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Abstract 

It has been a challenge for solving the motor imagery classification problem in the brain informatics area. Accu-
racy and efficiency are the major obstacles for motor imagery analysis in the past decades since the computational 
capability and algorithmic availability cannot satisfy complex brain signal analysis. In recent years, the rapid develop-
ment of machine learning (ML) methods has empowered people to tackle the motor imagery classification problem 
with more efficient methods. Among various ML methods, the Graph neural networks (GNNs) method has shown its 
efficiency and accuracy in dealing with inter-related complex networks. The use of GNN provides new possibilities for 
feature extraction from brain structure connection. In this paper, we proposed a new model called MCGNet+, which 
improves the performance of our previous model MutualGraphNet. In this latest model, the mutual information of the 
input columns forms the initial adjacency matrix for the cosine similarity calculation between columns to generate 
a new adjacency matrix in each iteration. The dynamic adjacency matrix combined with the spatial temporal graph 
convolution network (ST-GCN) has better performance than the unchanged matrix model. The experimental results 
indicate that MCGNet+ is robust enough to learn the interpretable features and outperforms the current state-of-the-
art methods.
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1  Introduction
Brain–computer interface (BCI) technology has drawn 
much attention globally due to its significant meaning 
and extensive applications [1]. It enables their users to 
interact with the machine through the brain signals [2], 
such as the task of converting the psychological imagina-
tion of motion into a command [3], which can be utilized 
to help people with disabilities as a rehabilitation device 
[4] and could be considered the only way for people 
with motor disabilities to communicate [5]. The motor 
imagery classification based on the features extracted 
from the EEG imagination data of moving the body parts 
without actual movement, but the feature extraction pro-
cess often relies heavily on prior knowledge to exclude 
certain features [6]. Consequently, more robust feature 

extraction techniques will continue to drive the develop-
ment of BCI technologies.

A typical brain–computer interface system consists of 
four main processes [7]: brain-electric raw data acqui-
sition, data preprocessing, feature extraction and fea-
ture classification. The previous studies show that the 
feature extraction and classification are two important 
phases, which determine whether the system is effec-
tive or not. The feature extraction process is designed 
to describe EEG signals by relevant values [8], and fea-
tures should contain the information embedded in the 
original EEG signals while filtering out the noise and 
other irrelevant information. The classification phase is 
critical because an efficient classifier can take advantage 
of as many extracted features as possible and greatly 
improve the accuracy of the classification. The motor 
imagery classification is an EEG-based task that focuses 
primarily on the feature extraction and classification, 
which have been studied extensively in previous work. 
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Some research highlights two most common types of 
features that include frequency band power features 
and time point features [9], both of which benefit from 
extracting zone after spatial filtering [10]. Principal 
component analysis (PCA) and independent compo-
nent analysis (ICA) are two classic unsupervised spatial 
filter methods [11], supervised spatial filters include the 
common spatial patterns (CSP) and filter bank common 
spatial patterns(FBCSP) [12]. In terms of the classifiers 
for motor imagery task, many state-of-the-art methods 
have been proven effective, such as linear discrimina-
tion analysis (LDA) and support vector machine (SVM) 
[13].

Nowadays, the deep learning methods have been effi-
ciently applied to various areas. Much recent work has 
explored the application of deep learning to EEG-based 
analytical tasks [14]. The deep learning methods improve 
the analytical efficiency and accuracy and provide end-
to-end learning for EEG-based tasks, such as sleep stage 
detection, anomaly detection, motor imagery classifica-
tion and so on [15]. In spite of the typical deep learning 
methods, such as convolution networks, can learn from 
the raw data without manual feature extraction, they still 
have some major limitations. For instance, typical deep 
learning methods require large datasets to train the mod-
els, which can be a disadvantage for EEG-based tasks 
because the collection of EEG data usually costs a lot. In 
addition, EEG datasets represent the unique characteris-
tics of an individual, and the data collected from differ-
ent areas of the brain. Therefore, the spatial connection 
between the EEG data cannot be ignored. However, exist-
ing methods including recent deep learning methods are 
unable to effectively learn the connections between dif-
ferent brain regions [16].

