, and adaptive target find scores) using 
simulator-based analysis module, and measured brain activity changes (oxyhemoglobin and deoxyhemoglobin) from 
the prefrontal cortex (PFC) using a portable functional near-infrared spectroscopy (fNIRS) sensor array. The experimen-
tal protocol recruited 13 novice participants and had them undergo three easy and two hard sessions to investigate 
skill acquisition and transfer, respectively. Our results from skill acquisition sessions indicated that performance on 
both tasks did not change when individual differences were not accounted for. However inclusion of individual differ-
ences indicated that some individuals improved only their scan performance (Attention-focused group), while others 
improved only their target find performance (Accuracy-focused group). Brain activity changes during skill acquisition 
sessions showed that mental load decreased in the right anterior medial PFC (RAMPFC) in both groups regardless of 
individual differences. However, mental load increased in the left anterior medial PFC (LAMPFC) of Attention-focused 
group and decreased in the Accuracy-focused group only when individual differences were included. Transfer results 
showed no changes in performance regardless of grouping based on individual differences; however, mental load 
increased in RAMPFC of Attention-focused group and left dorsolateral PFC (LDLPFC) of Accuracy-focused group. Effi-
ciency and involvement results suggest that the Attention-focused group prioritized the scan task, while the Accu-
racy-focused group prioritized the target find task. In conclusion, training on multitasks results in individual differ-
ences. These differences may potentially be due to individual preference. Future studies should incorporate individual 
differences while assessing skill acquisition and transfer during multitask training.
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1  Introduction
With recent advances in autonomy capability, we expect 
human–autonomy systems to be safe and efficient. How-
ever, the necessary and expected requirements in safety 

Open Access

Brain Informatics

*Correspondence:  ki25@drexel.edu
1 School of Biomedical Engineering, Science and Health Systems, Drexel 
University, 3508 Market St Suite 100, Philadelphia, PA 19104, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5304-7361
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40708-022-00157-5&domain=pdf


Page 2 of 17Reddy et al. Brain Informatics             (2022) 9:9 

and efficiency have not yet been met. In fact, reports over 
the last decade in the fields of transportation, aviation, 
health care, and ergonomics have indicated human error 
as the largest contributing factor behind many severe 
accidents [1]. Increased information processing load and 
decision-making demands placed on the human operator 
because of the highly complex systems and task objec-
tives have often been cited as primary reasons behind 
these accidents.

A common solution to ensure that an operator can han-
dle such task loads or demands is to have them undergo 
an effective theory-based training program (i.e., cognitive 
load theory), which encourages schema construction and 
automation, so that performance is high. Importantly, the 
use of cognitive processes, such as working memory and 
attentional resources, while executing day-to-day tasks 
are not only reduced but freed up to allow for attend-
ance to new tasks or any unforeseen events [2, 3]. In 
other words, investigating the effects of a training pro-
gram consists of analyzing performance and correlates of 
mental load as a function of task characteristics. Moreo-
ver, such an analysis paradigm should consider individual 
differences while assessing training particularly on safety 
critical tasks due to operators being required to execute 
or attend to multiple tasks simultaneously [4].

Insight into training on multitasking can be derived 
from the dual task literature. This literature indicates 
that analysis of training on multitasks should consist of 
evaluating performance and correlates of mental load 
not only as a function of the task characteristics but also 
as a function of individual characteristics [5–8]. Firstly, 
task characteristics should include not just each task’s 
load but also the load generated from cross talk between 
or among tasks being learned. Inclusion of the interac-
tion effect between tasks is especially important since 
tasks that share cognitive resources (e.g., digit and letter 
categorization tasks vs two digit categorization tasks) 
increase mental load and decrease performance than 
those that do not [9, 10]. Secondly, individual charac-
teristics should include intrinsic (i.e., age, handedness, 
etc.), contextual (i.e., prior knowledge regarding the 
task, stress, priority, etc.), strategic (i.e., serial, parallel, 
semi-parallel), and personality (i.e., resistance to change, 
motivational tendencies, etc.) factors [11–14]. Lastly, 
individual characteristics arising from preference should 
also be included, especially when the multitask is being 
performed under high task load condition (e.g., weather 
changes) or when both tasks are classified as high prior-
ity [15–20]. Use of individual characteristics to improve 
training, so that skills can be acquired faster, transferred 
to new situations, and retained for an extended period, 
has been a major topic of interest in adaptive and person-
alized training [21]. This study aligns with this emerging 

incentive and aims to investigate whether accounting 
for these individual characteristics improves our under-
standing of multitask training effects, especially in eco-
logically valid task and novice operators.

While performance is commonly evaluated using behav-
ioral measures, such as reaction time and accuracy, many 
techniques exist to measure workload, mental capacity, 
and mental effort. These techniques include subjective rat-
ing methods (i.e., NASA TLX, etc.), performance data from 
secondary tasks, and physiological sensors (i.e., eye track-
ing, galvanic skin response, etc.). Although such techniques 
have been used numerous times to assess workload and offer 
many advantages, they do not enable direct measurement of 
cognitive resources from the brain or real-time monitoring 
of the mental state of an individual while they are execut-
ing a task [22]. Additionally, they may not be able to identify 
changes in mental load as a function of individual charac-
teristics. Therefore, there is a need to assess skill acquisition 
and transfer during training on an ecologically valid dual task 
using methods that measure cognitive resources directly.

Studies utilizing brain monitoring techniques, such as 
functional magnetic resonance imaging (fMRI) enable direct 
measurement of cognitive resources. These studies have 
indicated individual differences in brain activity as a result 
of individual characteristic (i.e., strategy, preference, etc.) 
[7]. Although fMRI studies have improved our understand-
ing of the connection between brain and behaviors, their use 
of tasks that are not ecologically valid limits translation and 
repeatability of the results into field settings, especially those 
related to multitask training.

As an emerging interdisciplinary field, neuroergonomics 
has introduced methods needed to objectively assess skill 
acquisition and transfer in natural, everyday settings. This 
field is focused on understanding, evaluating, predicting, and 
improving key factors of human performance (such as work-
load, training, stress, and fatigue) in everyday settings via 
wearable brain-based technologies, such as functional near-
infrared spectroscopy (fNIRS) [23]. fNIRS is a non-invasive 
and portable neuroimaging modality capable of continuously 
measuring correlates of brain activity from the cortex in eco-
logically valid environments. fNIRS functions under three 
principles: (1) increased neural activity leads to an increase 
in metabolic demands, which results in an increase in oxy-
hemoglobin (HbO) and deoxyhemoglobin (HbR) concen-
trations; (2) these hemoglobin chromophores have unique 
optical properties within the 700 to 900 nm wavelength; and 
(3) by examining the manner in which light passes through 
cortical tissue, concentrations of HbO and HbR can be cal-
culated [24–26].

Over the last decade, fNIRS has been used extensively 
to assess workload, quantify mental capacity, and track 
training in both laboratory and field settings [22, 26–33]. 
Majority of these studies have focused on quantifying 
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changes in brain activity within the prefrontal cortex 
(PFC), which is responsible for executive functions, such 
as working memory, attention, problem solving, deci-
sion making, response inhibition, planning, conflict res-
olution, and mental flexibility [34]. In summary, these 
studies have indicated three important takeaways: (1) 
additional task load leads to an increase in brain activity 
during both standard and complex tasks; (2) these brain 
activity changes acquired by fNIRS are complementary to 
behavioral metrics; (3) task practice decreases the extent 
or intensity of brain activity changes, particularly in the 
attentional and control areas while maintaining high 
behavioral or outcome performance. To a limited extent, 
fNIRS has also been used as a tool to conduct adaptive 
training [27, 35]. However, to our knowledge, fNIRS has 
not been used to assess individual difference in perfor-
mance during dual task training.

