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Abstract 

Quickly and accurately tracing neuronal morphologies in large-scale volumetric microscopy data is a very challeng-
ing task. Most automatic algorithms for tracing multi-neuron in a whole brain are designed under the Ultra-Tracer 
framework, which begins the tracing of a neuron from its soma and traces all signals via a block-by-block strategy. 
Some neuron image blocks are easy for tracing and their automatic reconstructions are very accurate, and some oth-
ers are difficult and their automatic reconstructions are inaccurate or incomplete. The former are called low Tracing 
Difficulty Blocks (low-TDBs), while the latter are called high Tracing Difficulty Blocks (high-TDBs). We design a model 
named 3D-SSM to classify the tracing difficulty of 3D neuron image blocks, which is based on 3D Residual neural Net-
work (3D-ResNet), Fully Connected Neural Network (FCNN) and Long Short-Term Memory network (LSTM). 3D-SSM 
contains three modules: Structure Feature Extraction (SFE), Sequence Information Extraction (SIE) and Model Fusion 
(MF). SFE utilizes a 3D-ResNet and a FCNN to extract two kinds of features in 3D image blocks and their corresponding 
automatic reconstruction blocks. SIE uses two LSTMs to learn sequence information hidden in 3D image blocks. MF 
adopts a concatenation operation and a FCNN to combine outputs from SIE. 3D-SSM can be used as a stop condi-
tion of an automatic tracing algorithm in the Ultra-Tracer framework. With its help, neuronal signals in low-TDBs can 
be traced by the automatic algorithm and in high-TDBs may be reconstructed by annotators. 12732 training samples 
and 5342 test samples are constructed on neuron images of a whole mouse brain. The 3D-SSM achieves classification 
accuracy rates 87.04% on the training set and 84.07% on the test set. Furthermore, the trained 3D-SSM is tested on 
samples from another whole mouse brain and its accuracy rate is 83.21%.
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1  Introduction
Tracing morphologies of neurons is essential for investi-
gating the structure and the function of neurons, explor-
ing the working mechanism of the brain and studying 
the mechanism of brain diseases, such as neuron classi-
fication [1], neuron morphology analysis [2] and poten-
tial connectivity between brain circuits [3]. For small or 
medium scale volumetric light microscopy datasets, the 
BigNeuron project collected more than 30 automatic 

algorithms and transplanted them to the Vaa3D platform 
[4, 5], which can visualize 3D neuron images, produce 
automatic reconstructions and analyze neuronal mor-
phologies. For large-scale image datasets [6, 7], Bria et al. 
developed a Vaa3D-Terafly open source tool to visualize, 
analyze and manage them [8], and Peng et  al. proposed 
an Ultra-Tracer framework to trace their signals [9]. 
However, it is still a very challenging task to quickly and 
accurately trace neuronal morphologies in large-scale 
multi-neuron images of a whole mouse brain.

In the past decade, deep learning has achieved great 
success on many computer vision tasks, such as image 
classification [10–12], image segmentation [13–15], 
target detection [16–18], etc. Convolutional Neural 
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Network (CNN) plays an important role in the field of 
image classification. Simonyan et  al. proposed a VGG 
network [10] and it generated good results on ImageNet 
dataset [19] by using a small receptive field and more lay-
ers. Szegedy et  al. designed an Inception network [11, 
20], which uses convolution kernels with different sizes 
to increase the diversity of features and adopts a large 
number of 1× 1 convolution kernels to reduce the num-
ber of network parameters. He et al. composed a Residual 
neural Network (ResNet) for image recognition, which 
builds a deeper neural network by utilizing skip connec-
tions to jump over some layers [12].

For automatic neuron tracing on large-scale multi-neu-
ron images, deep learning has been used to solve many 
image related problems. Zhou et  al. developed a Deep-
Neuron toolbox, which adopts deep neural networks 
to learn features and rules hidden in light microscopy 
images and traces neuronal morphologies [21]. Chen 
et  al. presented a spherical-patches extraction and 2D 
multi-stream CNN based method, which can simulta-
neously detect all 3 types of 3D critical points in neuron 
microscopy images [22]. Liu et al. designed a deep learn-
ing based segmentation method to identify the location 
of neuronal voxels, which is capable of both enhancing 
neuronal signals and reducing image noise [23]. Jiang 
et al. proposed a method based on a ray-shooting model 
and a Long Short-Term Memory network (LSTM) [24], 
which is able to enhance weak-signal neuronal structures 
and remove background noise in 3D neuron images [25]. 
Although the above deep learning based methods have 

made some progresses on the multi-neuron reconstruc-
tion task, it is still very challenging to accurately and 
quickly trace neuronal morphologies in multi-neuron 
images of a whole mouse brain.