Graphs are the most appropriate data structure for 
brain connections; and graph neural networks (GNNs) 
has been shown to be effective in classifying graph struc-
tures [17]. The core idea of GNNs is to update each node’s 
embedding iteratively through aggregating the repre-
sentations of its neighbors and itself. The EEG channels 
could be represented as nodes in the graph and the con-
nections between the channels correspond to the edges 
of the graph, but the graph convolutional networks need 
adjacency matrix to be given in advance which is the rep-
resentation of the graph connection [18], so determining 
a suitable brain map structure is still a challenge due to 
the limitations of cognition of brain structure. And there 
are some methods that could be used to generate the 
adjacency matrix, we could utilize the position to calcu-
late the distance between the electrodes as the degree of 
correlation or utilize the features collected from the elec-
trodes to calculate the correlations. Moreover, the collec-
tion of EEG data is usually in chronological order, so in 

addition to spatial characteristics the temporal character-
istics also need to be taken into account.

In this paper, we proposed a novel model called MCG-
Net+ based on the our proposed MutualGraphNet, com-
bined the spatial–temporal filter and graph convolutional 
networks to learn the temporal and spatial characteris-
tics, which achieved robust performance on the motor 
imagery classification tasks. The contributions of this 
paper are as follows:

•	 The model could realize end-to-end learning. Fur-
thermore, the model is specially designed to adapt to 
the characteristics of EEG data, so it could be able to 
utilize the features to a great extent.

•	 For the first time, we use mutual information to gen-
erate the initial adjacency matrix and use cosine simi-
larity to update the adjacency matrix dynamically, 
and achieve better performance.

•	 Experimental results demonstrate that the newly 
proposed model has better performance than state-
of-the-art methods.

2 � Related work
A motor imagery classification task is of great signifi-
cance for people with disabilities. Numerous works 
have been done to improve classification performance. 
In earlier studies, traditional machine learning methods 
were commonly used for motor imagery classification 
task, such as support vector machine (SVM), K-Nearest-
Neighbor (KNN) and artificial neural network (ANN) are 
frequently used [19], but these traditional methods have 
limited performance on EEG-based classification tasks. 
Currently, the deep learning methods are utilized in EEG-
based classification tasks, Deep Belief Network (DBN) 
[20] was proposed to manually extract features from the 
channels then feed them into the network. Convolutional 
Neural Networks(CNN) could automatically learn fea-
tures from EEG data and perform better than DBN due 
to their regular structure and the degree of ambiguity of 
the translational structure [21]. Two CNN models were 
specially designed for motor imagery classification called 
Shallow ConvNets and Deep ConvNets [14], both of 
them have better performance than the state-of-the-art 
methods. Then another CNN model called EEGNet [15] 
was proposed, which utilizes the Depthwise and Separa-
ble convolutions to replace the traditional convolutions 
for the motor imagery task that have better performance 
than the ConvNets.

The CNN models can effectively extract the local 
patterns of data, but it can only be applied to the 
standard grid data [22], graph convolutional networks 
have been proven to have better performance on the 
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graph structure data. Much has been done to improve 
the performance of the graph convolutional networks. 
So far, GCNs have been applied in many fields, the 
spatial–temporal graph convolution network (ST-
GCN) [23] is proposed to learn the dynamic graphs 
for the human action recognition tasks, the spatiotem-
poral multi-graph convolution network (ST-MGCN) 
[24] is proposed for ride-hailing demand forecast 
which encodes the non-Euclidean correlations among 
regions into multiple graphs, GraphSleepNet [16] 
based on spatial–temporal convolution network (ST-
GCN) is proposed for automatic sleep stage classifica-
tion. When using GCNs, the connection relationship 
between each electrode need to be given as a prior 
knowledge, in other words, the adjacency needs to be 
calculated as input.

