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Abstract 

Electrical recordings of neural mass activity, such as local field potentials (LFPs) and electroencephalograms (EEGs), 
have been instrumental in studying brain function. However, these aggregate signals lack cellular resolution and thus 
are not easy to be interpreted directly in terms of parameters of neural microcircuits. Developing tools for a reliable 
estimation of key neural parameters from these signals, such as the interaction between excitation and inhibition or 
the level of neuromodulation, is important for both neuroscientific and clinical applications. Over the years, we have 
developed tools based on neural network modeling and computational analysis of empirical data to estimate neural 
parameters from aggregate neural signals. This review article gives an overview of the main computational tools that 
we have developed and employed to invert LFPs and EEGs in terms of circuit-level neural phenomena, and outlines 
future challenges and directions for future research.
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1  Introduction
Neural activity is often recorded at the level of aggregate 
electrical signals. These signals are recorded invasively 
in animals (for example, local field potentials, LFPs, and 
electrocorticograms, ECoGs [1, 2]) or non-invasively 
in humans (for example, electroencephalograms, EEG, 
and magnetoencephalograms, MEG [1, 3–5]). These 
different aggregate brain signals largely share the same 
neural sources and have major applications in both sci-
entific research and clinical diagnosis. They are easy to 
record, capture many circuit-level aggregate phenom-
ena, including key synaptic integrative signals at different 

organization levels from mesoscopic to macroscopic 
brain scales, and can reveal oscillatory activity over a 
wide range of frequencies [1, 2, 6–9]. However, neural 
aggregate signals are more difficult to interpret than spik-
ing activity of individual neurons, because they conflate 
and add together contributions from many complex neu-
ral processes [1, 2, 6–8]. It is therefore notoriously diffi-
cult to link them to individual neural circuit features. For 
example, we still cannot interpret simple modulations of 
EEG/LFP features, such as a change in LFP or EEG oscil-
latory power, in terms of excitation, inhibition, and their 
interaction. This hinders us from understanding cognitive 
computations in humans and animals, understanding the 
neural underpinnings of brain disorders, and developing 
effective interventions. Being able to separate contribu-
tions of different neural phenomena to LFPs or EEGs, 
and to quantify how neural parameters change with 
manipulations of neural circuits or in brain disorders, 
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will enhance our understanding of how best to use LFPs 
or EEGs to study brain function and dysfunction.

Over the years, we have developed numerous compu-
tational tools to address this challenge. Our approach 
includes advanced methods to identify meaningful bands 
in the frequency domain in neural recordings, neural 
network models to predict key neural phenomena, and 
computationally guided perturbations of neural activity 
to causally validate model predictions. This paper sum-
marizes progress achieved by our lab in the interpreta-
tion of aggregate electrical signals and introduces new 
directions and challenges for future research in this field. 
Since this is an extended review of our work presented 
as Plenary Talk at the 14th International Conference on 
Brain Informatics BI 2021 [10], here we have principally 
focused on describing the computational methods and 
the results coming from our own Laboratory. We would 
like, though, to remind the readers of the large number of 
very important contributions in this field made by many 
other authors, summarized in recent important reviews 
[1, 2, 5, 11, 12].

2 � Cortical oscillations and their role in neural 
computation

Much of our work has been aimed at understanding the 
neural mechanisms and functions for information pro-
cessing of brain oscillations captured by LFPs and EEGs. 
We thus briefly describe some basic features of neural 
oscillatory activity that are relevant for our review.

Aggregate electrical signals recorded in the cerebral 
cortex often display prominent oscillatory activity. A 
large bulk of evidence shows that oscillations seen in 
neural activity are not simply an epiphenomenon, but are 
a core mechanism in a variety of cognitive, sensory and 
information transmission functions [4, 13–24]. Synchro-
nization of neuronal oscillations at different frequencies 
is a pervasive feature of neuronal activity and is thought 
to facilitate the transmission and integration of infor-
mation in the cerebral cortex. Neural aggregate signals 
have been thus decomposed and interpreted in the fre-
quency domain [1, 6, 8]. Traditionally, neural oscillations 
have been divided into canonical frequency bands such 
as the widely used delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–12  Hz), beta (15–30  Hz) and gamma (30–100  Hz) 
bands. Associations robustly found between band-lim-
ited power signals and distinct behavioral states or sen-
sory inputs strongly support the validity of this approach 
[6, 23, 25–27].

Gamma-band oscillations have received much atten-
tion in the last few decades [13–15, 20, 21, 24, 28]. There 
is a general acceptance that gamma oscillations reflect 
the interaction between excitation and inhibition in local 
cortical circuits [20, 21, 29–31]. The power of gamma 

oscillation encodes information about sensory stimuli, 
motor and cognitive variables [4, 23, 24, 32–40]. It has 
been shown that gamma oscillations are also implicated 
in facilitating or modulating inter-areal or within-area 
communication [4, 18, 21, 41–46]. Moreover, and of 
particular importance for the interpretation of neu-
roimaging experiments in humans, the gamma band 
is the frequency band that correlates the most with the 
functional magnetic resonance imaging (fMRI) signal 
[47, 48]. The slower theta, alpha and beta rhythms have 
been involved in many cognitive functions. These slower 
oscillations have been proposed to mediate top-down 
perceptual decision processes, encoded in long-range 
cortical inputs, which could also interact with gamma-
band synchronization [4, 20, 24, 49]. Thus, several cor-
tical rhythms coexist in the cerebral cortex, which are 
often nested into each other and cooperate to shape brain 
functions and neuronal information processing [20].

3 � Analytical methods to identify regions 
of the frequency spectrum capturing different 
neural phenomena of interest

Numerous studies have characterized the role of the dif-
ferent frequency bands in brain function. However, the 
individuation and definitions of the exact boundaries of 
individual frequency bands are often largely arbitrary, 
based on heuristic criteria and vary substantially between 
studies [2]. Thus, a first major problem when trying to 
infer neural mechanisms from aggregate signals is to pro-
vide an objective approach to separate aggregate neural 
signals into different bands each reflecting a different 
neural phenomenon, and to establish a correspondence 
between specific frequency regions of the LFP or EEG 
power spectrum and the underlying neural mechanisms.

One difficulty in this endeavor is that the average neu-
ral power spectrum (over either time epochs or trials) 
of a typical recording (see Fig. 1A for an example of LFP 
recordings in visual cortex during naturalistic stimula-
tion) is dominated by a power-law aperiodic component 
and often lacks easily identifiable oscillatory peaks [23, 
50]. This could lead us to think that there is no distinc-
tive structure in the power spectrum and, thus, there 
is no possibility for a clear and objective separation in 
frequency bands. However, the average spectrum may 
mask individual variations that correspond to different 
processing modalities or functions, especially for com-
plex tasks or during stimulation with naturalistic sensory 
stimuli.