In this paper, we investigated the effect of individual 
differences in skill acquisition and transfer during train-
ing on an ecologically valid dual task using behavioral 
and brain activity measures acquired from fNIRS. We 
selected an Unmanned Aerial System (UAS) operators’ 
search and surveillance task, as it is a dual task requir-
ing an active role of attention and spatial working mem-
ory to ensure complete scanning of an assigned area and 
high accuracy of identifying and tracking targets. The 
duality of the task enabled the possibility of modeling 
of individual differences. We hypothesize that perfor-
mance will vary across individuals and these changes 
will be reflected in fNIRS measures. Based on a previous 
investigation of skill acquisition using a similar task, we 
hypothesize that those participants who demonstrate an 
increase in their performance with practice across easy 
sessions will display a decrease in brain activity within 
task-specific PFC regions [36, 37]. Additionally based on 
a previous investigation of transfer, we hypothesize that 
those who reveal improvement in performance during 
easy sessions will presumably show transfer of skills dur-
ing the hard sessions.

2 � Materials and methods
2.1 � Participants
Thirteen participants between the ages of 19 and 40 
(22.92 ± 5.88  years) voluntarily consented to partici-
pate in an Institutional Review Board (IRB) approved 
study. Out of the 13 participants, nine were male and 
four were female. Recruited participants had no learn-
ing disability or sleep disorders, had either normal or 
corrected to normal vision, and had no prior experience 
with the simulator used in this study. However, partici-
pants had varying levels of overall experience playing 
three-dimensional (4.27 ± 6.07  h) and first-player three-
dimensional (3.23 ± 4.42 h) games. Lastly, all participants 

were assessed as right-handed via use of the Edinburgh 
Handedness assessment (laterality index: 75.33 ± 20.05; 
and decile: 5.00 ± 3.58) [38].

2.2 � UAS Training Simulator
A UAS simulator training setup (C-STAR, Simlat Inc., 
Miamisburg, Ohio) was used in this study, as it allowed 
for close implementation of a real operator work environ-
ment and presented a realistic representation of the daily 
task. This simulator is currently being used to support 
over 80 UAS training centers across 30 countries and has 
been used in previous studies [37]. The simulator permits 
for a two-trainee and one-instructor setup, training on 
sensor operation and pilot tasks, and for the instructor to 
manually or automatically preset ‘emergency’ situations 
that the operator(s) might encounter (e.g., such as devel-
oping inclement weather conditions, and equipment 
failure). In the present study, the simulator was used in a 
single-instructor and trainee configuration (see Fig. 1A), 
where the flight was auto-piloted and sensor opera-
tor’s search and surveillance task was implemented. The 
trainee’s simulator’s screen is partitioned into a map and 
payload portion. The map portion displays the flight path 
and assigned region on the landscape where the tasks 
need to be executed (blue line and shaded blue region 
in Fig.  1B), provides real-time feedback on the location 
of the aircraft relative to the flight path, and indicates 
what portion of the overall map or shaded blue region is 
under the camera’s field of view (FOV; green polygon in 
Fig. 1B). The sensor operator’s screen displays the actual 
landscape under the camera’s FOV, and the zoom level 
associated with the FOV. Additional scopes regarding 
the engine and the flight are provided below the payload 
screen; however, these functionalities were disabled in 
this study.

2.3 � fNIRS Instrumentation
Hemodynamic changes from PFC were monitored using 
the fNIR Imager 1200 (fNIR Devices LLC, Potomac, 
MD) (see Fig.  2A). The system operates at a sampling 
frequency of 10  Hz and measures light intensity during 
ambient (when no light is shone), 750, and 830 nm wave-
lengths. The sensor has four surface mount light emitting 
diodes (red circles in Fig. 2B), and twelve silicone photo-
diodes with integrated transimpedance preamp (yellow 
circles in Fig. 2B). Ten of the twelve detectors are located 
2.5 cm away from each source and enable measurement 
of cerebral activity from 16 different locations (white cir-
cles labeled 1 through 16 in Fig. 2B). The remaining two 
detectors are located 1  cm away from the middle two 
sources and allow measurement of extracerebral activity 
from two different locations (white circles labeled 17 and 
18 in Fig. 2B).
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2.4 � Experimental protocol
Each participant underwent a tutorial session, followed 
by three easy sessions and two hard sessions (see Fig. 3). 
The tutorial session lasted five minutes, during which the 
participants were shown how to utilize the joystick and 
the computer mouse to navigate across map and payload 

screens, how to lock and track a target, and what consti-
tuted as proper scanning and target find behaviors, which 
were defined as completely scanning the assigned region 
and tracking the target (red civilian bus as shown on the 
screen in Fig. 1B) at or below a zoom level of 15° for at 
least 3 s. After instructions were given, participants were 

Fig. 1  Unmanned aerial system training simulator. A The simulator allows for two trainees and one instructor. B The trainee screen is divided into 
map screen on the left and payload or sensor screen on the right. The map screen displays the route that the aircraft will fly along (1), the area 
where the scan and target find task are assigned (2), and what region the sensor screen is capturing (3). The payload screen displays real-time visual 
of the landscape being looked at with feedback regarding the zoom level (4). This screenshot also shows how the target (5), a red civilian bus, looks 
like from a distance and when it is being tracked at a zoom angle of 3°

Fig. 2  Functional near-infrared spectroscopy system used to collect relative changes in oxyhemoglobin and deoxyhemoglobin concentrations. A 
The data acquisition and sensor used. The sensor allowed for measurement of cerebral and extracerebral activities using long (2.5 cm) and short 
(1 cm) source detector separation (SDS) channels. B The location of sources or light emitting diodes (red circles), detectors or photodiodes (yellow 
circles), and channels (white circles) on the prefrontal cortex. Channels 1 through 16 represent cerebral measurements, while channels 17 and 
18 represent extracerebral measurements
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allowed to practice utilizing the screens and equipment 
to execute the tasks for the remainder of the tutorial ses-
sion. After the tutorial session was over, participants were 
told to prioritize both tasks equally. The easy and hard 
sessions were approximately 12.5  min in duration, and 
all had unique flight paths with inimitable target place-
ments. A 15-min break was given between the easy and 
hard sessions, during which time the fNIRS was taken off. 
The primary difference between easy and hard sessions 
was that the easy sessions occurred at a simulation time 
of 11:00AM, while the hard sessions occurred at 8:00PM 
or 6:00AM. To ensure that the bias was minimized, easy, 
and hard scenarios were randomized during their spe-
cific time periods. Each session consisted of six subareas, 
which each lasting 2 min on average. A 10-s gap was pro-
grammed between each subarea, allowing participants to 
re-adjust their camera settings. Based on this experimen-
tal protocol, the independent variable was session, while 
the subareas were repetitive measures. The changes in 
easy sessions were used to assess skill acquisition, while 
changes from last easy to first hard session and between 
hard sessions were used to assess transfer.