There are different methods that can be used to gen-
erate the adjacency matrix, the distance between two 
electrodes can be used directly to represent the degree 
of correlation between electrodes and there are many 
different vector distance calculation methods, such as 
the euclidean distance [25] which only need the physi-
cal position of the electrodes, the Chebyshev distance 
[26] is defined as the maximum difference between 
two vectors in any coordinate dimension, hamming 
distance, Manhattan distance and so on. Furthermore, 
we can use the correlations of vectors to determine 
the degree of relevance of the different channels, such 
as cosine similarity [27] that calculates the similarity 
relationship between the characteristics of different 
electrode channels, Pearson correlation that evaluates 
the linear relationship between two continuous vari-
ables, Spearman correlation that evaluates the mono-
tonic relationship between two continuous variables, 
Kendall correlation, Point-Biserial correlation and so 
on. Also, we could use some machine learning meth-
ods, such as the information gain [28] that evaluates 
the gain of each variable in the context of the target 
variable and mutual information is the name given to 
information gain when applied to variable selection 
that calculates the statistical dependence between two 
variables.

Motivated by the studies mentioned above, consider-
ing the graph structure and the dynamic spatial–tem-
poral characteristic of the EEG data as well as the graph 
structure of different motor imagery could be differ-
ent, the traditional GCNs models may not be optimal 
for EEG-based motor imagery classification task. Thus, 
we propose the novel model to best suit the character-
istics of EEG data which uses the mutual information to 
generate the initial adjacency matrix and use the cosine 
similarity to update the adjacency matrix after each 
iteration.

3 � Preliminaries
In this study, the EEG data could be defined as an undi-
rected graph G = (V ,E,A) , where V is a finite set of 
|V | = N  nodes and N represents the number of the EEG 
data channel; E is a set of edges, indicating the connec-
tivity between different channels; A represents the adja-
cency matrix of graph G. Figure 1 shows how the graph is 
generated from the EEG raw data.

The recorded EEG signals are divided into sev-
eral labeled segments called trials, the dth trial 
can be denoted as Xd = (x1t , x

2
t , ..., x

N
t )

F ∈ R
N×F  , 

where N denotes the number of the EEG elec-
trodes and F denotes the values of all nodes within 
the time steps t. The dataset can be described as 
D = (X1, y1), (X2, y2), ..., (XL, yL) , L denotes the num-
ber of the trials and y represents the label correspond-
ing to the trial, there are four motor imagery categories 
including left hand, right hand, feet and tongue, so the 

Fig. 1  The structure generation of EEG data, where the data at the 
range of time d forms a graph
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label can be denoted by 0–3, respectively. The goal of 
the task is to learn the mapping relationship between 
the EEG data and the motor imagery categories rep-
resented as labels and the problem can be defined as: 
given a input trial Xi ∈ R

N×F  , 0 < i < L identify the 
corresponding label yi.

4 � Methodology
The overall framework of the model proposed in this 
paper is presented in Fig.  2, it includes three main 
parts: feature extraction and adjacency matrix genera-
tion part, spatial–temporal attention part and spatial–
temporal graph convolution part. Spatial–temporal 
attention part puts more attention on the more valu-
able spatial–temporal information, then spatial–tem-
poral graph convolution part extracts both spatial and 
temporal features. And the complete algorithm can be 
seen as follows:

Algorithm 1 The process of motor imagery classification
Input: The input data X ∈ RN∗M , label Y ∈ {1, 2, 3, 4}.
Output: The corresponding classification ŷ.
1: Calculate the mutual information of the columns of X and get

the adjacency matrix A ∈ RN∗N .
2: repeat
3: Put the A and X in to the spatial-temporal attention block

and get the get the attention matrix S.
4: Put A,X, S into a GCN layer and get the embedding X̂ ∈

RN∗L.
5: Calculate the cosine similarity of the column of the embed-

ding, get a new matrix Â ∈ RN∗N .
6: Update the adjacency matrix A = Â and the input X = X̂.
7: until The repeat times are equal to the number of ST-layers.
8: Then the output ŷ = softmax(linear(X)).