To capture how individual Fourier frequencies vary 
their power over time in relation to stimulus variations, 
we developed an information theoretic algorithm (illus-
trated in Fig. 2) that quantifies the amount of information 
about each possible stimulus that is carried by the LFP 
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power at a given frequency [40]. The theoretical founda-
tions of information theory (see [51, 52]) demonstrate 
that mutual information is the best measure to capture 
all possible ways in which a neural signal can carry infor-
mation about any sensory variable of interest. To create 
the stimulus set, we divided the presentation time of the 
movie into different time windows (Fig.  2A), each con-
sidered a different stimulus s (in other words, a different 
movie scene). We computed the information between 

the stimulus window in the movie s that was being pre-
sented and the power of the LFP at a given frequency f  , 
as follows:

where P(s) is the probability of presentation of the 
stimulus window s (here, this is the inverse of the total 
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Fig. 1  Comparison of power and information spectra. Data were taken from primary visual cortex of anaesthetized macaques during stimulation 
with naturalistic movies. A Power spectrum. B Information conveyed by power spectrum. Recomputed from data first published in [23, 48]
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Fig. 2  Illustration of computation of the mutual information carried by LFP power about movie scenes. A Simulation of single-trial LFP power in 
the gamma band (from 70 to 80 Hz) using a sparsely connected recurrent network of excitatory and inhibitory neurons [40]. To simulate periods of 
low and high LFP power, which approximate the different movie scenes used in the original publication [40], we modulated the external input rate 
of the model by superposition of a sine wave with frequency 1 Hz and a constant rate signal. The spectrogram was computed over half a cycle of 
the sinusoid. Every time window of the spectrogram was considered a different scene s ( s1 and s2 are a period of low and high LFP gamma power, 
respectively). Thus, the probability of each scene P(s) is the inverse of the number of time windows. B Probability distribution P(r) of the LFP gamma 
power across all trials and scenes. Probability distribution P(r|s) of the LFP gamma power across all trials given the presented scenes s1 (C) and s2 (D)
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number of time windows in which we divided the movie 
sequence), P

(

rf |s
)

 is the probability of observing a power 
rf  at a frequency f  in response to the stimulus s in a sin-
gle trial (Fig.  2C and D), and P

(

rf
)

 is the probability of 
observing the power rf  across all trials in response to any 
stimulus (Fig. 2B).

To facilitate the sampling of response probabilities, the 
space of power values at each frequency was binned [23]. 
Information is non-negative and quantifies the average 
reduction of the uncertainty about the stimulus that can 
be gained from observing a single-trial neural response. 
We measured it in units of bits, one bit corresponding to 
a reduction of uncertainty by a factor of two. Importantly, 
the quantification of information based on the division 
of the movie into stimulus windows or scenes without 
defining which visual feature (e.g., contrast, orientation, 
etc.) is represented in each movie frame allowed us to 
capture all information about any possible visual features 
(including both static image features and their variation 
from frame to frame) present in the movie.

The information spectrum computed for V1 data dur-
ing naturalistic stimulation showed a clear structure 
that was invisible in the average spectrum: there were 
only two bands that carried stimulus information, a low-
frequency (1–8  Hz) and a high-frequency gamma band 
(60–100  Hz), whereas middle frequencies carried lit-
tle information (Fig. 1B). It is important to note that the 
gamma band has been traditionally implicated in the 
coding of information about specific visual features, such 
as orientation or contrast of a visual input [35, 37]. The 
low-frequency band, to our knowledge, was not impli-
cated in the coding of visual information in V1 by any 
previous study. This discovery of an extra information 
channel not considered before was in our view enabled 
by two key features. First, from an experimental point 
of view, it was crucial to use a complex dynamics visual 
stimulus (a movie) that included not only a rich variety 
of image features from one frame to the next, but also a 
rich variety of naturalistic temporal dynamics of those 
features. Second, from a computational point of view, we 
used a formalism that accounted for all possible sources 
of information, and, in this way, allowed us to identify the 
sources of coding of information and neural pathways 
not considered before. This gives us an example of the 
potential of using an information theoretic analysis for 
discovering channels that carry different kinds of neural 
information and thus need to be included in models as 
partly different neural pathways.

Extending the information theory approach to the 
multivariate case of information carried by pairs of fre-
quencies (see [53]) allowed us to characterize specific 
regions of the information spectrum as belonging to only 
one or multiple bands. This partition into functionally 

meaningful bands can be achieved very precisely (and 
even to the point of individuating the optimal frequency 
values determining the boundaries between different 
bands) by quantifying patterns of redundancy or inde-
pendence between the information carried by different 
frequencies [48]. For example, if the information car-
ried by one frequency is independent of amplitude vari-
ations in another frequency, then these two frequencies 
probably capture different neural contributions to the 
LFP. If the two frequencies carry redundant information 
instead, they likely originate from common neural phe-
nomena. Application of this approach to visual cortical 
data has revealed three different functional bands in the 
information spectrum [23]. Frequencies in the gamma 
(60–100  Hz) range exhibited high visual information 
and had large redundancy among them, indicating that 
neural responses at these frequencies have a common 
component that is stimulus-driven. The same applies to 
low frequencies (1–8  Hz), where there was high redun-
dancy between frequencies. Importantly, low and high-
frequency frequencies carried independent information, 
indicating that they act as independent visual informa-
tion channels and probably originate from separate neu-
ral processes.

Finally, frequencies between 15 and 38  Hz exhibited 
high correlations between them but not with stimulus 
information. Based only on these results of the informa-
tion theoretic analysis, we hypothesized that signals in 
this middle frequency range are generated by a common 
process unrelated to the visual stimuli—for example, a 
neuromodulatory input [23]. We will discuss in the Sec-
tion “Perturbation experiments guided by predictions of 
computational models to study the effect of neuromodu-
lation on cortical oscillations” how this hypothesis could 
be tested causally by pharmacological intervention.

Importantly, the principles of information theory 
can be used to understand not only how information is 
encoded in the oscillatory power or phase of each fre-
quency band, but also how activity in different bands is 
involved in transmission of information across different 
neural populations. We used the same recordings of LFP 
activity in macaque V1 during natural movie stimula-
tion discussed above. Our information theoretic meth-
ods (in particular, directed measures of information 
transfer such as transfer entropy) allowed us to investi-
gate how oscillations of cortical activity in the gamma 
frequency band may influence dynamically the direction 
and strength of information flow across different groups 
of neurons. We found that the local phase of gamma-
band rhythmic activity exerted a stimulus-modulated 
and spatially asymmetric directed effect on the firing rate 
of spatially separated populations within the primary 
visual cortex [45]. The relationships between gamma 
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phases at different sites could be described as a stimu-
lus-modulated gamma-band wave propagating along the 
spatial directions with the maximal flow of information 
transmitted between neural populations. We observed 
that gamma waves changed direction during presenta-
tion of different movie scenes, and when this occurred, 
the strength of information flow in the direction of the 
gamma wave propagation was transiently reinforced. 
Given that travelling gamma waves indicated the direc-
tion of causation in neural activity, we hypothesized that 
these shifts were associated to a propagation of gamma 
oscillations along the horizontal connections of V1. Inter-
estingly, we found support for this hypothesis from the 
fact that the properties of gamma waves were compat-
ible with known physiological and anatomical properties 
of lateral connectivity. First, travelling gamma waves had 
an average propagation speed (approximately 364 cm/s) 
that was similar in magnitude to the signal propagation 
speed along axons of excitatory horizontal connections 
reported in the literature [54–57]. Second, information 
transfer mediated by gamma waves was quantitatively 
stronger among pairs with similar orientation preference, 
compatible with the finding that horizontal connections 
are more likely among populations with similar orienta-
tion preferences [58–60]. These effects were specific to 
the gamma band and were not found in other low-fre-
quency bands [45]. These results suggest that traveling 
gamma waves mark and causally mediate the dynamic 
reconfiguration of functional connections and the trans-
fer of visual information within V1 [45].

Together, these examples show the power of informa-
tion theoretic approaches to interpret individual frequen-
cies in terms of variations with stimuli or behavioral state 
and to identify a minimal set of meaningful bands whose 
origin can then be investigated with the aid of computa-
tional models and perturbation experiments, as we illus-
trate in the next sections.