2.5 � Preprocessing of fNIRS data
fNIRS signals are often confounded by factors, such as 
motion artifacts, head movement, systemic physiologi-
cal changes, instrumentation, and environment noises. 
To extract neural activity-related signals, the follow-
ing methods were applied. Channels that were satu-
rated (> 4500), had high dark current values (> 200), or 
had high correlations between wavelength and ambient 
measurements (r > 0.7) were removed from further anal-
ysis [39, 40]. Abrupt spikes were removed via wavelet-
based motion artifact removal [41]. Low-frequency drifts 
and high-frequency noise associated with respiration and 
cardiac functions were removed via a high- and low-pass 
finite impulse response filters with cut-off frequencies 

at 0.005 and 0.1 Hz [42]. Optical density data were then 
converted into the relative concentration changes of HbO 
and HbR using modified Beer Lambert law [25].

2.6 � Dependent variables
The Performance Analysis & Evaluation module of the 
simulator quantifies trainee’s performance in terms of 
scan (area covered within the assigned ROI area), not 
scan (area not covered with the assigned ROI area), and 
over scan (area covered outside of the assigned ROI area) 
percentage. An example of these measures extracted 
from a subarea of an individual is shown in Additional 
file 1: Figure S1. The module also records cameras zoom 
level and a logical index (0 or 1) representing when target 
is in FOV or is not in FOV every microsecond. Using this 
information, we set accuracy to be ‘1’ if the target was in 
FOV, and the scan occurred at a zoom level at or below 
15°. This criterion was provided by the field expert. In 
subareas that did not have targets, accuracy was set to ‘1.’ 
Since accuracy may be affected by performance from the 
previous subarea, an adaptive target find (AdpTF) score 
was calculated by dividing accuracy by the number of the 
subarea.

In alignment with the approach previously reported by 
Izzetoglu et al., average HbO and HbR measures between 
15 s after the start of the subarea and 15 s before the end 
of the subarea were extracted from each channel [43]. 
This was performed as the tasks here followed each other 
continuously to maintain ecological validity, i.e., no rest-
ing periods in between, and to wash out any effect from 
the preceding task’s hemodynamic response that could 
be carried over to the present task.

To simultaneously evaluate behavioral and hemody-
namic measures, relative efficiency (RE) and relative 
involvement (RI) measures were calculated using Eqs. 1 
and 2 [32, 44]. In the equations, P represents standard-
ized performance score (e.g., scan, or AdpTF), while M 

Fig. 3  Experimental protocol began with a tutorial session followed by easy and hard sessions, respectively. Easy sessions consisted of three similar 
scenarios that occurred at 11:00 AM (simulator time) and were randomly administered. Hard sessions consisted of two different scenarios that 
occurred at 8:00 PM or 6:00 AM and were also randomly administered. Each scenario was approximately 12 min long and consisted of six subareas 
that each lasted 2 min. Within each of these subareas’ participants were required to scan the assigned area and find the target
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represents standardized mental effort score (HbO and 
HbR). HbR measures were multiplied by −1 to fit within 
the efficiency definition, because, unlike HbO, HbR 
measures are expected to be negative and increase with 
practice.

2.7 � Grouping based on individual differences
Subject matter field experts use scan behavioral perfor-
mance measure as an indicator of expertise development. 
Improvement in scanning suggests good performance, 
while deterioration indicates poor performance. There-
fore, median measures of scan performance across sub-
areas were extracted per subject and changes in the 

median scan performance measures across easy sessions 
were estimated individually for each subject using linear 
regression in R. Individuals that displayed a positive slope 
were placed under one group, while those with negative 
slope were placed in another group.

2.8 � Statistics
Due to a hierarchical nesting structure and the presence 
of missing data (determined to be missing at random), 
linear mixed effects regression (LMER) modeling was 
used. Firstly, models generated investigated the incor-
poration of individual differences factor (Group) in 
improving modeling fitness of behavioral (4 measures: 
scan, not scan, over scan, AdpTF) and mean fNIRS (32 
measures: HbO and HbR from channels 1 through 16) 
measures against models without individual differences 
factor (Group). Secondly, to investigate changes in per-
formance and mental effort during skill acquisition and 
transfer separately, Eqs.  3 and 4 were  used to evaluate 
the main and interaction effects of Group (Group 1 and 
Group 2), Session (Easy 1—E1, Easy 2—E2, Easy 3—E3, 
and Hard 1—H1 and Hard 2—H2) and AdpTF on behav-
ioral (3 measures: scan, not scan, and over scan), and 
mean fNIRS (32 measures: HbO and HbR from channels 

(1)Relative Efficiency = (P −M)/
√
2,

(2)Relative Involvement = (P +M)/
√
2.

1 through 16) measures, respectively. The interaction 
between Group, Session, and AdpTF was incorporated as 
a fixed effect to the models being investigated, to evalu-
ate the cross talk between scan and target find tasks. The 
model investigating behavioral measures used a random 
intercept design, while the model investigating mean 
fNIRS measures used non-correlated random intercept 
and slope design. The random slope term (0 + Short | ID) 
when evaluating mean fNIRS measures was used to sepa-
rate task-induced extracerebral activity from that related 
to cerebral activity, which was shown to be significant 
in another study using the same dataset [45]. Lastly, to 
investigate performance and mental effort simultane-
ously, Eq.  5 was used to evaluate the main and interac-
tion effects of Group and Session on RE and RI measures 
calculated from following behavioral (Scan and AdpTF) 
and mean fNIRS measures (channels largely effected by 
the dual task). Like Eq. 4, a random slope design was used 
to account for extracerebral RE and RI.

Significance of fixed effect terms was evaluated using 
likelihood ratio tests, where the full effects model was 
compared against a model without the effect in ques-
tion. Maximum likelihood estimation was used to con-
duct likelihood ratio tests, while restricted maximum 
likelihood was used to evaluate post hoc comparisons. If 
an interaction term was significant, then planned com-
parisons were performed between the same sessions of 
different groups (e.g., Attention-focused vs Accuracy-
focused of E1) to investigate between-subject differences 
and between sessions of the same group (e.g., Attention-
focused: E1 vs E3) to investigate within-subject differ-
ences. Specifically, the within-subject differences enabled 
investigation of skill acquisition (E1 vs E3) and transfer 
(E3 vs H1 or H1 vs H2). A total of 10 comparisons were 
conducted per each dependent variable. Homogeneity of 
variance, and normality of residuals and random effects 
were conducted using visual inspection. If model predic-
tions showed heteroscedasticity or non-normal distri-
bution, then log10 transformations were performed on 
the response variables. Satterthwaite approximation of 
degrees of freedom was used in post hoc analyses [46]. 
For all statistical analyses, the level of significance was 
set at  α = 0.05. Adjustments using false discovery rate 
(FDR) were made on p values to account for Type I error 

(3)DV ∼ 1+ Group+ Group : Session+Group : Session : AdpTF+ (1|ID),

(4)DV ∼ 1+Group+Group : Session+Group : Session : AdpTF+(1|ID)+(0+ Short|ID),

(5)DV ∼ 1+ Group+ Group : Session+ (1|ID)+ (0+ Short|ID).
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inflation per dependent variable. Cohen’s d was used to 
examine post hoc effects [47]. d of 0.2 is considered a 
small effect, while 0.5 and ≥ 0.8 represent medium and 
large effects, respectively. All statistical analyses were 
conducted in R (R Core Team, 2019) using lme4, lmerT-
est, and emmeans functions [48–50].