4.1 � Adjacency matrix generation
4.1.1 � Relevance calculate methods
The relevance of different electrodes can be obtained 
through calculating the correlations or the information 
gain of the features of the electrodes, and in this paper we 
calculate the relevance of different electrodes over all the 
electrodes. The correlations of different channels can be 
represented by the distances of the channels. The euclid-
ean distance of the electrodes can be represented as:

The euclidean distance can be understood as the straight-
line distance between two points, but the electrodes are 
distributed on the surface of the cerebral cortex, so it is 
not suitable to directly express the relationships between 
the electrodes. The Chebyshev distance is defined as the 
maximum difference between two vectors in any coor-
dinate dimension, it is the maximum distance along an 
axis, and the Chebyshev distance of the electrodes can be 
denoted as:

The calculation of the distances of the electrodes only 
utilizes the positions of the electrodes, we can also use 
the features of the electrodes to obtain the correlations. 
The cosine similarity of two vector can be defined as:

However, the cosine similarity does not consider the 
magnitude of the vectors, but only consider the direc-
tions. The Jacquard index, also known as the intersection 
ratio and Jacquard similarity coefficient, can be used to 
compare the similarity and diversity of sample sets:

(1)ρ = ((x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2)1/2.

(2)ρ = max(|x2 − x1|, |y2 − y1|, |z2 − z1|).

(3)cos(x, y) =
x.y

�x��y�
.

Fig. 2  The overall structure of the proposed model consists of three 
parts: the feature extraction and the mutual information computation 
part, the spatial–temporal attention mechanism part and spatial–
temporal graph convolution part
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One of the main disadvantage of the Jacquard index is 
that it is greatly affected by the size of the data. Large 
datasets have a great impact on the index, because it can 
significantly increase the union while maintaining simi-
lar intersection. Moreover, we could use information gain 
between the feature vectors to obtain the degree of rel-
evance, information gain is calculated by comparing the 
entropy of the dataset before and after a transformation. 
The mutual information calculates the statistical depend-
ence between two variables and is the name given to 
information gain when applied to variables selection.

4.1.2 � Adjacency matrix update
In order to make full use of and adjust the input prior 
knowledge in time according to the embedding learned 
by GCNs, we use the mutual information to generate the 
initial adjacency matrix and use the cosine similarity to 
update the adjacency matrix during the training process.

Mutual information (MI) [29] is used to indicate 
whether there is a relationship between two variables and 
the strength of the relationship. The mutual information 
of two variables X and Y can be defined as:

Mutual information is related to entropy, which is the 
expected or mean value of the information of all varia-
bles. The entropy of X is defined as:

Then MI of X and Y can be computed by the equations:

where H(X, Y) is the joint entropy of X and Y, and H(Y|X) 
is the conditional entropy that X is given in advanced. 
Thus, I(X, Y) is the reduction in the uncertainty of the 
variable X by the knowledge of another variable Y, 

(4)J (x1, x2) =
|x1

⋂
x2|

|x1| + |x2| − |x1
⋂

x2|
.

(5)I(X ,Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
.

(6)

H(X) =
∑

x∈X

P(x)log
1

P(x)

= −
∑

x∈X

P(x)logP(x) = −ElogP(X).

(7)

I(X ,Y ) = H(X)+H(Y )−H(X ,Y )

= H(X)−H(X |Y ) = H(Y )−H(Y |X)

H(X ,Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log
1

p(x, y)
= −ElogP(X ,Y )

H(Y |X) =
∑

x∈X

∑

y∈Y

p(x)p(y|x)log
1

p(y|x)

= −ElogP(Y |X),

equivalently, it represents the amount of information that 
Y contains about X.

Considering the features of EEG data X = {x1, x2, ..., 
xN } ∈ R

N×F , we could compute the mutual information 
mij of xi , xj and use it as the weight of the connection 
of xi, xj , then we could generate a N × N  weight matrix 
which could be used as the input adjacency matrix of the 
graph convolution networks. In our proposed work [30], 
we kept the initial adjacency matrix unchanged during 
the training process. However, on embedding changes 
after each iteration, we update the adjacency matrix 
after each iteration synchronously to improve the perfor-
mance of the model. Here, we compute the cosine simi-
larity of two columns of the embedding as the weight of 
the adjacency matrix. The cosine distance of two vector 
x, y is defined as:

The updated weight can be defined as:

where the al+1
i,j  denotes the element of the ith row and jth 

column of the adjacency matrix at the l + 1th iteration, 
and eli , e

l
j represents the ith, jth column of the embedding 

at lth iteration. The process of generating and updating 
the adjacency matrix can be seen in Fig. 3.