4 � Mathematical modeling of neural network 
dynamics

4.1 � Neural network models to identify neural mechanisms 
for information encoding

The above information theoretic analysis individuated 
two frequency bands that were shown to carry different 
channels of visual information. The question that arises 
is what neural circuit mechanisms are expressed by each 
band. To address this question, we developed a formalism 
based on fitting recurrent network models of interacting 
excitatory and inhibitory point neurons (Fig. 3A) to data. 
These models reduce the morphology of neurons to a sin-
gle point in space and their dynamics are described by a 
set of coupled differential equations that can be solved 
efficiently numerically and often also analytically. Despite 
their simplicity, these models have been widely used to 
describe important properties of cortical microcircuits 
[61], such as sensory information coding [40, 62], work-
ing memory [63, 64], attention [65] or sleep slow waves 
[66]. In particular, we developed a recurrent network 
model of leaky integrate-and-fire (LIF) neuronal popu-
lations composed of 5000 neurons. Consistent with the 

EEG
ERWS1
ERWS2

A CB

Fig. 3  A Recurrent inhibitory–excitatory (I–E) network of LIF point neurons. Excitatory and inhibitory neurons receive two different types of external 
inputs: a sensory-driven input and a cortico-cortical input. B Network of multicompartment neuron models used in the hybrid modeling approach 
[72, 73] to compute the ground-truth EEG signal. C Raster plots of spiking activity (top panels) of the LIF network model for the asynchronous 
irregular (AI), synchronous irregular (SI) and synchronous regular (SR) network states. Comparison between ground-truth EEGs and outputs of the 
current-based ERWS1 and ERWS2 proxies (bottom panels)
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ratio of excitatory and inhibitory neurons found in the 
cerebral cortex, 4000 neurons were excitatory (i.e., their 
projections onto other neurons formed AMPA-like excit-
atory synapses) and 1000 inhibitory (i.e., their projections 
formed GABA-like synapses), randomly connected with 
a connection probability between each pair of neurons 
of 0.2. All neurons in the model receive external inputs 
(both a sensory-driven thalamic input and a noisy intra-
cortical input) to predict some key aspects of neural 
activity in primary visual cortex during naturalistic visual 
stimulation and spontaneous activity [40, 62, 67].

Specifically, in ref. [40, 62], we found that by studying 
this simulated network we could capture the translation 
rules between stimulus dynamics and LFP frequency 
bands. Confirming theoretical results that showed that 
gamma power in a recurrent network tends to increase 
with the strength of the input to the network [30], we 
found that the network encoded the overall strength 
of the input into the power of gamma-band oscilla-
tions generated by inhibitory–excitatory neural interac-
tions. In addition, we found that the network encoded 
slow dynamic features of the input into slow LFP fluc-
tuations mediated (through entrainment to the inputs) 
by stimulus–neural interactions. Thus, our recurrent 
network model could provide evidence for the dual 
encoding of information in both the low-frequency infor-
mation channel (carrying temporal information of the 
dynamics of sensory-driven thalamic inputs) and the 
gamma-band information channel (reflecting excitatory 
inhibitory interactions modulated by the strength of tha-
lamic inputs). Interestingly, the model also reproduced 
other higher order features of the dynamics of visual cor-
tex, including the independence of the information car-
ried by low- and high-frequency information channels 
when using naturalistic visual stimuli [23], and the cross-
frequency coupling between the EEG delta-band phase 
and gamma-band amplitude [67].

However, our model [40, 62, 67] could not reproduce 
the excess in power and the strong within-band correla-
tions observed in real data for the mid-range (19–38 Hz) 
band in visual cortex [23]. Our model did not include 
changes in neural activity induced by neuromodulation, 
further corroborating the idea that stimulus-independ-
ent neuromodulatory factors are needed to model the 
dynamics of this mid-range band.

4.2 � Realistic computation of field potentials 
from point‑neuron network models

The above studies compared qualitatively and quantita-
tively information patterns in neural network models and 
real data to make inferences about which neural pathway 
contribute to each frequency band. As demonstrated in 
ref. [30], this question can be addressed even without 

having to compute a realistic LFP or EEG from the net-
work models, because basic oscillation properties of the 
network can be observed both at the level of spiking 
activity of neurons and at the level of aggregate signals.

We have then begun to investigate the more difficult 
problem of trying to measure, or to infer, the precise 
value of microscopic neural parameters, such as the 
activity of individual classes of neurons within a network, 
from aggregate activity measures such as EEG or LFP. To 
obtain a more precise estimation of network parameters, 
it is necessary to compute a realistic LFP or EEG from 
these network models of point neurons. However, these 
neuron models lack a spatial structure, which prevents 
modelers from being able to compute the spatially sepa-
rated transmembrane currents that are necessary to gen-
erate LFPs and EEGs in real biological networks.

In our initial studies [40, 62, 67], we estimated the LFP 
and EEG based on the sum of absolute values of synap-
tic currents from simulation of the network model. Other 
studies have proposed different approaches to compute 
extracellular potentials using other variables of the simu-
lation, such as the average membrane potentials [66, 68], 
the average firing rate [30, 69] or the sum of all synaptic 
currents [70, 71].

We then evaluated systematically [72, 73] the limita-
tions and caveats of using such ad hoc simplifications 
to estimate the LFP or EEG from neuron models with-
out spatial structure (i.e., point-neuron models). We 
compared how well different approximations of field 
potentials (termed proxies) proposed in the literature 
reconstructed a ground-truth signal obtained by means 
of the hybrid modeling approach [72, 74] (Fig. 3B). This 
approach includes a network of unconnected multicom-
partment neuron models with realistic three-dimensional 
(3D) spatial morphologies. Each multicompartment neu-
ron is randomly assigned to a unique neuron in the net-
work of point neurons and receives the same input spikes 
of the equivalent point neuron. Since the multicompart-
ment neurons are not connected to each other, they are 
not involved in the network dynamics and their only role 
is to transform the spiking activity of the point-neuron 
network into a realistic estimate of the LFP or EEG that 
is used as the ground-truth signal against which we com-
pared different candidate proxies (Fig. 3C).

We found that a specific weighted sum of synaptic 
currents from the point-neuron network model, for a 
specific network state (i.e., asynchronous irregular), per-
formed remarkably well in predicting the LFP [72]. We 
then extended our study to the EEG [73] by including a 
head model that approximated the different geometries 
and electrical conductivities of the head necessary for 
computing a realistic EEG signal recorded by scalp elec-
trodes. We chose the four-layered spherical head model 
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[75, 76] that included different layers that represented the 
brain tissue, cerebrospinal fluid (CSF), skull, and scalp.

We also validated our EEG proxies across the reper-
toire of network states displayed by recurrent network 
models [30, 77], namely the asynchronous irregular (AI), 
synchronous irregular (SI), and synchronous regular 
(SR) (Fig.  3C). The states generated by the LIF neuron 
network were produced by systematically varying across 
simulations the firing rate of the thalamic input ( υ0 ) and 
the relative strength between inhibitory and excitatory 
synapses ( g = gI/gE ). The validation of our proxies for a 
wide range of values of g and υ0 is important to solve the 
inverse modeling approach and to ensure that our prox-
ies can be used to robustly predict these network param-
eters from the varied shapes of experimentally recorded 
EEGs (see Sect. 4.3).

We found that a new class of linear EEG proxies, based 
on a weighted sum of synaptic currents, outperformed 
previous approaches and worked well under a wide range 
of network configurations with different cell morpholo-
gies, distributions of presynaptic inputs and positions of 
the EEG electrode. We also evaluated whether our prox-
ies could perform well when combined with a more com-
plex and anatomically detailed human head model: the 
New York head model [78], which takes into account the 
folded cortical surface of the human brain. The EEG top-
ographic maps calculated by applying our proxies to the 
New York head model correctly predicted time traces of 
the EEG signal at different electrode positions.