3 � Results
3.1 � Effect of incorporating individual differences as a fixed 

factor while evaluating performance and mean fNIRS 
measures

Per subject changes in scan measures from E1 to E3 prior 
to grouping displayed large variability in slope change 
(see Fig. 4A). Applying grouping based on individual dif-
ferences in scan performance resulted in six subjects fall-
ing into a group where scan measures increased from E1 

to E3, and seven subjects falling into a group where scan 
measures decreased (see Fig. 4B). Effect of this grouping 
on other behavioral measures indicated that individuals 
who improved in their scan performance also improved 
in their not scan and over scan performance (see blue 
lines in first three columns of Fig.  4C). However, these 
individuals displayed no change in their target find per-
formance (see blue line in last column of Fig. 4C). Alter-
natively, the group that showed depreciation in scan 
performance also showed depreciation in not scan and 
over scan performances, while improving in target find 
performance (see red lines in Fig. 4C). Therefore, for the 
rest of the paper those who improved in scan perfor-
mance will be referred to as Attention-focused group, 
while those who improved in target find performance will 
be referred to as Attention-focused group. As shown in 

Fig. 4  Overall and subject-specific changes in behavioral measures across training sessions. A Changes in scan measures from easy session 1 (E1) 
to easy session 3 (E3). B Six individuals displayed an increasing change in scan measure from E1 to E3, while seven displayed a decreasing behavior. 
C Mean changes in scan, not scan, over scan, and adaptive target find measures. Black dots represent mean scan measures across subareas per 
subject and session. Colored dots and associated error bars represent mean and standard error of mean across subareas and subject

Table 1  Comparison of goodness of fit between models with and without Group as fixed factor for behavioral measures

The following models were compared: 1 + (1 | ID) vs 1 + Session + (1|ID), 1 + Group + (1 | ID) vs 1 + Group + Group: Session + (1|ID), 1 + Session + (1 | ID) vs 
1 + Group + Group: Session + (1|ID). For models without and with individual differences, the number parameters were 7 and 12, and degrees of freedom were 4 and 8, 
respectively. Degrees of freedom for comparison between models were 5

Dependent variable Individual 
differences

Comparison against null model Comparison between 
models

Log likelihood χ
2 p value χ

2 p value

Scan No − 526.10 12.00 0.017 33.40  < 0.001

Yes − 509.41 45.39  < 0.001

Not scan No − 502.56 12.33 0.015 14.86 0.011

Yes − 495.13 26.32 0.001

Over scan No − 524.71 1.73 0.786 19.50 0.002

Yes − 514.96 20.09 0.010

Adaptive target find No 40.42 5.39 0.250 13.45 0.020

Yes 47.15 12.41 0.134
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Table  1, significant improvement in goodness of fit was 
observed for all behavioral measures when individual dif-
ferences factor “Group” was added to the model. Simi-
larly significant improvement in goodness of fit was also 
observed for mean fNIRS measures in most channels, 
especially for HbR (see Table 2).  

3.2 � Effect of Group, Session, and Adaptive target find 
score on behavioral measures

Interaction between Group and Session was significant 
for scan ( χ2(8) = 45.39, p < 0.001), not scan ( χ2(8) = 26.32, 
p = 0.001), and over scan ( χ2(8) = 20.09, p = 0.010) meas-
ures (see Additional file  1: Figure S2). Post hoc testing 
for interaction between Group and Session revealed sig-
nificant differences only for scan measures. Specifically, 
comparisons between Groups per Session revealed sig-
nificant differences only in easy session 1 (adj.p = 0.022, 
d = − 1.07), where the Accuracy-focused group had supe-
rior scanning than the Attention-focused group. Pairwise 
comparisons between sessions within the Attention-
focused group indicated significant increases in scan-
ning from easy session 1 to easy session 3 (adj.p = 0.002, 

d = −  0.84). Comparisons within the Accuracy-focused 
group indicated significant decreases in scanning from 
easy session 1 to easy session 3 (adj.p = 0.001, d = 0.92).

Interaction between Group, Session, and AdpTF was 
significant only for over scan ( χ2(10) = 23.16, p = 0.010) 
measures. However, post hoc comparisons revealed no 
significant differences between Groups per Session or 
between Sessions per Group.

3.3 � Effect of Group, Session, and Adaptive target find 
score on mean fNIRS measures

Interaction between Group and Session was significant 
across most channels, with only channels 3, 4, 15, and 
16 displaying no significant effects across both fNIRS 
measures (see Fig.  5A). Largest effects were observed 
in channel 12 (HbO: χ2(8) = 30.14, p < 0.001; HbR: χ2

(8) = 109.79, p < 0.001), followed by channels 2 (HbO: 
χ2(8) = 55.01, p < 0.001; HbR: χ2(8) = 77.04, p < 0.001), 
14 (HbO: χ2(8) = 38.50, p < 0.001; HbR: χ2(8) = 86.11, 
p < 0.001), 7 (HbO: χ2(8) = 79.40, p < 0.001; HbR: χ2

(8) = 43.49, p < 0.001), and 11 (HbO: χ2(8) = 23.31, 
p = 0.003; HbR: χ2(8) = 69.12, p < 0.001).

Table 2  Comparison of goodness of fit between models with and without group as fixed factor for mean fNIRS measures from a 
subset of channels

The following models were compared: 1 + (1 | ID) + (0 + Short | ID) vs 1 + Session + (1 | ID) + (0 + Short | ID), 1 + Group + (1 | ID) + (0 + Short | ID) vs 1 + Group + Group: 
Session + (1 | ID) + (0 + Short | ID), 1 + Session + (1 | ID) + (0 + Short | ID) vs 1 + Group + Group: Session + (1 | ID) + (0 + Short | ID). For models without and with 
individual differences, the number parameters were 8 and 13, and degrees of freedom were 4 and 8, respectively. Degrees of freedom for comparison between 
models were 5

Dependent variable Individual 
differences

Comparison against null model Comparison between 
models

Channel Biomarker Log likelihood χ
2 p value χ

2 p value

2 HbO No − 341.48 25.79  < 0.001 30.21  < 0.001

Yes − 351.28 72.57  < 0.001

HbR No − 326.38 55.01  < 0.001 7.98 0.157

Yes − 347.29 77.04  < 0.001

7 HbO No − 380.94 37.02  < 0.001 42.39  < 0.001

Yes − 400.75 14.61  < 0.001

HbR No − 359.75 79.40  < 0.001 28.93  < 0.001

Yes − 386.29 43.49  < 0.001

11 HbO No − 389.93 16.79  < 0.001 6.53 0.258

Yes − 452.77 39.11  < 0.001

HbR No − 386.66 23.31  < 0.001 30.55  < 0.001

Yes − 437.50 69.12  < 0.001

12 HbO No − 406.72 16.39  < 0.001 16.32 0.006

Yes − 392.65 67.45  < 0.001

HbR No − 398.56 30.14  < 0.001 42.39  < 0.001

Yes − 371.46 109.79  < 0.001

14 HbO No − 396.43 32.47  < 0.001 6.40 0.269

Yes − 399.21 53.79  < 0.001

HbR No − 393.23 38.50  < 0.001 32.32  < 0.001

Yes − 383.04 86.11  < 0.001
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Evaluation of post hoc comparisons between Groups 
per Session for “Group: Session” term revealed signifi-
cant activity in channels 2, 5, 7, 9, 12, 13, and 15. How-
ever, only results from channels 2, 7, and 12 are reported 
below, as they depicted the largest effects. In E1, signifi-
cant differences were observed only in channel 2 (HbR: 
adj.p = 0.045, d = −  0.97), with larger mental effort 
exerted by Attention-focused group. In E3, significant dif-
ferences were observed in channels 2 (HbR: adj.p = 0.025, 
d = −  1.15), 7 (HbO: adj.p = 0.004, d = 1.61), and 12 
(HbR: adj.p = 0.026, d = 1.07), with Attention-focused 
performers having greater activity in channels 2 and 7, 
and Accuracy-focused performers having greater activ-
ity in channel 12. In H1, activity was significant only in 
channel 12 (HbR: adj.p = 0.045, d =   –0.94), with activity 
being dominant in the Attention-focused group. Lastly, 
in H2, activity was not significant in any channel.