4.2 � Spatial–temporal attention
The spatial–temporal attention mechanism could cap-
ture the dynamic spatial and temporal correlations of the 
motor imagery network. In the spatial dimension, the 
activities of one brain region has influence on other brain 
regions and generally different brain activities convey dif-
ferent information, so the dynamic spatial–temporal cap-
ture mechanism is required. We use a spatial attention 
mechanism [31], which could be represented as:

where S denotes the spatial attention matrix, which 
is computed by current layer. Vp, bp ∈ R

N×N , 
χ(r − 1) = (X1,X2, · · · ,XTr−1 ∈ R

N×Cr−1×Tr−1 Cr−1 is 
the number of channels of the input data in the rth layer. 
W1 ∈ R

Tr−1 ,W2 ∈ R
Cr−1×Tr−1 ,W3 ∈ R

Cr−1 , Si,j in S repre-
sents the correlation strength between node i and j, then 
a softmax function is used to normalize the attention 

(8)cos(x, y) =
x.y

�x��y�
.

(9)al+1
i,j =

eli .e
l
j

�eli��e
l
j�
,

(10)

S = Vp ∗ σ((χ
(r−1)W1)W2(W3χ

(r−1))T + bp),

S
′

i,j =
exp(Si,j)

N∑
j=1

exp(Si,j)

,
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weights. Combining the adjacency matrix and the spatial 
attention matrix, the model could adjust the impacting 
weights between nodes dynamically.

In the temporal dimension, there are correlations dur-
ing each motor imagery trial, such that the brain waves 
are transmitted in the cerebral cortex and the active areas 
of the brain will change over time, so the collected EEG 
data also changes over time. Therefore, a temporal atten-
tion is utilized to capture dynamic temporal information. 
The temporal attention mechanism is defined as:

where Ve, bq ∈ R
Tl−1×Tl−1 , M1 ∈ R

N ,M2 ∈ R
Cl−1×N , 

M3 ∈ R
Cl−1 , Em,n denotes the strength of the correlation 

between motor imagery network m, n, and E is normal-
ized by the softmax function, so the temporal attention 
matrix can be directly applied to the input.

4.3 � Spatial–temporal graph convolution
The spatial–temporal convolution consists of a graph 
convolution in the spatial dimension and a normal con-
volution in the temporal dimension, which could extract 
both the spatial features and the temporal features.

The spatial features are extracted by aggregating infor-
mation from neighbor nodes; we use graph convolution 
to extract the spatial features. The graph convolution is 
based on Laplacian matrix and Fourier transform, the 
graph Laplacian can be defined as:

(11)

E = Ve ∗ σ(((χ
(l−1))TM1)M2(M3χ

(l−1))+ bq),

E
′

m,n =
exp(Ei,j)

Tr−1∑
j=1

exp(Ei,j)

,

(12)L = I − D−1/2AD−1/2,

where A ∈ R
N×N is the adjacency matrix associated 

with the graph, D ∈ R
N×N is the diagonal degree matrix, 

I ∈ R
N×N is the identity matrix. L is a real symmetric 

positive semidefinite matrix, it can be decomposed as 
L = U�UT and � ∈ R

N×N is the diagonal matrix of 
eigenvalues that represent the frequencies of their asso-
ciated eigenvectors. Let x ∈ R

n be a signal defined on 
the vertices of a graph G, the graph Fourier transform of 
the signal is defined as x̂ = UTx . The graph convolution 
uses the linear operators that diagonalize in the Fourier 
domain to replace the classical convolution operator, the 
graph convolution can be defined as:

where θ is a vector of Fourier coefficients, gθ is the filter 
that could reduce the computational complexity, gθ can 
be approximated by a truncated expansion in the terms 
of Chebyshev polynomials [32]:

where k is the order of the Chebyshev polynomi-
als, θp ∈ R

k is the vector of Chebyshev coefficients, 
Tp(�̃) ∈ R

N×N is the Chebyshev polynomial of order k 
and �̃ = 2�/�max − I ranges in [−1, 1] . Then the jth out-
put feature can be calculated as:

where xi denotes the ith row of input matrix, Fin equals 
to the input dimension, the outputs are collected into 
a feature matrix Y = [y1, y2, . . . , yFout ] ∈ R