4.3 � Changes in excitation–inhibition (E/I) balance 
in simulated neural aggregate signals

Our realistic estimations of aggregate signals from simple 
point-neuron networks allowed us to invert and use these 
models to estimate some neural parameters of circuit 
activity that are not directly accessible from the EEG and 
LFP. For example, we considered how we could use net-
work models to estimate from such recordings the ratio 
between excitation and inhibition. The theory of neural 
network models [30] and the empirical electrophysiologi-
cal data have reported that the E/I ratio has profound 
effects on the spectral shape of neural activity. Its imbal-
ance has been implicated in neuropsychiatric condi-
tions, including Autism Spectrum Disorder. In ref. [79], 
we investigated different biomarkers computed on the 
power spectrum of LFPs and fMRI blood oxygen level-
dependent (BOLD) signal that could be used to reliably 
estimate the E/I ratio. These biomarkers were the expo-
nent of the 1/f spectral power law, slopes for the low- and 
high-frequency regions of the spectrum and the Hurst 
exponent (H). We simulated the LFP (Fig. 4A) and BOLD 
signal from our recurrent network model, and studied 
how these biomarkers changed when we manipulated the 

E/I ratio by independently varying the strengths of the 
inhibitory ( gI ) and excitatory ( gE ) synaptic conductances 
[80]. Part of our results are shown in Fig. 4. A flattening 
of 1/f slopes (Fig. 4C) was found in the excitation-dom-
inated region where the E/I ratio is shifted in favor of E 
than the reference value used previously [40, 62, 67] to 
capture cortical power spectra. We also observed that H 
decreased in the excitation-dominated region (Fig.  4D). 
However, shifting the E/I balance towards stronger inhi-
bition had a weaker effect on slopes and H. We then 
validated our model against in vivo chemogenetic manip-
ulations in mice that either increased neurophysiological 
excitation or silenced the local activity in the network. 
When modeling effects of chemogenetic manipula-
tions within the recurrent network model, we found that 
DREADD manipulations that enhanced excitability of 
pyramidal neurons reduced steepness of the slopes and 
led to a decrease in H. Then, we used the predictions 
of our model of how the ratio g between inhibition and 
excitation affects spectral properties such as slopes and H 
(see Fig. 4) to interpret the spectra of resting state fMRI 
(rsfMRI) in the medial prefrontal cortex (MPFC) of sub-
jects within the autism spectrum disorder. We found that 
H was reduced in the MPFC of autistic males but not 
females, and using our model we interpreted this change 
in spectral properties as an indicator of increased excita-
tion in males.

5 � Perturbation experiments guided by predictions 
of computational models to study the effect 
of neuromodulation on cortical oscillations

Biophysically realistic computational models and infor-
mation theoretic methods can be used to generate 
predictions and test them with suitably designed per-
turbation experiments. Finding the best strategy to do it 
is an active topic of research. In what follows, we briefly 
review our attempts to address this challenge.

As reviewed above, based on our information theo-
retic analysis, we have proposed that the mid-frequency 
range (15–38 Hz approx.), which exhibited high correla-
tions within frequency bands but contained little visual 
information, may reflect a single source of neuromodu-
latory inputs. We designed a perturbation experiment 
to test this hypothesis [81]. We recorded the LFP in pri-
mary visual cortex (V1) of anesthetized macaques during 
spontaneous activity and during visual stimulation with 
naturalistic movies while pharmacologically perturbing 
dopaminergic neuromodulation by systemic injection of 
L-DOPA (a metabolic precursor of dopamine). We found 
that dopaminergic neuromodulation had marked effects 
on both spontaneous and movie-evoked neural activity. 
During spontaneous activity, dopaminergic neuromodu-
lation increased the power of the LFP specifically in the 
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19–38  Hz band, suggesting that the power of endoge-
nous visual cortex oscillations in this band can be used 
as a robust marker of dopaminergic neuromodulation. 
These results confirmed the hypothesis that we made in 
earlier work [23] based on information theoretic analysis 
of field potentials. Moreover, dopamine increased visual 
information encoding over all frequencies during movie 
stimulation. The information increase due to dopamine 
was prominent in the supragranular layers of visual cor-
tex that project to higher cortical area and in the gamma 
band of LFP power spectrum that has been previously 
implicated in mediating feedforward information trans-
fer. We concluded that dopamine may promote the read-
out of relevant sensory information by strengthening the 
transmission of information from primary to higher areas 
[81].

These observations, which in our view could not have 
been made by either computational analyses or blind 
design of perturbation experiments alone, illustrate the 
power of effectively combing them.

6 � Conclusion
Understanding the microcircuit dynamics and com-
putations underlying EEG and LFP features has the 
potential to allow researchers to make fundamental 
discoveries about brain function and to effectively use 
measures extracted from aggregate electrical signals as 
a reliable biomarker of brain pathologies. In this paper, 
we have reviewed our approach based on computational 
modeling and advanced analytical tools of neural net-
work dynamics to interpret neural aggregate signals in 
terms of neural circuit parameters. We have developed 
tools to partition the LFP and EEG power spectrum into 
different meaningful frequency bands and to identify fre-
quency channels and neural pathways that process largely 
independent and different kinds of neural information. 
We have shown preliminary work on estimating neu-
ral circuit parameters, such as excitation, inhibition and 
their interaction, from aggregate neural signals. Here we 
outline some limitations of our approach and the major 
challenges that we must address in the future.

Fig. 4  LFPs (A) and PSDs (B) generated for two different ratios between inhibitory and excitatory conductances ( g = gI/gE ). The relationship 
between 1/f slopes (C) and Hurst exponents (D) are plotted as a function of g for two different firing rates of thalamic input (1.5 and 2 spikes/
second). The reference value of g (which has shown in previous studies to reproduce cortical data well) is represented by a dashed black line. 
Recomputed and replotted from data published in ref. [79]
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In Refs. [72, 73] we have developed accurate LFP and 
EEG proxies that open up the possibility of comput-
ing realistic EEG and LFP predictions from simple net-
work models. These predictions can be then compared 
to empirical EEGs and LFPs and can be used to estimate 
neural model parameters. However, to achieve this goal 
we still need to accomplish several steps. First, we need 
to develop statistical tools that can infer neural param-
eters (such as the ratio between excitation and inhibition 
or properties of network connectivity) from EEG and 
LFP spectral features by fitting such models to empiri-
cally measured spectra. Then, we need to carefully vali-
date the statistical inference approaches on real brain 
data in which neural circuit parameters can been manip-
ulated by the experimenter, for example by means of 
chemogenetic manipulations [79]. We could validate the 
inference algorithm by studying if it is able to predict the 
type of controlled manipulation that has been applied in 
each dataset (e.g., whether a manipulation produced an 
increase or decrease of the E/I balance).

Although we used realistic modeling of neurons and 
networks, our models do not capture the full complex-
ity of the brain. It would be particularly important to 
extend our models to include different classes of neu-
rons, such as different types of interneurons. We could 
include inter-areal interactions between different recur-
rent networks to generate wider oscillation ranges than 
the gamma oscillations mostly considered in our work, 
which would be useful to study the relationship between 
local oscillations and functional connectivity [82]. It 
would also be important to model the effects of different 
kinds of neuromodulators on distributed processing.

In previous work [81], we developed methods to study 
the effect of global and diffuse patterns of neuromodula-
tion. However, an emergent view [83] is that neuromodu-
lation can be non-global and depend on target specificity 
and the differentiated spatiotemporal dynamics within 
brain stem nuclei. It will be important to implement ana-
lytical tools to identify first individual ensembles in the 
locus coeruleus (LC) and to understand then how neural 
activity of these LC ensembles drive cortical states [84].

Given the above limitations, and although more work 
is needed to be able to interpret empirical aggregate sig-
nals such as EEGs and LFPs in terms of network model 
parameters and neuromodulation, we expect that future 
research can build on the encouraging results presented 
in this paper and lead to a credible, robust and biologi-
cally plausible estimation of neural parameters from neu-
ral aggregate signals.