Evaluation of pairwise comparisons between Sessions 
per Group for “Group: Session” term indicated significant 
activity across multiple comparisons within channels 2, 5, 
7, 9, 11, 12, 13, and 14. However, only results from chan-
nels 2, 7, 11, 12, and 14 are reported below, as they signify 
the largest effects (for results from other channels refer to 
Additional file 1: Figure S3). In Attention-focused group, 
activity from (i) E1 to E3 increased in channel 7 (HbO: 
adj.p = 0.031, d = −0.74; HbR: adj.p = 0.008, d = 0.91), and 
decreased in channels 2 (HbR: adj.p < 0.001, d = −1.70), 
11 (HbO: adj.p = 0.004, d = 1.05), 12 (HbR: adj.p < 0.001, 
d = −1.60), and 14 (HbR: adj.p < 0.001, d = −1.53); (ii) 
E3 to H1 decreased in channel 7 (HbO: adj.p = 0.049, 
d = 0.64), and increased in channels 11 (HbO: 
adj.p = 0.004, d = −0.95) and 12 (HbR: adj.p < 0.001, 
d = 1.02); (iii) H1 to H2 increased in channels 12 (HbO: 
adj.p = 0.002, d = −0.93; HbR: adj.p = 0.026, d = 0.60) and 
14 (HbO: adj.p < 0.001, d = −1.18; HbR: adj.p = 0.007, 

d = 0.79). Alternatively, in Accuracy-focused group, 
activity from (i) E1 to E3 decreased in channels 2 (HbR: 
adj.p < 0.001, d =  − 1.88), 7 (HbO: adj.p < 0.001, d = 1.31; 
HbR: adj.p = 0.001, d = −1.13), 11 (HbR: adj.p < 0.001, 
d = −1.44), 12 (HbR: adj.p < 0.001, d = −0.97), 13 
(HbO: adj.p = 0.010, d = 0.87; HbR: adj.p = 0.009, 
d = −0.79), and 14 (HbO: adj.p = 0.031, d = −0.74; HbR: 
adj.p = 0.008, d = 0.91); (ii) E3 to H1 increased in chan-
nels 2 (HbO: adj.p < 0.001, d = −1.67; HbR: adj.p = 0.042, 
d = 0.64) and 7 (HbO: adj.p < 0.001, d =   −  1.86), and 
decreased in channel 12 (HbR: adj.p < 0.001, d = −0.98); 
(iii) H1 to H2 decreased in channel 2 (HbO: adj.p = 0.001, 
d = 1.22; HbR: adj.p = 0.016, d = 0.80), and increased in 
channel 12 (HbR: adj.p = 0.002, d = 0.78).

Post hoc analysis associated with “Group: Session: 
AdpTF” indicated significant comparisons within chan-
nels 1, 2, 6, and 10. Only channel 1 displayed significant 
changes in relationship between AdpTF and brain activ-
ity across Groups per Session. Specifically, a significant 
difference was observed during E1 (HbO: adj.p = 0.037, 
d = 4.157), where Accuracy-focused performers dis-
played a negative relationship, while Attention-focused 
performers displayed a positive relationship. No compar-
isons across sessions per Attention-focused were signifi-
cant. Alternatively, in Accuracy-focused group significant 
changes in relationship between AdpTF and brain activ-
ity were observed (i) from E1 to E3 in channels 1 (HbO: 
adj.p < 0.001, d = −5.22), 2 (HbR: adj.p = 0.001, d = 6.11), 
and 10 (HbR: adj.p = 0.025, d = −0.89), where relation-
ship moved from negative to positive in channels 1 and 
2, and from positive to negative in channel 10; (ii) from 
E3 to H1 in channels 2 (HbR: adj.p = 0.007, d = −1.93) 
and 6 (HbO: adj.p = 0.001, d = −2.19), where relation-
ship moved from positive to negative and negative to 
positive, respectively; (iii) from H1 to H2 in channels 8 

Fig. 5  Significance of changes in mean fNIRS measures per channel and biomarker. A Interactions effects between Group and Session. B 
Interaction effects between Group, Session and Adaptive target find score. Channels with overlayed coloring indicate significance of the associated 
term at α less than 0.05
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(HbR: adj.p = 0.018, d = 5.39) and 10 (HbR: adj.p = 0.010, 
d = 5.83), where relationship moved from positive to 
negative.

3.4 � Effect of Group and Session on relative efficiency 
and relative involvement measures

Significant interaction effects of Group and Session were 
observed on RE and RI measures extracted from behav-
ioral (scan) and mean fNIRS measures from channels 2 
(RE—HbO: χ2(8) = 41.83, p < 0.001; HbR: χ2(8) = 51.78, 
p < 0.001; RI—HbO: χ2(8) = 52.04, p < 0.001; HbR: χ2

(8) = 61.39, p < 0.001), 7 (RE—HbO: χ2(8) = 66.69, 
p < 0.001; HbR: χ2(8) = 26.10, p = 0.001; RI—HbO: χ2

(8) = 79.57, p < 0.001; HbR: χ2(8) = 56.30, p < 0.001), 
and 12 (RE—HbO: χ2(8) = 34.84, p < 0.001; HbR: χ2

(8) = 76.74, p < 0.001; RI- HbO: χ2(8) = 30.60, p < 0.001; 
HbR: χ2(8) = 30.68, p < 0.001) (see last three columns in 
Fig. 6).

Post hoc comparison of RE and RI between groups 
per session during E1 revealed significantly higher 
RE in Accuracy-focused group for channel 2 (HbR: 
adj.p = 0.004, d = −1.47) and higher RI in channel 7 (HbR: 
adj.p = 0.007, d = −1.37). During E3, Attention-focused 
group had higher RE in channel 12 (HbR: adj.p = 0.039, 
d = 1.09), and higher RI in channels 2 (HbR: adj.p = 0.009, 
d = 1.33) and 7 (HbO: adj.p = 0.005, d = 1.50; HbR: 
adj.p = 0.013, d = 1.22). Alternatively, Accuracy-focused 

group had higher RE in channels 2 (HbR: adj.p = 0.042, 
d = -–1.02) and 7(HbO: adj.p = 0.030, d = −1.37), and no 
differences in RI. During H1, no differences were found 
in either RE or RI measures. During H2, differences were 
only observed for RI in channel 12 (HbR: adj.p = 0.035, 
d = 0.91), with Attention-focused group being more 
involved.