In 3D multi-neuron images of a whole mouse brain, 
there are some image blocks with simple morphology 
structures, strong signals and weak noises, on which 
many automatic algorithms can trace morphologies quite 
accurately. These image blocks (the first row in Fig. 1) are 
called low Tracing Difficulty Blocks (low-TDBs). While 
there are many other image blocks with complex mor-
phology structures (including some bifurcations, cross-
ing signals, etc.), weak signals or strong noises, on which 
most automatic algorithms trace morphologies inaccu-
rately or incompletely. These image blocks (the second 
row in Fig.  1) are called high Tracing Difficulty Blocks 
(high-TDBs). If we can classify 3D image blocks as low-
TDBs or high-TDBs, neuronal signals in low-TDBs can 
be traced by an automatic algorithm and in high-TDBs 
may be reconstructed by annotators. This interacting 
strategy of automatic tracing and manual annotating is 
capable of promoting the Ultra-Tracer framework to gen-
erate more accurate neuron reconstructions with higher 
efficiency. Therefore, it is interesting to study the tracing 
difficulty classification of 3D neuron image blocks.

In this paper, a model called 3D-SSM is designed to 
classify the tracing difficulty of 3D image blocks, which 
is based on ResNet [12], Fully Connected Neural Net-
work (FCNN) [26] and Long Short-Term Memory net-
work (LSTM) [24]. 3D-SSM consists of three modules: 

Fig. 1  Examples of low-TDBs and high-TDBs
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Structure Feature Extraction (SFE), Sequence Informa-
tion Extraction (SIE) and Model Fusion (MF). SFE uti-
lizes a 3D-ResNet and a FCNN to extract two kinds of 
features in 3D neuron image blocks and automatic recon-
struction blocks. SIE uses two LSTMs to learn sequence 
information hidden in features of sequential blocks gen-
erated in SFE. MF adopts a concatenation operation and 
a FCNN to fuse outputs from SIE.

As shown in Fig.  2, we divide the implementation of 
classifying the tracing difficulty of 3D image blocks into 
three steps: constructing blocks, labeling blocks and 
classifying samples by 3D-SSM. Firstly, neuron images 
of a whole mouse brain are partitioned into many over-
lapped 3D image blocks along the gold standard recon-
struction (reconstructed by professional annotators) 
of each neuron. Gold standard reconstruction blocks 
(gold blocks) and automatic reconstruction blocks (auto 
blocks) are parts of the gold standard reconstruction 
and automatic reconstruction located in each 3D image 
block, respectively. Then, each 3D image block is labeled 
as low-TDB or high-TDB by manual or an automatic 
algorithm. Finally, 3D image blocks and L-Measure [27] 
features of corresponding reconstructions are used to 
train and test 3D-SSM. It achieved classification accu-
racy rates of 87.04% and 84.07% on training set and test 
set, respectively. Results of the tracing difficulty classifi-
cation produced by the 3D-SSM model can be used as a 
stop condition of an automatic tracing algorithm in the 

Ultra-Tracer framework. With that, neuronal signals 
in low-TDBs can be traced by the automatic algorithm 
and in high-TDBs may be reconstructed by annotators. 
The interaction between automatic tracing and manual 
reconstruction is capable of promoting the Ultra-Tracer 
framework to generate more accurate neuron recon-
structions efficiently.

This paper has the following three contributions:

•	 The task on classifying the tracing difficulty of 3D 
neuron image blocks is proposed, and its solution 
procedure is designed.

•	 More than 23000 samples are constructed on two 
whole mouse brains, and manual labeling and auto-
matic labeling are used to generate the label of these 
samples.

•	 Based on 3D-ResNet, FCNN and LSTM, a 3D-SSM 
model is proposed to classify the tracing difficulty of 
3D image blocks, and it has good performance on 3D 
image blocks of two whole mouse brains.

The rest of the paper is organized as follows. In Section 2, 
we introduce how to construct sample data including 
producing block data, extracting features and labeling 
samples. In Section  3, we present the 3D-SSM model 
including its three modules: SFE, SIE and MF. The exper-
imental results are reported in Section 4, and conclusions 
and discussions are in Section 5.