Abbreviations
AI: Asynchronous irregular; BOLD: Blood oxygen level-dependent; ECoG: 
Electrocorticogram; EEG: Electroencephalogram; fMRI: Functional magnetic 

resonance imaging; LC: Locus coeruleus; LIF: Leaky integrate-and-fire; LFP: 
Local field potential; MEG: Magnetoencephalogram; MPFC: Medial prefrontal 
cortex; rsfMRI: Resting state fMRI; SI: Synchronous irregular; SR: Synchronous 
regular.

Acknowledgements
We are most grateful to the organizers and participants of the 14th Interna‑
tional Conference on Brain Informatics (BI 2021) for their feedback on the 
work presented here. We are also deeply grateful to the wonderful colleagues 
who collaborated with us on these topics over the years, in particular N.K. 
Logothesis, C. Kayser, O. Eschenko, N. Brunel, G.T. Einevoll, A. Mazzoni, C. Magri, 
M. Besserve, N.K. Totah, T. Fellin and A. Gozzi.

Authors’ contributions
All authors wrote the paper. All authors read and approved the final 
manuscript.

Funding
This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under the Marie Skłodowska-Curie 
Grant Agreement No. 893825-ESNECO to P.M.C, the NIH Brain Initiative 
(Grants U19NS107464 and NS108410 to S.P.), the Simons Foundation (SFARI 
Explorer 602849 to S.P.), and by the EU FESR-FSE PON “Ricerca & Innovazione 
2014-2020”.

 Availability of data and materials
This is a review that contains no new data. Software for simulation of neural 
network models of spiking point neurons and multicompartment neurons 
and for computation of EEG proxies can be found at https://​github.​com/​pablo​
mc88/​EEG_​proxy_​from_​netwo​rk_​point_​neuro​ns. Software for the information 
theoretic calculations can be found at https://​sicode.​eu/​resul​ts/​softw​are.​html.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Neural Computation Laboratory, Istituto Italiano Di Tecnologia, Genova and 
Rovereto, Italy. 2 Optical Approaches To Brain Function Laboratory, Istituto 
Italiano Di Tecnologia, Genova, Italy. 3 CIMeC, University of Trento, Rovereto, 
Italy. 4 Department of Excellence for Neural Information Processing, Center 
for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-
Eppendorf (UKE), Hamburg, Germany. 

Received: 29 October 2021   Accepted: 29 November 2021

References
	1.	 Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields 

and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–
420. https://​doi.​org/​10.​1038/​nrn32​41

	2.	 Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and 
analysis of local field potentials for studying the function of cortical 
circuits. Nat Rev Neurosci 14(11):770–785. https://​doi.​org/​10.​1038/​nrn35​
99

	3.	 Lopes da Silva F (2013) EEG and MEG: relevance to neuroscience. Neuron 
80(5):1112–1128. https://​doi.​org/​10.​1016/j.​neuron.​2013.​10.​017

	4.	 Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale 
neuronal interactions. Nat Rev Neurosci 13(2):121–134. https://​doi.​org/​10.​
1038/​nrn31​37

	5.	 Cohen MX (2017) Where does EEG come from and what does it mean? 
Trends Neurosci 40(4):208–218. https://​doi.​org/​10.​1016/j.​tins.​2017.​02.​004

	6.	 Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics 
of EEG. Oxford University Press, Oxford. https://​doi.​org/​10.​1093/​acprof:​
oso/​97801​95050​387.​001.​0001

	7.	 Başar E (1980) EEG-brain dynamics: relation between EEG and brain 
evoked potentials. Elsevier, Amsterdam

https://github.com/pablomc88/EEG_proxy_from_network_point_neurons
https://github.com/pablomc88/EEG_proxy_from_network_point_neurons
https://sicode.eu/results/software.html
https://doi.org/10.1038/nrn3241
https://doi.org/10.1038/nrn3599
https://doi.org/10.1038/nrn3599
https://doi.org/10.1016/j.neuron.2013.10.017
https://doi.org/10.1038/nrn3137
https://doi.org/10.1038/nrn3137
https://doi.org/10.1016/j.tins.2017.02.004
https://doi.org/10.1093/acprof:oso/9780195050387.001.0001
https://doi.org/10.1093/acprof:oso/9780195050387.001.0001


Page 10 of 11Martínez‑Cañada et al. Brain Informatics            (2021) 8:27 

	8.	 Mitra P, Bokil H (2007) Observed brain dynamics. Oxford University Press, 
Oxford

	9.	 Mahmud M, Vassanelli S (2016) Processing and analysis of multichan‑
nel extracellular neuronal signals: state-of-the-art and challenges. Front 
Neurosci 10:248. https://​doi.​org/​10.​3389/​fnins.​2016.​00248

	10.	 Martínez-Cañada P, Noei S, Panzeri S (2021) Inferring neural circuit 
interactions and neuromodulation from local field potential and elec‑
troencephalogram measures. In: Mahmud M, Kaiser MS, Vassanelli S, Dai 
Q, Zhong N (eds) Brain informatics. Lecture notes in computer science. 
Springer, Berlin, pp 3–12. https://​doi.​org/​10.​1007/​978-3-​030-​86993-9_1

	11.	 Wang X-J, Krystal John H (2014) Computational psychiatry. Neuron 
84(3):638–654. https://​doi.​org/​10.​1016/j.​neuron.​2014.​10.​018

	12.	 Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, 
Schroeder CE, Srinivasan R (2018) Investigating large-scale brain dynam‑
ics using field potential recordings: analysis and interpretation. Nat 
Neurosci 21(7):903–919. https://​doi.​org/​10.​1038/​s41593-​018-​0171-8

	13.	 Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. 
Annu Rev Neurosci 35:203–225. https://​doi.​org/​10.​1146/​annur​
ev-​neuro-​062111-​150444

	14.	 Buzsaki G (2004) Neuronal oscillations in cortical networks. Science 
304(5679):1926–1929. https://​doi.​org/​10.​1126/​scien​ce.​10997​45

	15.	 Jadi MP, Sejnowski TJ (2014) Regulating cortical oscillations in an 
inhibition-stabilized network. Proc IEEE 102(5):830–842. https://​doi.​org/​
10.​1109/​jproc.​2014.​23131​13

	16.	 Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in 
localized populations of model neurons. Biophys J 12(1):1–24. https://​doi.​
org/​10.​1016/​s0006-​3495(72)​86068-5

	17.	 Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) 
Inhibition-based rhythms: experimental and mathematical observations 
on network dynamics. Int J Psychophysiol 38(3):315–336. https://​doi.​org/​
10.​1016/​s0167-​8760(00)​00173-2

	18.	 Singer W (1999) Neuronal synchrony: a versatile code for the definition 
of relations? Neuron 24(1):49–65. https://​doi.​org/​10.​1016/​s0896-​6273(00)​
80821-1

	19.	 Wang X-J (2010) Neurophysiological and computational principles of 
cortical rhythms in cognition. Physiol Rev 90(3):1195–1268. https://​doi.​
org/​10.​1152/​physr​ev.​00035.​2008

	20.	 Fries P (2015) Rhythms for cognition: communication through coherence. 
Neuron 88(1):220–235. https://​doi.​org/​10.​1016/j.​neuron.​2015.​09.​034

	21.	 Buzsáki G, Schomburg EW (2015) What does gamma coherence tell us 
about inter-regional neural communication? Nat Neurosci 18(4):484–489. 
https://​doi.​org/​10.​1038/​nn.​3952

	22.	 Scheeringa R, Fries P (2019) Cortical layers, rhythms and BOLD signals. 
Neuroimage 197:689–698. https://​doi.​org/​10.​1016/j.​neuro​image.​2017.​11.​
002