Post hoc comparison across sessions per group 
revealed following results within each channel. In 
channel 2, both groups displayed increasing RE (HbR: 
Attention-focused: adj.p < 0.001, d = −1.57; HbR: Accu-
racy-focused: adj.p < 0.001, d = −1.12) and decreas-
ing RI (HbR: Attention-focused: adj.p < 0.001, d = 1.04; 
HbR: Accuracy-focused: adj.p < 0.001, d = 1.83)   from 
E1 to E3. Attention-focused group showed increas-
ing RE (HbO: adj.p = 0.013, d = −0.79) and no change 
in RI transitioning from E3 to H1 sessions, while Accu-
racy-focused group showed decreasing RE (HbO: 
adj.p = 0.013, d = 0.81) and increasing RI (HbO: 
adj.p < 0.001, d = −1.17; HbR: adj.p = 0.003, d = −0.86). 
During H1 to H2, neither groups showed any sig-
nificant changes in RE or RI. In channel 7, Attention-
focused performers decreased RE (HbO: adj.p = 0.001, 
d = 1.12, HbR: adj.p = 0.020, d = 0.89) and increased 
RI (HbO: adj.p < 0.001, d = -–1.28; HbR: adj.p < 0.001, 
d = −1.36) from E1 to E3, while Accuracy-focused per-
formers had no change in RE and decreased RI (HbO: 

Fig. 6  Changes in efficiency and involvement based on adaptive target find and scan performance and fNIRS measures from channels 2, 7, and 12 
per Group and Session. The four quadrants generated by the efficiency (E) = 0 and involvement (I) = 0 lines represent combination of high efficiency 
(HE) or low efficiency (LE) and high involvement (HI) or low involvement (LI). Circles on the graphs reflect mean, while error bars represent standard 
deviation
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adj.p = 0.001, d = 1.01; HbR – adj.p < 0.001, d = 1.22). 
Attention-focused performers increased in RE (HbO: 
adj.p = 0.001, d = −0.99) and decreased in level of RI 
(HbO: adj.p = 0.007, d = 0.80) while transitioning from 
E3 to H1. In contrast, Accuracy-focused perform-
ers decreased in RE (HbO: adj.p = 0.003, d = 0.82), 
and increased in RI (HbO: adj.p < 0.001, d = −1.24). 
No differences in RE were found for neither Attention-
focused nor Accuracy-focused performers from H1 to 
H2, while decreased RE was found in Attention-focused 
group (HbR: adj.p = 0.013, d = 0.75). In channel 12, 
Attention-focused performers displayed increased RE 
(HbR: adj.p < 0.001, d = −1.50) and decreased RI (HbR: 
adj.p < 0.001, d = 1.12) from E1 to E3, while Accuracy-
focused performers had no change in RE and decreased 
RI (HbR: adj.p = 0.001, d = 1.03). Attention-focused per-
formers decreased in RE (HbR: adj.p < 0.001, d = 0.99) 
and increased in RI (HbR: adj.p = 0.007, d = -–0.79) from 
E3 to H1, while Accuracy-focused performers increased 
in RE (HbR: adj.p < 0.001, d = −0.96) and decreased in 
RI (HbR: adj.p = 0.015, d = 0.64). Both groups decreased 
in RE from H1 to H2 (HbR: Attention-focused:  = 0.046, 
d = 0.55; HbR: Accuracy-focused: adj.p = 0.046, d = 0.50), 
and increased their level of RI (HbR: Attention-focused: 
adj.p = 0.007, d = −0.74; HbR: Accuracy-focused: 
adj.p = 0.018, d = −0.58).

Significant interaction effects of Group and Session 
were observed on RE and RI measures extracted from 
behavioral (Adaptive target find score) and fNIRS meas-
ures from channel 2 (RE—HbO: χ2(8) = 31.43, p < 0.001; 
HbR: χ2(8) = 65.63, p < 0.001; RI—HbO: χ2(8) = 70.22, 
p < 0.001; HbR: χ2(8) = 29.46, p < 0.001) (see first col-
umn in Fig.  6). Post hoc analysis between groups per 
session revealed significant differences in RE for only 
E3 (HbR: adj.p= 0.046, d = −1.07) and RI for only H1 
(HbO: adj.p = 0.049, d = −1.25), with higher RE and RI 
observed during these sessions by Accuracy-focused 
group. Post hoc analysis from E1 to E3 per group 
revealed significant increases in RE in both groups (HbR: 
Attention-focused: adj.p < 0.001, d = −1.39; HbR: Accu-
racy-focused: adj.p < 0.001, d = −1.46), with increases 
in RI for Attention-focused group (HbO: adj.p = 0.049, 
d = −0.65) and decreases for Accuracy-focused group 
(HbR: adj.p < 0.001, d = 1.32). Transitioning from E3 
to H1 resulted in decreased RE in Accuracy-focused 
group (HbO: adj.p = 0.016, d = 0.86) and no change 
in Attention-focused group, while RI decreased in 
Attention-focused group (HbO: adj.p = 0.011, d = 0.83) 
and increased in Accuracy-focused group (HbO: 
adj.p < 0.001, d = −1.43). Lastly, only RE changes were 
observed in Accuracy-focused group  from H1 to H2 
(HbR: adj.p = 0.031, d = 0.69), with significant decreases 
observed.

4 � Discussion
We evaluated skill acquisition and transfer in novice 
operators during training on a realistic dual task using 
behavioral and fNIRS measures. The results showed that 
assessing performance and mental load as a function of 
both task and individual characteristics provided further 
insight into changes in performance and mental load 
during multitask training. Specifically, both performance 
and mental load results during skill acquisition sessions 
revealed that individuals preferred to focus on improv-
ing only on  one of the two tasks (scan or target find). 
This preference was maintained during transfer sessions. 
However, brain activity measures revealed that individu-
als who focused on scan task were able to begin concen-
trating on target find task by the end of skill acquisition 
phase. These findings were supported by relative effi-
ciency and relative involvement measures that were uti-
lized to assess the interaction between performance and 
mental load.

In addition to task characteristics, investigators have 
explored ways to include individual characteristics as a 
factor while evaluating multitask effects on performance 
[5, 6, 8]. In line with these studies, our results indicate 
that inclusion of individual differences (Group) not only 
improved goodness of fit (see Table 1) but also indicated 
significant interactions between Group and Session and 
significant post hoc comparisons. These individual dif-
ferences can arise due to intrinsic, contextual, strategic, 
personality, or preference factors [11–14]. Firstly, intrin-
sic variability arises from differences in age, gender, 
and handedness, along with other participant-related 
attributes and experiences, while contextual variability 
is driven by familiarity with the task and the environ-
ment. According to cognitive load theory, intrinsic and 
contextual factors interact to make up the “intrinsic 
load” [2]. We believe the differences observed are not a 
result of these factors, because (1) subjects recruited 
in this study were all right-handed, were of similar age, 
and were equally distributed within each Group, and (2) 
prior to engaging with the task, all individuals indicated 
that they had limited simulator experience and had no 
knowledge regarding UAS operator tasks. In addition to 
having a similar level of expertise, all individuals under-
went the same tasks, therefore suggesting contextual 
variability may not be the reason behind the observed 
individual differences. Secondly, strategic variability, also 
termed ‘germane load’ according to cognitive load the-
ory, emerges when an individual adopts a strategy that 
best matches their expectations [2]. Our performance 
data strongly indicate the effect of strategy. Specifically, 
evaluation of adaptive target find score during skill acqui-
sition (across easy sessions) displayed that some indi-
viduals improved, while others worsened. Furthermore, 
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those who improved in their adaptive target find score 
showed decreased scan performance across easy ses-
sions. This finding indicates that individuals prioritized 
tasks differently. In other words, individuals preferred 
to focus on one task over the other. Prioritization during 
multitasking is common strategy employed to preserve 
performance on at least one of the tasks [15–20]. Such 
a strategy is commonly referred to as serial or blocked 
processing, where individuals focus on one task before 
moving to the other. Other strategies include parallel or 
adaptive (shifting between serial and parallel) processing. 
Although which strategy is ideal is dependent on other 
individual characteristics, a consensus among research-
ers is that experts are able to use adaptive processing 
strategy, where an individual can maintain a balance 
between minimizing between-task interferences and 
mental effort, via increasing serial and parallel process-
ing, respectively [51]. Therefore, we can assume that indi-
vidual differences observed in our study are most likely 
due to strategy, particularly the strategy derived from 
preference.