Fig. 2  The framework of classifying the tracing difficulty of 3D image blocks
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2 � Sample data
Sample data is constructed from 3D neuron images of 
two whole mouse brains (denoted by brain-A and brain-
B, respectively), gold standard reconstructions and 
automatic reconstructions of marked neurons in them. 
These data were provided by the Southeast University-
Allen Institute Joint Center. For each 3D image block, 
its corresponding gold standard reconstruction blocks 
(gold blocks) and automatic reconstruction blocks (auto 
blocks) are taken out for extracting features. Neuron dis-
tance [28] features between gold blocks and auto blocks 
are used to describe their similarity, and L-Measure 
[27] features of auto blocks are employed to character-
ize the neuronal structures in 3D image blocks. The label 
of a 3D image block is its tracing difficulty, low-TDB or 
high-TDB.

2.1 � Constructing blocks
Gold standard reconstructions of neurons in brain-A and 
brain-B were drawn and checked by at least three profes-
sional annotators using the Vaa3D-Terafly visualization 
software [8], and are stored in SWC format [29] which 
describes the morphology of a neuron as tree structures 
with location, node’s radius, parent node and some other 
attributes. There are 93 and 37 gold standard recon-
structions of marked neurons in brain-A and brain-B 

respectively. Automatic reconstructions are generated by 
the APP2 algorithm [30] under the Ultra-Tracer frame-
work, which is one of the state-of-the-art automatic 
tracing methods and can efficiently produce good recon-
structions for many complex neurons.

From the root node of each neuron (corresponding to 
its soma) and moving along its gold standard reconstruc-
tion with step 100 nodes, 3D neuron images are parti-
tioned into many overlapped 3D image blocks with size 
32× 64 ×64. Gold blocks and auto blocks are parts of 
the gold standard reconstruction and APP2 reconstruc-
tion respectively, which are located in corresponding 3D 
image blocks. As illustrated in Fig.  3, three nodes with 
distance 100 nodes in a gold standard reconstruction are 
selected as centers (anchors) of three 3D image blocks 
(the second column in Fig.  3), and their corresponding 
gold blocks (the third column in Fig. 3) and auto blocks 
(the forth column in Fig. 3) are obtained.

There are some burrs in auto blocks which may be 
noises and meaningless. We delete branches with nodes 
less than 4, and fragments with nodes less than 4 and dis-
tance to the edge of the image block less than 4 voxels. 
There are some auto blocks with too few reconstruction 
nodes, which means that few neuronal signals in these 
blocks and inadequate information to evaluate the qual-
ity of reconstructions. 3D image blocks corresponding to 

Fig. 3  Constructing 3D image blocks, gold blocks and auto blocks from 3D neuron images, gold standard reconstructions and automatic 
reconstructions, respectively
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auto blocks with total nodes less than 11 are filtered out. 
Finally, 18074 samples (3D image blocks) from brain-A 
and 5109 samples from brain-B are obtained, and their 
corresponding gold blocks and auto blocks are also 
taken out from gold standard reconstructions and APP2 
reconstructions.

2.2 � Extracting reconstructions based features
The Entire Structure Average (ESA), Different Structure 
Average (DSA) and Percentage of Different Structures 
(PDS) are often used to measure the similarity between 
two reconstructions [28]. The following 7 distances are 
taken as neuron distance features: ESA12 (the average dis-
tance of all nodes in reconstruction 1 to nodes in recon-
struction 2), ESA21 (the average distance of all nodes in 
reconstruction 2 to nodes in reconstruction 1), ESA (the 
average of ESA12 and ESA21 ), DSA2 (the average distance 
of nodes with distance larger than two voxels), PDS12 (the 
percentage of nodes in reconstruction 1 that have dis-
tance no less than two pixels to nodes in reconstruction 
2) and PDS21 (the percentage of nodes in reconstruction 
2 that have distance no less than two pixels to nodes in 
reconstruction 1) and PDS (the percentage of nodes in 
reconstruction 1 or reconstruction 2 that have distance 
no less than two pixels to nodes in the other reconstruc-
tion). The smaller these values are, the more similar two 
reconstructions are. Above 7 neuron distance features 
for gold blocks and auto blocks can be obtained by call-
ing the neuron distance plug-in in the Vaa3D platform. In 
addition, 3 morphology features: the number of bifurca-
tions, the number of nodes and the number of fragments, 
are also used to describe the similarity between a pair of a 
gold block and an auto block.

L-Measure developed by Scorcioni et  al. [27], is a 
toolkit for extracting neuronal morphology features 
(http://​cng.​gmu.​edu:​8080/​Lm/​help/​index.​htm). There 
are 43 morphology features of neuron fragments, such as 
length, width, height, angle, etc. We select 32 L-Measure 
features to describe auto blocks and other 11 L-Measures 
features do not make sense for neuron fragments in auto 
blocks.