	23.	 Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis 
NK, Panzeri S (2008) Low-frequency local field potentials and spikes in 
primary visual cortex convey independent visual information. J Neurosci 
28(22):5696–5709. https://​doi.​org/​10.​1523/​jneur​osci.​0009-​08.​2008

	24.	 Donner TH, Siegel M (2011) A framework for local cortical oscillation pat‑
terns. Trends Cogn Sci 15(5):191–199. https://​doi.​org/​10.​1016/j.​tics.​2011.​
03.​007

	25.	 Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment 
of neuronal oscillations as a mechanism of attentional selection. Science 
320(5872):110–113. https://​doi.​org/​10.​1126/​scien​ce.​11547​35

	26.	 Steriade M, Hobson J (1976) Neuronal activity during the sleep-waking 
cycle. Prog Neurobiol 6(3–4):155–376

	27.	 Ungerleider L, Ray S, Maunsell JHR (2011) Different origins of gamma 
rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 
https://​doi.​org/​10.​1371/​journ​al.​pbio.​10006​10

	28.	 Veit J, Hakim R, Jadi MP, Sejnowski TJ, Adesnik H (2017) Cortical gamma 
band synchronization through somatostatin interneurons. Nat Neurosci 
20(7):951–959. https://​doi.​org/​10.​1038/​nn.​4562

	29.	 Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized 
gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 
8(1):45–56. https://​doi.​org/​10.​1038/​nrn20​44

	30.	 Brunel N, Wang X-J (2003) What determines the frequency of fast network 
oscillations with irregular neural discharges? I. Synaptic dynamics and 
excitation-inhibition balance. J Neurophysiol 90(1):415–430. https://​doi.​
org/​10.​1152/​jn.​01095.​2002

	31.	 Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L-H, 
Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and 
controls sensory responses. Nature 459(7247):663–667. https://​doi.​org/​
10.​1038/​natur​e08002

	32.	 Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat 
visual cortex exhibit inter-columnar synchronization which reflects global 
stimulus properties. Nature 338(6213):334–337. https://​doi.​org/​10.​1038/​
33833​4a0

	33.	 Belitski A, Panzeri S, Magri C, Logothetis NK, Kayser C (2010) Sensory infor‑
mation in local field potentials and spikes from visual and auditory corti‑
ces: time scales and frequency bands. J Comput Neurosci 29(3):533–545. 
https://​doi.​org/​10.​1007/​s10827-​010-​0230-y

	34.	 Juergens E, Guettler A, Eckhorn R (1999) Visual stimulation elicits locked 
and induced gamma oscillations in monkey intracortical- and EEG-poten‑
tials, but not in human EEG. Exp Brain Res 129(2):247–259. https://​doi.​
org/​10.​1007/​s0022​10050​895

	35.	 Kayser C, König P (2004) Stimulus locking and feature selectivity prevail in 
complementary frequency ranges of V1 local field potentials. Eur J Neuro‑
sci 19(2):485–489. https://​doi.​org/​10.​1111/j.​0953-​816X.​2003.​03122.x

	36.	 Kayser C, Petkov CI, Logothetis NK (2007) Tuning to sound frequency in 
auditory field potentials. J Neurophysiol 98(3):1806–1809. https://​doi.​org/​
10.​1152/​jn.​00358.​2007

	37.	 Henrie JA, Shapley R (2005) LFP power spectra in V1 cortex: the graded 
effect of stimulus contrast. J Neurophysiol 94(1):479–490. https://​doi.​org/​
10.​1152/​jn.​00919.​2004

	38.	 Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal 
structure in neuronal activity during working memory in macaque pari‑
etal cortex. Nat Neurosci 5(8):805–811. https://​doi.​org/​10.​1038/​nn890

	39.	 Frien A, Eckhorn R, Bauer R, Woelbern T, Gabriel A (2000) Fast oscilla‑
tions display sharper orientation tuning than slower components of the 
same recordings in striate cortex of the awake monkey. Eur J Neurosci 
12(4):1453–1465. https://​doi.​org/​10.​1046/j.​1460-​9568.​2000.​00025.x

	40.	 Mazzoni A, Brunel N, Cavallari S, Logothetis NK, Panzeri S (2011) Cortical 
dynamics during naturalistic sensory stimulations: experiments and 
models. J Physiol Paris 105(1–3):2–15. https://​doi.​org/​10.​1016/j.​jphys​paris.​
2011.​07.​014

	41.	 Bosman Conrado A, Schoffelen J-M, Brunet N, Oostenveld R, Bastos Andre 
M, Womelsdorf T, Rubehn B, Stieglitz T, De Weerd P, Fries P (2012) Atten‑
tional stimulus selection through selective synchronization between 
monkey visual areas. Neuron 75(5):875–888. https://​doi.​org/​10.​1016/j.​
neuron.​2012.​06.​037

	42.	 van Kerkoerle T, Self MW, Dagnino B, Gariel-Mathis M-A, Poort J, van der 
Togt C, Roelfsema PR (2014) Alpha and gamma oscillations characterize 
feedback and feedforward processing in monkey visual cortex. Proc Natl 
Acad Sci 111(40):14332–14341. https://​doi.​org/​10.​1073/​pnas.​14027​73111

	43.	 Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel 
AK, Fries P (2007) Modulation of neuronal interactions through neuronal 
synchronization. Science 316(5831):1609–1612. https://​doi.​org/​10.​1126/​
scien​ce.​11395​97

	44.	 Fries P (2009) Neuronal gamma-band synchronization as a fundamental 
process in cortical computation. Annu Rev Neurosci 32(1):209–224. 
https://​doi.​org/​10.​1146/​annur​ev.​neuro.​051508.​135603

	45.	 Kohn A, Besserve M, Lowe SC, Logothetis NK, Schölkopf B, Panzeri S 
(2015) Shifts of gamma phase across primary visual cortical sites reflect 
dynamic stimulus-modulated information transfer. PLOS Biol. https://​doi.​
org/​10.​1371/​journ​al.​pbio.​10022​57

	46.	 Ferro D, van Kempen J, Boyd M, Panzeri S, Thiele A (2021) Directed 
information exchange between cortical layers in macaque V1 and 
V4 and its modulation by selective attention. Proc Natl Acad Sci 
118(12):e2022097118. https://​doi.​org/​10.​1073/​pnas.​20220​97118

	47.	 Logothetis NK (2008) What we can do and what we cannot do with fMRI. 
Nature 453(7197):869–878. https://​doi.​org/​10.​1038/​natur​e06976

	48.	 Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012) The 
amplitude and timing of the BOLD signal reflects the relationship 
between local field potential power at different frequencies. J Neurosci 
32(4):1395–1407. https://​doi.​org/​10.​1523/​jneur​osci.​3985-​11.​2012

	49.	 Engel AK, Fries P (2010) Beta-band oscillations—signalling the status 
quo? Curr Opin Neurobiol 20(2):156–165. https://​doi.​org/​10.​1016/j.​conb.​
2010.​02.​015