Prior to interpreting effects of individual differences 
or training on brain activity measures, we first should 
understand what type of PFC response is elicited by 
UAS operators during execution of search and surveil-
lance task. Our results depicted significant brain activ-
ity changes within most channels for both HbO and HbR 
biomarkers (see Fig.  5A). This effect being over all the 
regions (global effect) is likely due to the nature of the 
task requiring execution and coordination among multi-
ple cognitive processes. This finding is in agreement with 
previous studies, which have indicated that brain activity 
during complex tasks is not localized to one specific PFC 
area [26, 28, 31, 36, 52, 53]. However, post hoc results 
indicated significant differences primarily within chan-
nels 2, 7, 11, 12, and 14. These results suggest that even 
though most of the PFC was recruited to perform the 
task, that stronger activity was observed in the task-rel-
evant areas. Specifically, fNIRS studies have shown that 
channel 2 is approximately measuring from the left dor-
solateral prefrontal cortex (LDLPFC), which is reported 
to be involved in spatial working memory or recognizing 
specific features and task setting [34, 42, 54–56]. Alterna-
tively, channels 11, 12, and 14 are the measures from the 
right anterior medial PFC (RAMPFC), which is known to 
be involved with attentional control [34, 42, 55]. Activity 
within the LDLPFC and RAMPFC  regions implies that 
the search and surveillance task employed in this study 
taxes attention and spatial working memory processes 
[57]. Activations within these channels and regions are 
in line with other similar fNIRS and fMRI studies eval-
uating brain activity during spatial navigation tasks [28, 
39, 58–60]. Lastly, channel 7 is overlaid on top of the left 

anterior medial PFC (LAMPFC) and has been shown by 
fMRI studies to be involved with task switching [61, 62]. 
Activity within this region may suggest executive con-
trols involvement in enabling simultaneous engagement 
in scan and target find tasks.

Without accounting for individual characteristics, our 
results from skill acquisition phase indicated significant 
decreases in mental effort within LDLPFC and RAMPFC 
(see Additional file  1: Table  S1). These results support 
neural plasticity and practice theory, which states that 
practice is effective in decreasing brain activity intensity 
within attentional and control areas [22, 30, 33, 52, 59, 
63]. Secondly, our results from transfer phase showed 
significant increases within LAMPFC and RAMPFC. 
These results are supported by cognitive workload the-
ory, that states that mental load increases with increases 
in task demands [22, 28, 52, 53, 57]. Inclusion of indi-
vidual differences significantly improved model fitness 
of mean fNIRS measures (see Table  2). Similar, effects 
on brain activity changes using individual characteris-
tics have been reported by other researchers [7, 27, 55, 
58, 60–62, 64–67]. The improvement was especially 
observed for HbR measures, which has been shown to be 
a more sensitive measure of cognitive activity than HbO 
for this particular task [45]. Furthermore, inclusion of 
these individual differences has provided further insight 
into interaction between performance and mental effort 
changes during multitasking training.

4.1 � Skill acquisition
Both Attention-focused and Accuracy-focused groups 
displayed a decrease in brain activity within RAMPFC 
and LDLPFC areas. These results align with the ones 
reported when individual differences were not accounted 
for. However, activity within LAMPFC increased in the 
Attention-focused group, while it decreased in the Accu-
racy-focused group. These results were not observed 
when individual differences were not accounted for. 
Since LAMPFC is involved in task switching, a possi-
ble interpretation could be that the Attention-focused 
group was switching their strategy from serial to paral-
lel task processing  or using adaptive processing. Simi-
lar brain activity changes associated with differences in 
strategy have been shown in previous studies [68–70]. 
These studies have identified that this shift in processing 
may occur because of expertise development. However, 
level of neural activation should be interpreted consider-
ing behavioral measures [26, 31, 32]. Interpreting brain 
activity changes in RAMPFC and LDLPFC results con-
sidering scan performance indicated that the Attention-
focused group was more efficient at the scan task, while 
the Accuracy-focused group was more efficient at target 
find task. Furthermore, although the Attention-focused 
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group did not improve in target find performance by 
the end of skill acquisition phase, their relative involve-
ment measures indicated that they were involved in both 
tasks by the end of the phase. These results further sup-
port a shift in processing strategy from a serial to parallel 
or adaptive processing with practice. These involvement 
results are not only further supported by the RE and 
RI changes in LDLPFC (see Figure first two columns in 
Fig. 6) but are also supported by the results where scan 
and fNIRS measures changed as a  function of Group, 
Session, and Adaptive target find score. Specifically,  the 
results show that scan measures decreased with target 
find during easy session 1 and increased during easy 
session 3 (see Additional file 1: Figure S4A), while brain 
activity increased in easy session 1 and 3 when target was 
found (see Additional file  1: Figure  S4B). Alternatively, 
analysis of this task also supports the fact that the Accu-
racy-focused group was only involved in the target find 
task. Specifically, the results showed that the scan meas-
ures increased with target find during easy session 1 and 
decreased during easy session 3 (see Additional file  1: 
Figure S4A). This shift from negative to positive associa-
tion suggests that the performers either stopped scanning 
after they found the target or were aimlessly wandering. 
The association between adaptive target find score and 
fNIRS measures from LDLPFC moved from a positive 
to negative, indicating that the subjects went from using 
more to fewer resources with practice, while finding 
targets (see Additional file 1: Figure S4B). Such associa-
tions were not observed in the Attention-focused group, 
indicating that even though they were task switching, 
they needed additional practice to improve target find 
performance. In summary, Attention-focused group was 
efficient at acquiring scan skills and remained involved 
in both tasks, while Accuracy-focused was efficient and 
involved in only acquiring target find skills.