2.3 � Labeling samples
Labeling samples is an important step in supervised clas-
sification tasks. Gold blocks and auto blocks are used 
to generate labels of 3D image blocks. For an automatic 
tracing algorithm, the tracing difficulty (low or high) of 
a 3D image block can be determined according to the 
similarity between its corresponding gold block and auto 
block. If they are very consistent, the 3D image block is 
labeled as low tracing difficulty (low-TDB), otherwise as 
high tracing difficulty (high-TDB). Since tree structures 
in gold blocks and auto blocks are very complex and 

diverse, it is quite difficult to accurately quantify their 
consistency. Each pair of gold block and auto block are 
visualized on the Vaa3D platform, and carefully com-
pared by our annotators. After observing and comparing 
lots of pairs, 4 category rules are induced to label a 3D 
image block as low-TDB or high-TDB (https://github.
com/BingooYang/Tracing-difficulty-classification-on-
3D-neuron-image-block). According to these rules, 2954 
3D image blocks from brain-A are labeled by one anno-
tator and checked by other two annotators. However, 
manual labeling is very time consuming and automatic 
labeling has to be adopted. Extracted 7 neuron distance 
features and 3 morphology features of gold blocks and 
auto blocks are used to describe the similarity between 
each pair of gold block and auto block. If the similarity of 
a pair is very high, the automatic tracing algorithm per-
forms quite well on the corresponding 3D image block 
and it is labeled as low-TDB, otherwise it is labeled as 
high-TDB. Above 2954 manually labeled pairs are used 
to train and test a FCNN model to classify the similar-
ity of all gold block and auto block pairs. The FCNN 
model consists of four linear layers, and the number of 
nodes from the first layer to the fourth layer is 50, 30, 20 
and 2, respectively. It produces accuracy rates of 96.9% 
and 96.4% on the training set and test set, respectively. 
So the trained FCNN has good performance and can be 
used to generate the label of remaining 3D image blocks. 
It is worth noting that this model utilizes gold standard 
reconstructions to learn the label of 3D image blocks. But 
more often, we don’t have a gold standard reconstruction 
and the trained FCNN can not solve the tracing difficulty 
classification task on 3D image blocks.

3 � Method
A deep learning based 3D-SSM model is designed to 
classify the tracing difficulty of 3D image blocks. As 
illustrated in Fig.  4, 3D-SSM consists of three modules: 
Structure Feature Extraction (SFE), Sequence Informa-
tion Extraction (SIE) and Model Fusion (MF). In SFE, 
a 3D-ResNet and a FCNN are trained by taking 3D 
image blocks and 32 L-Measure features of auto blocks 
as inputs, and their parameters are saved. In SIE, two 
LSTMs are adopted to extract the sequence information 
hidden in 3D image blocks and auto blocks, and the net-
work parameters are also saved. In MF, the outputs of 3D 
image blocks and auto blocks produced in SIE are con-
catenated and taken as the inputs of a FCNN, and SFE, 
SIE and the FCNN are trained together.

3.1 � SFE of 3D‑SSM
SFE contains two networks, a 3D image block based 
3D-ResNet and an auto block based FCNN, which are 
used to extract structure features of 3D image blocks 

http://cng.gmu.edu:8080/Lm/help/index.htm
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and auto blocks, respectively. The 3D image block based 
3D-ResNet is to label a 3D image block as low-TDB or 
high-TDB by using feature maps of 3D images. The 
3D-ResNet is designed on a usual ResNet, and contains 
convolution, pooling, batch normalization, dropout, skip 
connections and so on. Its inputs are 3D image blocks, 
output is a two-dimensional feature vector and its net-
work structure is given in Table 1. The auto block based 
FCNN is to label a 3D image block as low-TDB or high-
TDB by using features of auto blocks. That is to say, the 
tracing difficulty of a 3D image block is evaluated only by 
morphology features of its corresponding auto blocks. 
The FCNN is composed of three linear layers, and the 
number of nodes from the first layer to the third layer 
is 100, 50 and 2, respectively. Its inputs are extracted 32 
L-Measure features and output is a two-dimensional fea-
ture vector.

It should be noted that outputs of the 3D-ResNet 
and the FCNN are set as 2 dimensional vectors for the 

following two purposes. The first one is to calculate their 
cross entropy loss with the one-hot encoding labels and 
so as to train the 3D-ResNet and the FCNN separately. 
The second one is to concatenate them with one-hot 
encoding sequence labels of 3D image blocks in the SIE 
module.