	50.	 Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, Noto T, 
Lara AH, Wallis JD, Knight RT, Shestyuk A, Voytek B (2020) Parameterizing 

https://doi.org/10.3389/fnins.2016.00248
https://doi.org/10.1007/978-3-030-86993-9_1
https://doi.org/10.1016/j.neuron.2014.10.018
https://doi.org/10.1038/s41593-018-0171-8
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1146/annurev-neuro-062111-150444
https://doi.org/10.1126/science.1099745
https://doi.org/10.1109/jproc.2014.2313113
https://doi.org/10.1109/jproc.2014.2313113
https://doi.org/10.1016/s0006-3495(72)86068-5
https://doi.org/10.1016/s0006-3495(72)86068-5
https://doi.org/10.1016/s0167-8760(00)00173-2
https://doi.org/10.1016/s0167-8760(00)00173-2
https://doi.org/10.1016/s0896-6273(00)80821-1
https://doi.org/10.1016/s0896-6273(00)80821-1
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.1038/nn.3952
https://doi.org/10.1016/j.neuroimage.2017.11.002
https://doi.org/10.1016/j.neuroimage.2017.11.002
https://doi.org/10.1523/jneurosci.0009-08.2008
https://doi.org/10.1016/j.tics.2011.03.007
https://doi.org/10.1016/j.tics.2011.03.007
https://doi.org/10.1126/science.1154735
https://doi.org/10.1371/journal.pbio.1000610
https://doi.org/10.1038/nn.4562
https://doi.org/10.1038/nrn2044
https://doi.org/10.1152/jn.01095.2002
https://doi.org/10.1152/jn.01095.2002
https://doi.org/10.1038/nature08002
https://doi.org/10.1038/nature08002
https://doi.org/10.1038/338334a0
https://doi.org/10.1038/338334a0
https://doi.org/10.1007/s10827-010-0230-y
https://doi.org/10.1007/s002210050895
https://doi.org/10.1007/s002210050895
https://doi.org/10.1111/j.0953-816X.2003.03122.x
https://doi.org/10.1152/jn.00358.2007
https://doi.org/10.1152/jn.00358.2007
https://doi.org/10.1152/jn.00919.2004
https://doi.org/10.1152/jn.00919.2004
https://doi.org/10.1038/nn890
https://doi.org/10.1046/j.1460-9568.2000.00025.x
https://doi.org/10.1016/j.jphysparis.2011.07.014
https://doi.org/10.1016/j.jphysparis.2011.07.014
https://doi.org/10.1016/j.neuron.2012.06.037
https://doi.org/10.1016/j.neuron.2012.06.037
https://doi.org/10.1073/pnas.1402773111
https://doi.org/10.1126/science.1139597
https://doi.org/10.1126/science.1139597
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1371/journal.pbio.1002257
https://doi.org/10.1371/journal.pbio.1002257
https://doi.org/10.1073/pnas.2022097118
https://doi.org/10.1038/nature06976
https://doi.org/10.1523/jneurosci.3985-11.2012
https://doi.org/10.1016/j.conb.2010.02.015
https://doi.org/10.1016/j.conb.2010.02.015


Page 11 of 11Martínez‑Cañada et al. Brain Informatics            (2021) 8:27 	

neural power spectra into periodic and aperiodic components. Nat 
Neurosci 23(12):1655–1665. https://​doi.​org/​10.​1038/​s41593-​020-​00744-x

	51.	 Shannon CE (1948) A mathematical theory of communication. Bell Syst 
Tech J 27(3):379–423. https://​doi.​org/​10.​1002/j.​1538-​7305.​1948.​tb013​38.x

	52.	 Quian Quiroga R, Panzeri S (2009) Extracting information from neuronal 
populations: information theory and decoding approaches. Nat Rev 
Neurosci 10(3):173–185. https://​doi.​org/​10.​1038/​nrn25​78

	53.	 Pola G, Thiele A, Hoffmann KP, Panzeri S (2003) An exact method to quan‑
tify the information transmitted by different mechanisms of correlational 
coding. Network 14(1):35–60. https://​doi.​org/​10.​1088/​0954-​898x/​14/1/​
303

	54.	 Bringuier V, Fdr C, Glaeser L, Frégnac Y (1999) Horizontal propagation of 
visual activity in the synaptic integration field of area 17 neurons. Science 
283(5402):695–699. https://​doi.​org/​10.​1126/​scien​ce.​283.​5402.​695

	55.	 Nauhaus I, Busse L, Carandini M, Ringach DL (2008) Stimulus contrast 
modulates functional connectivity in visual cortex. Nat Neurosci 12(1):70–
76. https://​doi.​org/​10.​1038/​nn.​2232

	56.	 Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-
spread function and long-range lateral interactions revealed by real-time 
optical imaging of macaque monkey primary visual cortex. J Neurosci 
14(5):2545–2568. https://​doi.​org/​10.​1523/​jneur​osci.​14-​05-​02545.​1994

	57.	 Sato Tatsuo K, Nauhaus I, Carandini M (2012) Traveling waves in visual 
cortex. Neuron 75(2):218–229. https://​doi.​org/​10.​1016/j.​neuron.​2012.​06.​
029

	58.	 Stettler DD, Das A, Bennett J, Gilbert CD (2002) Lateral connectivity 
and contextual interactions in macaque primary visual cortex. Neuron 
36(4):739–750. https://​doi.​org/​10.​1016/​s0896-​6273(02)​01029-2

	59.	 Roerig B, Chen B (2002) Relationships of local inhibitory and excitatory 
circuits to orientation preference maps in ferret visual cortex. Cereb 
Cortex 12(2):187–198. https://​doi.​org/​10.​1093/​cercor/​12.2.​187

	60.	 Kisvarday Z (1997) Orientation-specific relationship between populations 
of excitatory and inhibitory lateral connections in the visual cortex of the 
cat. Cereb Cortex 7(7):605–618. https://​doi.​org/​10.​1093/​cercor/​7.7.​605

	61.	 Einevoll GT, Destexhe A, Diesmann M, Grün S, Jirsa V, de Kamps M, 
Migliore M, Ness TV, Plesser HE, Schürmann F (2019) The scientific case 
for brain simulations. Neuron 102(4):735–744. https://​doi.​org/​10.​1016/j.​
neuron.​2019.​03.​027

	62.	 Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of natural‑
istic stimuli by local field potential spectra in networks of excitatory and 
inhibitory neurons. PLoS Comput Biol 4(12):e1000239. https://​doi.​org/​10.​
1371/​journ​al.​pcbi.​10002​39

	63.	 Compte A (2000) Synaptic mechanisms and network dynamics underly‑
ing spatial working memory in a cortical network model. Cereb Cortex 
10(9):910–923. https://​doi.​org/​10.​1093/​cercor/​10.9.​910

	64.	 Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working 
memory. Science 319(5869):1543–1546. https://​doi.​org/​10.​1126/​scien​ce.​
11507​69

	65.	 Deco G, Thiele A (2011) Cholinergic control of cortical network interac‑
tions enables feedback-mediated attentional modulation. Eur J Neurosci 
34(1):146–157. https://​doi.​org/​10.​1111/j.​1460-​9568.​2011.​07749.x

	66.	 Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thalamo‑
cortical system. J Neurophysiol 93(3):1671–1698. https://​doi.​org/​10.​1152/​
jn.​00915.​2004

	67.	 Mazzoni A, Whittingstall K, Brunel N, Logothetis NK, Panzeri S (2010) 
Understanding the relationships between spike rate and delta/gamma 
frequency bands of LFPs and EEGs using a local cortical network model. 
Neuroimage 52(3):956–972. https://​doi.​org/​10.​1016/j.​neuro​image.​2009.​
12.​040

	68.	 Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HDI, Sejnow‑
ski TJ, Laurent G (2001) Model of transient oscillatory synchronization in 
the locust antennal lobe. Neuron 30(2):553–567. https://​doi.​org/​10.​1016/​
s0896-​6273(01)​00284-7

	69.	 Buehlmann A, Deco G (2010) Optimal information transfer in the cortex 
through synchronization. PLoS Comput Biol. https://​doi.​org/​10.​1371/​
journ​al.​pcbi.​10009​34

	70.	 Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic 
brain: from spiking neurons to neural masses and cortical fields. PLoS 
Comput Biol 4(8):e1000092. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10000​92

	71.	 Compte A, Sanchez-Vives MV, McCormick DA, Wang X-J (2003) Cellular 
and network mechanisms of slow oscillatory activity (<1 Hz) and wave 

propagations in a cortical network model. J Neurophysiol 89(5):2707–
2725. https://​doi.​org/​10.​1152/​jn.​00845.​2002