4.2 � Transfer
The behavioral results indicate that introduction to a task 
of higher load resulted in maintenance of scan perfor-
mance by both Attention-focused and Accuracy-focused 
groups. fNIRS results from Attention-focused group dis-
played increased activity within RAMPFC, decreased 
activity within LAMPFC, and no change in LDLPFC, 
while Accuracy-focused group demonstrated decreased 
activity within RAMPFC and increased activity within 
LDLPFC and LAMPFC. These changes are different 
from the findings when individual differences were not 
accounted for. Although these results indicate that an 
increase in task load led to recruitment of more neural 
resources to maintain similar behavioral outcomes as 
that observed during performance of the easy tasks, the 
recruitment of neural resources varied across PFC region 

and group. Specifically, even though Attention-focused 
group had begun changing their strategy from serial to 
parallel processing by the end of skill acquisition phase, 
increases in task load reverted their strategy back to pri-
oritizing the scan task. Similar shifting in strategy due to 
increased task load has been observed in other studies [4, 
17–19]. Accuracy-focused group continued to prioritize 
the target find task. Assessment of relative efficiency and 
relative involvement measures provide further insight. In 
particular, the Attention-focused group decreased in effi-
ciency and remained involved in scan tasks, while ignor-
ing the target find task. These results validate that the 
Attention-focused group needed more practice on the 
target find task during easy conditions before being able 
to transfer the skills to the hard condition. Additionally, 
the Attention-focused group displayed a decrease in rela-
tive efficiency across hard sessions, while their relative 
involvement remained high. This further supports the 
different prioritization strategies used by the two groups. 
Unlike the Attention-focused group, the Accuracy-
focused group was relatively efficient in the scan task, 
and they were not when performing the target find task. 
However, they were relatively involved in the target find 
task and not relatively involved in the scan task. As pre-
viously described the target find task is a secondary task 
to the primary scan task, which means that improvement 
in scan task performance should enable improvement in 
the target find task. Based on this presumed connection, 
the Accuracy-focused group could be zooming in further 
to accommodate for the lack of visibility in the hard con-
dition; therefore, they may have utilized scan task per-
formance as way of completing the target find task. This 
could be the reason why the Accuracy-focused group had 
increased activity in LAMPFC and LDLPFC, but not in 
RAMPFC. Lastly, the Accuracy-focused group showed 
no change in relative efficiency or relative involvement 
across hard conditions. A possible reason for this could 
be that they gave up or that they were mentally fatigues 
or overloaded. In summary, Attention-focused group was 
involved in transferring their scan skills, while the Accu-
racy-focused group was involved in transferring their tar-
get find skills.

4.3 � Limitation
Despite the promising methodology and results, the 
study results are subject to a few limitations. This 
study recruited a limited sample size. Specifically, the 
Attention-focused group had N = 6 individuals, while 
Accuracy-focused group had N = 7. Therefore, the find-
ings reported here are preliminary in nature and future 
studies when a larger sample cohort is needed, espe-
cially when investigating individual differences. fNIRS 
signals are influenced by extracerebral and systemic 
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activity. We utilized “(0 + ShortSDS | ID)” to account for 
global extracerebral and systemic activity. Although the 
inclusion of this factor significantly improved model fit-
ness (see Additional file 1: Table S2), the factor does not 
remove task-evoked extracerebral and systemic activity 
[71–73]. Therefore, future studies will need to incorpo-
rate signal processing techniques, such as least squares 
adaptive filters, Kalman filter, and state-space model-
based methods, to improve removal of task-evoked and 
non-evoked extracerebral and systemic activities [74]. 
The brain activity results must be interpreted with cau-
tion, as not all areas of the brain that are involved with 
the UAS operator search and surveillance task could be 
measured with fNIRS technology employed in this study. 
Mean fNIRS measures were calculated from fifteen sec-
onds after onset and before the end of a subarea, lead-
ing to an average over 90  s. Studies have indicated that 
averaging over trials longer than 60 s may include unre-
lated cortical activity and have suggested parsing of the 
fNIRS time series into small time segments before aver-
aging [43]. Future studies will incorporate analysis of 
the temporal changes in brain activity while performing 
the task of interest. Such analyses will allow for exami-
nation of whether scan performance remained similar 
or depreciated after finding a target and in turn validate 
the results regarding strategy used during task interleav-
ing. Personality factors, such as cooperation, motivation, 
habituation, awareness, and stress, are known to effect 
multitasking; therefore, future studies should include 
survey between sessions to assess these effects [7]. To 
further investigate difference in strategy, future stud-
ies should compare dual task results against single tasks 
within same subjects and should experimentally induce 
different task interleaving processes.

In conclusion, our study provides a unique insight 
into individual differences through neural and behavio-
ral measures while we analyze human performance in a 
dual and ecologically valid task. We demonstrated that 
including individual differences as a factor can enhance 
assessment of skill acquisition and transfer during multi-
task training. This study contributes to the existing litera-
ture and reports that brain activity changes acquired via 
fNIRS are sensitive to changes in task demands and that 
complex task execution elicits recruitment of resources 
within multiple regions of the PFC. We posit that the 
changes in cortical activity, particularly within left ante-
rior medial prefrontal cortex region, could be associ-
ated with task switching. Our results support previous 
findings that task practice results in an improvement in 
behavioral performance metrics and a reduction in the 
level of brain activity changes. Lastly, our results high-
light that integrated behavioral performance and brain 
activation assessments of relative efficiency and relative 

involvement are improved metrics for describing skill 
acquisition and transfer.
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 Additional file 1: Figure S1. Example scan and target find performance 
from a particular Subject, Session, and Subarea. A. Raw FOV polygons 
overlaid on task area. B. FOV polygons that had Bottom Max Size less 
than 750 and FOV Area Ratio less than 0.50 result in scan, not scan, and 
over scan ratios of 0.57, 0.13, and 0.29, respectively. During this subarea 
the target was not found. Figure S2. Changes in behavioral measures 
as a function of Session and Adaptive target find score per performance 
group. Attention-focused performers (N = 6) and Accuracy-focused per-
formers (N = 7). Plotted points reflect mean. Easy 1 – E1, Easy 2 – E2, Easy 
3 – E3, and Hard 1 – H1 and Hard 2 – H2. Figure S3. Post hoc comparisons 
between sessions per group across all channels and fNIRS measures. 
Comparisons consisted of easy session 1 – easy session 3 (across easy), 
easy session 3 – hard session 1 (between easy and hard), and hard session 
1 and hard session 2 (across hard). Only effects (Cohen’s d) associated 
with significant (a < 0.05) comparisons were plotted. Cohen’s d of 0.2 is 
considered a small effect, while 0.5 and 0.8 represent medium and large 
effects, respectively. If Cohen’s d is negative for HbO and positive for HbR, 
then this indicates that the activity increased in the second term of the 
comparison. For example, in Attention-focused performers, channel 13 
displayed higher activity in easy session 1 than easy session 3 (HbO d = 
1.61; HbR d = -0.87), while channel 7 displayed higher activity in easy 
session 3 than easy session 1 (HbO d = -0.74; HbR d = 0.92). Figure S4. 
Association between Adaptive target find score and behavioral or fNIRS 
measures across easy sessions per group. Dark line represents smoothed 
conditional mean or regression line, while shaded regions represent con-
fidence interval of 0.95. Table S1. Post Hoc comparisons between Sessions 
of model that did not include individual differences. Cohen’s d of 0.2 is 
considered a small effect, while 0.5 and 0.8 represent medium and large 
effects, respectively. If Cohen’s d is negative for HbO and positive for HbR, 
then this indicates that the activity increased in the second term of the 
comparison. For example, in channel 1 higher activity is observed in easy 
session 1 than easy session 3 for HbO and HbR. Table S2. Effect of systemic 
activity on fNIRS measures. Comparing model with 1 + (0+ShortSDS|ID) 
term against 1+ (1|ID).
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