3.2 � SIE of 3D‑SSM
SIE consists of two LSTMs for extracting sequence infor-
mation hidden in 3D image blocks. Both of them have 
two layers and each layer consists of 10 hidden nodes. 
The sequence relation among 3D image blocks should 
be defined explicitly. Two 3D image blocks are defined as 
adjacent blocks in a sequence if they satisfy the follow-
ing conditions: (1) The distance between their anchors 
is less than or equal to 100 voxels. (2) The node distance 
between their corresponding nodes on the gold standard 
reconstruction is 100 nodes. Starting from any 3D image 
block and according to the above defined adjacency rela-
tion, many block sequences with different lengths can be 
obtained from our 3D image blocks.

Intuitively, most adjacent blocks have the same tracing 
difficulty. As shown in Fig. 5, the red line and the yellow 
line in the left picture are the gold standard reconstruc-
tion and APP2 reconstruction of a neuron, and red dots 
and blue dots in the right picture represent locations of 
low-TDBs and high-TDBs, respectively. From Fig.  5, it 
can be seen that most red dots or blue dots are continu-
ously scattered on the gold standard line. That is to say, 
adjacent 3D image blocks have the same tracing difficulty. 
Furthermore, this observation is tested on 18074 samples 
from brain-A. For each 3D image block, a block sequence 
with length 2 is generated, and the probability that two 

Fig. 4  The structure of the proposed 3D-SSM model

Table 1  The structure of 3D-ResNet

* Unit-A(n) consists of a 3 ×3× 3 convolution with a 1 ×1× 1 stride and n channels, 
a batch normalization, and an activation function (ReLU). Unit-B(n) has the same 
structure as unit-A(n) but a different convolution step size 2 ×2×2

Stage Component Output size

Convolution 3× 3× 3 , 64, stride(1,2,2) 32× 32× 32

Max pooling 3× 3× 3 , 64, stride(2,2,2) 16× 16× 16

Residual layer 1 Dropout=0.2, unit-A(64), unit-A(64) 16× 16× 16

Residual layer 2 Dropout=0.2, unit-B(128), unit-A(128) 8× 8× 8

Residual layer 3 Dropout=0.2, unit-B(256), unit-A(256) 4× 4× 4

Residual layer 4 Dropout=0.2, unit-B(512), unit-A(512) 2× 2× 2

Average pooling 2× 2× 2 , stride(2,2,2) 1× 1× 1

Classification layer Fully-connected, softmax 2
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blocks in all 18074 sequences have the same label is 
60.55%.

Based on SFE, SIE learns the sequence information 
hidden in 3D image blocks by two LSTMs, 3D image 
block based LSTM and auto block based LSTM. Let 
XI = {XI1,XI2 . . .XI(n−1),XIn} be n 3D image blocks, 
XA = {XA1,XA2 . . .XA(n−1),XAn} be 32 L-Measure 
features of their corresponding n auto blocks, and 
L = {L1, L2 . . .Ln−1, Ln} be their one-hot encoding 
labels. Suppose that X ′

Is = (X ′
I1,X

′
I2 . . .X

′
I(s−1),X

′
Is) and 

X ′
As = (X ′

A1,X
′
A2 . . .X

′
A(s−1),X

′
As) are two sequences 

with length s constructed from XI and XA , and 
L′s = (L′1, L

′
2 . . .L

′
s−1, L

′
s) be their one-hot encoding labels, 

where X ′
Ii ∈ XI and X ′

Ai ∈ XA ( i = 1, 2, · · · , s ). Denote the 
3D-ResNet output of X ′

Is by O′
Isand the FCNN output of 

X ′
As by O′

As , where 3D-ResNet and FCNN are these two 
neural networks in SFE.

For the 3D image block based LSTM, L′s and O′
Is are 

concatenated to get sequences L′Is = {L′s,O
′
Is} . Likewise, 

for the auto block case, L′As = {L′s,O
′
As} are generated 

from L′s and O′
As . Then, two LSTMs are used to learn L′Is 

and L′As , and their outputs are denoted by

where WIs and WAs are learnable parameters, and ele-
ments of OIs and OAs belong to {0, 1} . In the training stage, 
optimal values of parameters WIs and WAs are obtained, 
and in the reference stage, outputs OIs and OAs can be 
generated by using these trained parameters.