	72.	 Mazzoni A, Linden H, Cuntz H, Lansner A, Panzeri S, Einevoll GT (2015) 
Computing the local field potential (LFP) from integrate-and-fire network 
models. PLoS Comput Biol 11(12):e1004584. https://​doi.​org/​10.​1371/​
journ​al.​pcbi.​10045​84

	73.	 Martinez-Canada P, Ness TV, Einevoll GT, Fellin T, Panzeri S (2021) Compu‑
tation of the electroencephalogram (EEG) from network models of point 
neurons. PLoS Comput Biol 17(4):e1008893. https://​doi.​org/​10.​1371/​journ​
al.​pcbi.​10088​93

	74.	 Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff T, van Albada 
SJ, Grün S, Diesmann M, Einevoll GT (2016) Hybrid scheme for mod‑
eling local field potentials from point-neuron networks. Cereb Cortex 
26(12):4461–4496. https://​doi.​org/​10.​1093/​cercor/​bhw237

	75.	 Næss S, Halnes G, Hagen E, Hagler DJ, Dale AM, Einevoll GT, Ness TV 
(2021) Biophysically detailed forward modeling of the neural origin of 
EEG and MEG signals. Neuroimage. https://​doi.​org/​10.​1016/j.​neuro​image.​
2020.​117467

	76.	 Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT, Wójcik DK (2017) 
Corrected four-sphere head model for EEG signals. Front Hum Neurosci. 
https://​doi.​org/​10.​3389/​fnhum.​2017.​00490

	77.	 Brunel N (2000) Phase diagrams of sparsely connected networks of 
excitatory and inhibitory spiking neurons. Neurocomputing 32–33:307–
312. https://​doi.​org/​10.​1016/​s0925-​2312(00)​00179-x

	78.	 Huang Y, Parra LC, Haufe S (2016) The New York Head—a precise 
standardized volume conductor model for EEG source localization and 
tES targeting. Neuroimage 140:150–162. https://​doi.​org/​10.​1016/j.​neuro​
image.​2015.​12.​019

	79.	 Trakoshis S, Martínez-Cañada P, Rocchi F, Canella C, You W, Chakrabarti B, 
Ruigrok ANV, Bullmore ET, Suckling J, Markicevic M, Zerbi V, Consortium 
MA, Baron-Cohen S, Gozzi A, Lai M-C, Panzeri S, Lombardo MV (2020) 
Intrinsic excitation-inhibition imbalance affects medial prefrontal cortex 
differently in autistic men versus women. Elife 9:e55684. https://​doi.​org/​
10.​7554/​eLife.​55684

	80.	 Martínez-Cañada P, Panzeri S (2021) Spectral properties of local field 
potentials and electroencephalograms as indices for changes in neural 
circuit parameters. In: Mahmud M, Kaiser MS, Vassanelli S, Dai Q, Zhong 
N (eds) Brain informatics. Lecture notes in computer science. Springer, 
Berlin, pp 115–123. https://​doi.​org/​10.​1007/​978-3-​030-​86993-9_​11

	81.	 Zaldivar D, Goense J, Lowe SC, Logothetis NK, Panzeri S (2018) Dopamine 
is signaled by mid-frequency oscillations and boosts output layers visual 
information in visual cortex. Curr Biol 28(2):224–235. https://​doi.​org/​10.​
1016/j.​cub.​2017.​12.​006

	82.	 Canella C, Rocchi F, Noei S, Gutierrez-Barragan D, Coletta L, Galbusera 
A, Vassanelli S, Pasqualetti M, Iurilli G, Panzeri S, Gozzi A (2020) Cortical 
silencing results in paradoxical fMRI overconnectivity. bioRxiv. https://​doi.​
org/​10.​1101/​2020.​08.​05.​237958

	83.	 Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O (2018) The 
locus coeruleus is a complex and differentiated neuromodulatory system. 
Neuron 99(5):1055-1068.e1056. https://​doi.​org/​10.​1016/j.​neuron.​2018.​07.​
037

	84.	 Noei S, Zouridis IS, Logothetis NK, Panzeri S, Totah NK (2020) Distinct 
ensembles in the noradrenergic locus coeruleus evoke diverse cortical 
states. bioRxiv. https://​doi.​org/​10.​1101/​2020.​03.​30.​015354

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1038/nrn2578
https://doi.org/10.1088/0954-898x/14/1/303
https://doi.org/10.1088/0954-898x/14/1/303
https://doi.org/10.1126/science.283.5402.695
https://doi.org/10.1038/nn.2232
https://doi.org/10.1523/jneurosci.14-05-02545.1994
https://doi.org/10.1016/j.neuron.2012.06.029
https://doi.org/10.1016/j.neuron.2012.06.029
https://doi.org/10.1016/s0896-6273(02)01029-2
https://doi.org/10.1093/cercor/12.2.187
https://doi.org/10.1093/cercor/7.7.605
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1371/journal.pcbi.1000239
https://doi.org/10.1371/journal.pcbi.1000239
https://doi.org/10.1093/cercor/10.9.910
https://doi.org/10.1126/science.1150769
https://doi.org/10.1126/science.1150769
https://doi.org/10.1111/j.1460-9568.2011.07749.x
https://doi.org/10.1152/jn.00915.2004
https://doi.org/10.1152/jn.00915.2004
https://doi.org/10.1016/j.neuroimage.2009.12.040
https://doi.org/10.1016/j.neuroimage.2009.12.040
https://doi.org/10.1016/s0896-6273(01)00284-7
https://doi.org/10.1016/s0896-6273(01)00284-7
https://doi.org/10.1371/journal.pcbi.1000934
https://doi.org/10.1371/journal.pcbi.1000934
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1152/jn.00845.2002
https://doi.org/10.1371/journal.pcbi.1004584
https://doi.org/10.1371/journal.pcbi.1004584
https://doi.org/10.1371/journal.pcbi.1008893
https://doi.org/10.1371/journal.pcbi.1008893
https://doi.org/10.1093/cercor/bhw237
https://doi.org/10.1016/j.neuroimage.2020.117467
https://doi.org/10.1016/j.neuroimage.2020.117467
https://doi.org/10.3389/fnhum.2017.00490
https://doi.org/10.1016/s0925-2312(00)00179-x
https://doi.org/10.1016/j.neuroimage.2015.12.019
https://doi.org/10.1016/j.neuroimage.2015.12.019
https://doi.org/10.7554/eLife.55684
https://doi.org/10.7554/eLife.55684
https://doi.org/10.1007/978-3-030-86993-9_11
https://doi.org/10.1016/j.cub.2017.12.006
https://doi.org/10.1016/j.cub.2017.12.006
https://doi.org/10.1101/2020.08.05.237958
https://doi.org/10.1101/2020.08.05.237958
https://doi.org/10.1016/j.neuron.2018.07.037
https://doi.org/10.1016/j.neuron.2018.07.037
https://doi.org/10.1101/2020.03.30.015354

	Methods for inferring neural circuit interactions and neuromodulation from local field potential and electroencephalogram measures
	Abstract 
	1 Introduction
	2 Cortical oscillations and their role in neural computation
	3 Analytical methods to identify regions of the frequency spectrum capturing different neural phenomena of interest
	4 Mathematical modeling of neural network dynamics
	4.1 Neural network models to identify neural mechanisms for information encoding
	4.2 Realistic computation of field potentials from point-neuron network models
	4.3 Changes in excitation–inhibition (EI) balance in simulated neural aggregate signals

	5 Perturbation experiments guided by predictions of computational models to study the effect of neuromodulation on cortical oscillations
	6 Conclusion
	Acknowledgements
	References