N×Fout . In 
this work, we generalize the above definition to the 
nodes with multiple channels, the lth layer’s input is 

(13)gθ (L)x = gθ (U�UT )x = Ugθ (�)UTx,

(14)gθ (�) =

k−1∑

p=0

θpTp(�̃),

(15)yi =

Fin∑

i=1

gθi,j(L)xi,

Fig. 3  The process of generating and updating the adjacency matrix
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X (l−1) = (x1, x2, . . . , x(Tl−1)) ∈ R
N×Cl−1×Tl−1 , C(l−1) 

denotes the channel’s number and Tl−1 denotes the lth 
layer’s temporal dimension.

After the graph convolution having captured the 
neighboring information for each node in the spatial 
dimension, a standard convolution layer is used in the 
temporal dimension, we use a standard two-dimension 
convolution layer to extract the temporal information, 
the rth convolution layer could be defined as:

where � is the parameter of the temporal dimension con-
volution kernel, and ∗ represents the convolution opera-
tion, ReLU is the activation function.

5 � Experiment
In order to evaluate the effectiveness of our model, we 
carried out the comparative experiments on a public 
dataset BCI Competition IV dataset 2a(SMR) for motor 
imagery task.

5.1 � Dataset description
The BCI Competition IV dataset 2a consists of EEG data 
from nine subjects, there are two sessions recorded, one 
for training and the other one for testing. Each session 
includes 288 trials, which are recorded with 22 EEG elec-
trodes and 3 electrooculogram channels, we only utilize 
22 EEG channels in this experiment and the distribution 
of the EEG electrodes can be seen in Fig. 4. There are four 
types of labels in this dataset, corresponding to move-
ments of the left hand, right hand, feet and tongue.

The original dataset is sampled at 250  Hz and band-
pass-filtered between 0.5  Hz and 100  Hz, and we 
low-pass filter the dataset to 4–40 Hz. Also in our experi-
ment, we set the length of each trial to 4.5 s which starts 
from 500  ms before the start cue of each trial until to 
the end cue, then we extract 11 differential entropy fea-
tures (DE) for each channel and double fold the features 
to make it have the same shape as the adjacency matrix, 
and combine the two as the input of the graph convolu-
tional network, then we standard scale the data to make 
it suitable for the machine learning model. To show the 
effectiveness of our proposed model learning from the 
raw data and ensure the model could be used for wider 
range of tasks, the raw EEG data have not undergone 
more preprocessing.

5.2 � Experiment settings
We compare our model with some state-of-the-art meth-
ods as well as the proposed MutualGraphNet, the base-
line methods are listed as follows: 

(16)χ
(r)
h = ReLU(� ∗ (ReLU(gθ ∗ Gχ̂

(r−1)
h ))),

1.	 Filter Bank Common Spatial Patterns (FBCSP) [12]: 
it extracted the band power features of EEG, then use 
the features to train the classifier to predict the labels.

2.	 Shallow ConvNet [14]: an end-to-end learn method, 
which uses convolutional networks to do all the com-
putations.

3.	 Deep ConvNet [14]: it has more convolution-pooling 
blocks and is much deeper than Shallow ConvNet.

4.	 EEGNet [15]: it uses the depthwise and separable 
convolution and has two convolution-pooling blocks.

In addition to the above baseline methods, we also con-
ducted a comparison between the proposed method in 
this paper and the traditional machine learning methods 
including support vector machine (SVM) [33] and ran-
dom forest (RF) [34].

In order to prove that the model can effectively extract 
features and has the ability to eliminate the influence of 
individual differences, we no longer conduct experiments 
on each subject separately, we mixed the experimental 
data of nine subjects, and a total 2592 training trials and 
2592 testing trials, and we use fourfold cross-validation 
to evaluate the performance. Since the training set is not 
big enough, in order to reduce the impact of over-fitting, 
we adopt a loss flooding strategy [35] during the training 
process, which is defined as: R̃(g) = |R̃(g)− b| + b and 
R̃(g) is the loss of the model, b is a constant called loss 
flooding level, here we set b as 0.5. All these experiments 
are performed on a single Nvidia RTX3090 32GB GPU 
and the hyper-parameters are shown in Table 1.