3.3 � MF of 3D‑SSM
Model fusion (MF) is used to integrate features and 
sequence information in 3D image blocks and auto 
blocks. MF is composed of a concatenation operation and 
a FCNN to fuse the output features of SIE. The FCNN 
has two linear layers, and the number of nodes in the first 

(1)OIs = WIsL
′
Is and OAs = WAsL

′
As,

layer and the second layer are 30 and 2, respectively. MF 
can be expressed by the following formula:

where cat is a concatenation operation, WM is learnable 
parameters of FCNN, and OM is the output of MF.

4 � Experiment
In this section, we validate the performance of the auto-
matic labeling algorithm and each module of the pro-
posed 3D-SSM model. Furthermore, modules of 3D-SSM 
trained on samples from brain-A are used to classify 
samples from brain-B.

4.1 � Experimental setup
Our experimental data includes 18074 3D image blocks 
from brain-A and 5109 3D image blocks from brain-B, 
and their corresponding gold blocks and auto blocks. 
We extract 7 neuron distance features, 3 neuronal mor-
phology features and 32 L-Measure features from gold 
blocks and auto blocks, and manually label 2954 3D 
image blocks from brain-A as low-TDB or high-TDB. 
Using these data and with the help of publicly avail-
able packages Pytorch [31] and Scikit-learn [32], several 
algorithms for automatic labeling and three modules of 
3D-SSM are implemented on two NVIDIA P5000 GPUs 
with 16GB memory. We run all algorithms five times and 
report their average accuracy rates and F1 scores with 
corresponding standard deviations.

4.2 � Results of automatic labeling
2954 pairs of a gold block and an auto block with man-
ual label are randomly divided into 70% (2068) training 
samples and 30% (886) test samples. 7 neuron distance 
features and 3 neuronal morphology features are used to 
describe the similarity between each pair of gold block 

(2)OM = softmax(WM ∗ cat(OIs,OAs)),

Fig. 5  The gold standard reconstruction and APP2 reconstruction of a neuron (left), locations of low-TDBs and high-TDBs on the neuron (right)
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and its corresponding auto block. According to the simi-
larity of each pair, their corresponding 3D image block is 
labeled as low-TDB or high-TDB. We implement FCNN, 
logistic regression (LR) and Support Vector Machines 
(SVM) to label a 3D image block, and their average accu-
racy rates and F1 scores (standard deviation) are given in 
Table 2.

From Table  2, it can be seen that all three algorithms 
have quite good performance (about 96% accuracy rates 
and F1 scores) on both training and test sets. Among 
them, FCNN generates the best training and test results 
and is selected to label 3D image blocks without manual 
labels. For 15120 (18074−2954) 3D image blocks from 
brain-A, FCNN labels 8423 blocks as low-TDB and 
6697 blocks as high-TDB. And for 5109 3D image blocks 
from brain-B, it labels 3416 blocks as low-TDB and 1693 
blocks as high-TDB.

4.3 � Results of the SFE module
We take 5342 (29.55%) samples from 23 neurons of brain-
A as test set, and 12372 samples from other 70 (93−23) 
neurons of the same brain as training set. For 3D image 
block based tracing difficulty classification, the training 
set is enhanced by rotating 3D images with 90, 180 and 
270 degrees along the X-axis direction, and 37116 new 
training samples are obtained.

Usual 2D Resnet [12], MobileV2 [33], DenseNet [34] 
and SENet [35] are extended to three dimensions (3D) 

and implemented to classify the tracing difficulty of 3D 
image blocks. Adam optimizer [36] with β1 = 0.9 and 
β2 = 0.99 is applied to optimize these models, and their 
batch size, initial learning rate and weight decay are set 
to 30, 0.001 and 0.01, respectively. As given in Table  3, 
3D-ResNet achieves the best test accuracy rate, so it is 
selected as a base method in the 3D-SSM model and its 
trained parameters are saved for the training of 3D-SSM.

For auto block based tracing difficulty classification, 32 
L-Measure features of auto blocks are used as the input 
of an algorithm to generate the label of corresponding 
3D image blocks. FCNN, LR and SVM are implemented 
on these features of training set and test set, and their 
results are given in Table 4. From Table 4, it can be seen 
that FCNN has the best performance, and so it is adopted 
as the algorithm for auto blocks based tracing difficulty 
classification and its parameters are saved for the training 
of the 3D-SSM model.

From Table 3 and Table 4, we can see that the 3D image 
block based 3D-ResNet has better performance than the 
auto block based FCNN. Since 3D-ResNet and FCNN 
utilize feature map of images and morphology features 
of reconstructions respectively, labels generated by them 
might be quite different. We visually check their misclas-
sified samples in the test set, and summarize three main 
types of errors. As illustrated in Fig. 6, 3D-ResNet does 
badly on 3D image blocks with simple and weak signals 
(yellow blocks in Fig.  6), while FCNN mainly makes 

Table 2  Results of automatic labeling by FCNN, LR and SVM

Numbers with underline are the best results among all models

Dataset FCNN LR SVM

Accuracy F1 Accuracy F1 Accuracy F1

Training 96.92± 0.19 96.86± 0.20 96.05±0.26 95.98±0.27 96.50±0.22 96.44±0.23

Test 96.49± 0.59 96.40± 0.61 96.07±0.53 95.98±0.54 96.30±0.57 96.22±0.59

Table 3  Feature maps of 3D image blocks based classification results by 3D-ResNet, 3D-MobileNetV2, 3D-DenseNet and 3D-SENet

Numbers with underline are the best results among all models

 Dataset 3D-ResNet 3D-MobileNetV2 3D-DenseNet 3D-SENet

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Training 83.50±0.14 85.18±0.13 79.97±0.18 81.89±0.16 84.69± 0.16 86.33± 0.14 82.29±0.05 84.16±0.04

Test 81.29± 0.39 82.78± 0.61 78.40±0.23 79.83±0.22 72.03±2.47 75.50±1.29 80.11±0.50 81.63±0.92

Table 4  32 L-Measure features of auto blocks based classification results by FCNN, LR and SVM

Numbers with underline are the best results among all models

Dataset FCNN LR SVM

Accuracy F1 Accuracy F1 Accuracy F1

Training 78.03± 0.14 77.71± 0.18 75.38±0.20 75.24±0.20 73.54±0.14 73.55±0.14

Test 77.97± 0.34 77.63± 0.31 75.34±0.26 75.17±0.25 73.28±0.35 73.27±0.35
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mistakes on 3D image blocks with winding signals (red 
blocks in Fig.  6) or close signals (blue blocks in Fig.  6) 
from different neuronal segments. The possible reason is 
that 3D-ResNet pays more attention to the overall struc-
ture of neuronal signals and FCNN focuses on the com-
plexity of the geometry of neuronal signals. Hence, the 
fusion of the 3D image block based 3D-ResNet and the 
auto block based FCNN would provide more discrimina-
tive features for the classification task, which will be dis-
cussed in subsection 4.5.

4.4 � Results of the SIE module
Two LSTMs are utilized to learn sequence information 
hidden in 3D image blocks, one is for the output of the 

3D image block based 3D-ResNet (3D-ResNet-LSTM) 
and the other is for the auto block based FCNN (FCNN-
LSTM). Test accuracy rates of 3D-ResNet-LSTM and 
FCNN-LSTM with sequence length varying from 1 to 
5 are given in Fig.  7. From Fig.  7, it can be seen that 
LSTMs with sequence length 3 can improve accuracy 
rates of 3D-ResNet and FCNN about 0.8 and 0.5 per-
centage points, respectively. If the sequence length is 
larger than 3, 3D image blocks in a sequence span a 
large area. In this case, the complexity of neuronal mor-
phology structures and the signal-to-noise ratio (SNR) 
of signals might change greatly. So the tracing difficulty 
of different 3D image blocks in the sequence might be 
different (low or high). This explanation is verified by 
the downward trend of curves in Fig. 7.

Fig. 6  Examples of three types of misclassified samples by the 3D image block based 3D-ResNet and the auto block based FCNN
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4.5 � Results of the 3D‑SSM model on brain‑A
The trained 3D-ResNet and FCNN in SFE, and two 
trained LSTMs in SIE are used to construct the 3D-SSM 
model (model fusion), and their trained parameters 
are adopted to train parameters in the FCNN of MF. 
Table 5 gives accuracy rates of the 3D-SSM model with 
different sequence lengths in LSTMs. Its best results 
are 87.04% and 84.07% on the training set and test set, 
respectively.

We visually check all correctly classified test samples 
by 3D-SSM, and summarize them into five main types: 
type-A, type-B, type-C, type-D and type-E. Type-A are 
3D image blocks with only one neuronal segment and 
without weak signal, type-B are blocks with a few neu-
ronal segments and a high SNR, type-C are blocks with 
much more neuronal segments and interlaced neuronal 
signals, type-D are blocks with many weak neuronal 
signals and complex neuronal morphologies, and type-
E are blocks with a soma. The former two types belong 
to low-TDB, the latter three types are high-TDB, and 
type-C and type-D compose the majority of the high-
TDB category. Five examples of each type are demon-
strated in Fig. 8. It can be seen that the 3D-SSM model 
correctly classifies 3D image blocks with different 
directions, lengths, SNRs, numbers of bifurcations and 
numbers of neuronal segments.