As for the baseline methods, in order to evaluate the 
performance of the models more reasonably, we use 
250 Hz sampling 4.5 s EEG data for all experiments. Since 

Fig. 4  The distribution of the electrodes in 3D space
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that the EEGNet [15] used the 128 Hz resampled data to 
conduct experiment in the original paper, so we double 
the lengths of temporal kernels and average pooling size 
of the original model for double sampling rate to better 
adapt the input which proven to have better performance 
than the original model. In response to changes in the 
length of the sampling time, we also adjusted the param-
eters of each model accordingly, conducted experiments 
and selected the best model performance. The training 
parameters of other baseline methods are the same as in 
the paper [15].

5.3 � Results and discussion
We compare our model with the six baseline methods 
on SMR, we use the accuracy, F1-score and precision as 
the evaluation metrics to evaluate the performance of the 
models. Table  2 shows the performance of the different 
models on the SMR dataset, the results show that our 
model performs better compared to the other baseline 
methods and the proposed MutulaGraphNet.

For the traditional methods, the random tree (RF) has 
better performance than the support vector machine 
(SVM), but both of them are not good enough. The 
FBCSP cannot extract and utilize complex features in 

multi-subject tasks [36], though it has good performance 
in single-subject tasks. And the results show that the 
traditional machine learning methods cannot learn the 
complex features well, the deep learning models EEG-
Net and ShallowConvNet all outperform the traditional 
methods which demonstrate the effectiveness of deep 
convolutional neural networks for EEG-based classifica-
tion tasks. However, the performance of DeepConvNet 
demonstrates that the deeper convolutional network 
does not work better. The values in bold shown in Table 2 
indicate that our model (MCGNet) outperforms conven-
tional methods in accuracy, F1-score and precision.

In order to evaluate the effect of the depth of network, 
we study the impact of the layers of ST-GCN in Fig.  5. 
The horizontal axis in Fig. 5 represents the layers of ST-
GCN and the vertical axis represents the correspond-
ing performance of the model. The results show that the 
MCGNet+ with more ST-GCN layers does not work bet-
ter; the best performance is achieved with 4 layers and 
with the increasing number of layers the performance 
gets worse. That is because the increase in the number of 
layers leads to an increase in training parameters, but the 
training dataset is too small to train the model with more 
parameters.

In this paper, we extract differential entropy (DE) fea-
ture as the input of the model, and in EEG-based tasks 
there are other five different features [37]: power spectral 
density (PSD), differential asymmetry (DASM), rational 
asymmetry (RASM), asymmetry (ASM) and differential 
caudality (DACU) features from EEG. The DASM and 
RASM can be expressed as:

(17)DASM = DE(Xleft)− DE(Xright),

(18)RASM = DE(Xleft)/DE(Xright).

Table 1  The hyper-parameters of the model and their 
corresponding values

Hyperparameter Value

Learning rate 9.6e–4

Learning rate decay 0

Dropout rate 0.5

Optimizer Adam

L1, L2 regularization 0.002, 0.001

Training epochs 500

Batchsize 32

Chebyshev polynomial 2

Table 2  The performance comparison of the state-of-the-art 
approaches on the SMR dataset

Model Accuracy F1-score Precision

SVM 0.3488 0.3485 0.3486

Deep ConvNet 0.3507 0.3191 0.4148

FBCSP 0.3511 0.3366 0.3714

RF 0.4008 0.3996 0.4004

EEGNet 0.4616 0.4838 0.5095

Shallow ConvNet 0.4857 0.4789 0.4978

MutualGraphNet (ours) 0.5190 0.5175 0.5208

MCGNet+ (ours) 0.5227 0.5239 0.5278
Fig. 5  Performance of the proposed model with different ST-GCN 
layers
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ASM features are the direct concatenation of DASM 
and RASM features. DCAU features are the difference 
between DE features of frontal–posterior electrodes, 
which can be defined as:

We also evaluate the performance of our models on these 
features. All the experiments are performed with fourfold 
cross-validation and the training settings are the same as 
above.