4.6 � Results of the 3D‑SSM model on brain‑B
In order to verify the generalization of SEF, SIF and the 
3D-SSM model, we use the best parameters (among five 
runs) trained on samples from brain-A to classify sam-
ples from brain-B. Table  6 gives results of the trained 
3D-ResNet-LSTM, FCNN-LSTM and 3D-SSM mode 
on samples from brain-B. Comparing Fig. 7, Table 5 and 
Table  6, it can be seen that 3D-ResNet-LSTM has the 
same performance on brain-B, FCNN-LSTM has little 
worse performance on brain-B, and 3D-SSM even has 
better F1 score on this brain. While the sequence length 
equals 3, 3D-SSM produces an accuracy rate 83.21%. 
These experimental results show that 3D-SSM has good 
performance on classifying 3D image blocks from non-
training whole mouse brains.

5 � Conclusions and discussions
In this paper, we construct 3D image blocks, gold blocks, 
and auto blocks from 3D neuron images of two whole 
mouse brains, and extract 7 neuron distance features, 3 
neuronal morphology features and 32 L-Measure fea-
tures from gold blocks and auto blocks. 3D image blocks 
are labeled by manual or a FCNN, and the sequence rela-
tion among them is built. More importantly, a 3D-SSM 
model is proposed to classify the tracing difficulty of 3D 
image blocks, which has three modules: SEF, SIE and MF. 
SEF consists of a 3D-ResNet and a FCNN for extracting 
structure features of 3D image blocks and auto blocks. 
SIE adopts two LSTMs to extract sequence information 
hidden in 3D image blocks, and MF fuses different fea-
tures in SIE. These modules are validated on more than 
20000 samples from two whole mouse brains. In addi-
tion, three types of misclassified samples by SFE and five 
types of correctly classified samples by 3D-SSM are sum-
marized. Classification results on the tracing difficulty of 
3D image blocks by 3D-SSM can be used as a stop con-
dition for an automatic tracing algorithm in the Ultra-
Tracer framework, which is an important factor to realize 
the interaction between automatic tracing and manual 
reconstructing.

Although the proposed 3D-SSM model performs 
well on classifying the tracing difficulty of 3D image 
blocks, it is still hard to correctly classify 3D image 
blocks with weak signals, close signals, wind sig-
nals, complex neuronal structures and so on. In fact, 

Fig. 7  Accuracy rates of 3D-ResNet-LSTM and FCNN-LSTM with 
different sequence lengths

Table 5  Results of the 3D-SSM model with different sequence lengths in LSTMs

Numbers with underline are the best results among all models

Dataset Length = 2 Length = 3 Length = 4 Length = 5

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Training 87.02±0.16 88.46±0.13 87.04± 0.05 88.50± 0.04 86.99±0.14 88.24±0.14 86.96±0.16 88.22±0.15

Test 83.87±0.09 85.43±0.10 84.07± 0.17 85.47± 0.28 83.63±0.13 85.42±0.15 83.60±0.15 85.40±0.18
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the tracing difficulty classification task on 3D image 
blocks is much more difficult than traditional image 
classification tasks. Firstly, 3D image blocks have a 

much higher dimension, more parameters need to 
be learned, and model optimization is more diffi-
cult. Secondly, the number of neuronal fragments, 

Fig. 8  Examples of five types of correctly classified samples by 3D-SSM

Table 6  Classification results of trained models with different sequence lengths on brain-B

Numbers with underline are the best results among all models

Length 3D-ResNet-LSTM FCNN-LSTM 3D-SSM

Accuracy F1 Accuracy F1 Accuracy F1

2 82.32 86.83 75.20 78.96 82.31 86.53

3 82.17 86.67 74.59 78.29 83.21 87.26

4 82.07 86.61 74.85 78.55 82.91 86.97

5 82.46 87.01 73.75 77.43 83.03 87.14
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signal strengths, signal quantity, signal directions, 
signal shapes and so on are quite different for differ-
ent 3D image blocks, so it is hard for a model to learn 
enough advanced features which can well distinguish 
low-TDBs and high-TDBs. Although it is difficult to 
classify the tracing difficulty of 3D image blocks, this 
task is important for interacting between automatic 
tracing and manual reconstructing, and we will fur-
ther explore it from the perspective of producing more 
accurate data and designing better models.
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