The results are presented in Table 3, the PSD feature 
still has the worst performance and the DE feature out-
performs the other features. The DCAU feature also 
achieves comparable performance, but ASDM and 
DSAM feature contain less information which leads to 
limited performance. All the features have better per-
formance with the new model, which indicated the 
effectiveness of the newly proposed method. Moreover, 
the results indicate that there exists some kind asym-
metry of the brain which has discriminative infor-
mation and our knowledge of the human brain is still 
very limited, the deeper understanding of brain is still 
required to obtain more effective and valuable infor-
mation from EEG data.  The values in bold shown in 
Table  3  indicate that DE feature in both  our models 
(MCGNet and  MutualGraphNet)  outperforms other 
features  in accuracy, F1-score and precision. The new 
approach is compared with the several different adja-
cency matrixes that we designed: 

1.	 KNN: for each channel, select the nearest N channels 
to establish a connection.

2.	 The Euclidean distance(ED): according to the actual 
distance of each electrode on the brain, select adja-
cent points to establish a connection.

(19)DCAU = DE(Xfrontal)− DE(Xposterior).

3.	 Random: randomly select channels and establish 
connections between channels.

4.	 Mut_Euclidean : use the Euclidean distance to estab-
lish connections and calculate the mutual informa-
tion.

5.	 Mut_KNN: use KNN to establish connections and 
calculate mutual information between connected 
channels.

6.	 Mut_ED: use the Euclidean distance to confirm con-
nection and calculate mutual information between 
connected channels.

The results of classification with different kinds of adja-
cency matrix are shown in Fig. 6.

It can be seen that the MI_cos adjacency matrix has 
better performance than the MI adjacency matrix, Mul_
KNN and Mul_ED are better than KNN and ED which 
means that mutual information could provide valu-
able information for ST-GCN. Furthermore, the adja-
cency matrix surely could effect the performance of 
classification.

6 � Conclusion
In this paper, we improve the original model for motor 
imagery classification task based on our previous work 
[30]. Instead of using the stable adjacency matrix, we cal-
culate the cosine similarity of the columns of the embed-
ding to generate the dynamic adjacency matrix. The main 
advantage of the new model is that it could adjust the 
input matrix during the training process to utilize the 
features fully. The experiment results demonstrate that 
the new model outperforms the state-of-the-art methods 
as well as our previous model. Furthermore, the adja-
cency matrix has much more impact on the performance 
of the GCNs, and more suitable adjacency matrix can still 
be explored.

The current understanding on brain mechanisms is 
still limited, more influencing factors will be taken into 

Table 3  The performance of models for different features

Model Feature Accuracy F1-score Precision

MCGNet+ PSD 0.2716 0.2695 0.2726

DSAM 0.4124 0.4049 0.4052

ASM 0.4039 0.3842 0.3877

ASDM 0.3973 0.3881 0.3881

DCAU​ 0.4375 0.4381 0.4435

DE 0.5227 0.5239 0.5278
MutualGraphNet PSD 0.2604 0.2286 0.2595

DSAM 0.3646 0.3523 0.3541

ASM 0.3815 0.3820 0.3879

ASDM 0.3811 0.3777 0.3764

DCAU​ 0.4162 0.4144 0.4191

DE 0.5190 0.5175 0.5208

Fig. 6  The performance of the proposed model with different kinds 
of adjacency matrix. RD represents the random, ED represents the 
Euclidean distance, ME represents Mut_Euclidean, MK denotes the 
Mut_KNN, MI denotes Mutual Information and MC denotes Mutual_
Cos
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account to further improve the forecasting accuracy. 
Moreover, motor imagery EEG data present individual 
differences, such as FBCSP has different performances 
when experimenting with EEG data that from different 
subjects, and it can achieve good results when using the 
same subject’s data for training and testing, but it does 
not perform well in mixed data of multiple subjects. 
Individual differences also affected the development of 
solutions for the classification task of motor imagery. 
How to eliminate individual differences and extract val-
uable features is still key for wider application of EEG-
based tasks. Some current transfer learning methods 
may be deployed to eliminate individual differences and 
further expand the scope of EEG applications.
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