
Pham ﻿Brain Inf.            (2021) 8:22  
https://doi.org/10.1186/s40708-021-00143-3

RESEARCH

Recurrence eigenvalues of movements 
from brain signals
Tuan D. Pham*   

Abstract 

The ability to characterize muscle activities or skilled movements controlled by signals from neurons in the motor 
cortex of the brain has many useful implications, ranging from biomedical perspectives to brain–computer interfaces. 
This paper presents the method of recurrence eigenvalues for differentiating moving patterns in non-mammalian and 
human models. The non-mammalian models of Caenorhabditis elegans have been studied for gaining insights into 
behavioral genetics and discovery of human disease genes. Systematic probing of the movement of these worms is 
known to be useful for these purposes. Study of dynamics of normal and mutant worms is important in behavioral 
genetic and neuroscience. However, methods for quantifying complexity of worm movement using time series are 
still not well explored. Neurodegenerative diseases adversely affect gait and mobility. There is a need to accurately 
quantify gait dynamics of these diseases and differentiate them from the healthy control to better understand their 
pathophysiology that may lead to more effective therapeutic interventions. This paper attempts to explore the 
potential application of the method for determining the largest eigenvalues of convolutional fuzzy recurrence plots 
of time series for measuring the complexity of moving patterns of Caenorhabditis elegans and neurodegenerative 
disease subjects. Results obtained from analyses demonstrate that the largest recurrence eigenvalues can differenti-
ate phenotypes of behavioral dynamics between wild type and mutant strains of Caenorhabditis elegans; and walking 
patterns among healthy control subjects and patients with Parkinson’s disease, Huntington’s disease, or amyotrophic 
lateral sclerosis.
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1  Introduction
Caenorhabditis elegans is a nematode or roundworm 
about 1 mm in length [1] and commonly used as a model 
organism in the study of genetics because of its powerful 
genetics and fully characterized simple nervous system 
[2, 3]. The nervous system of the C. elegans hermaphro-
dite consists of 302 neurons that form 118 morphologi-
cally distinct neuron classes [4]. These neurons activate 
many distinct stimulus modalities and then combine 
them to produce distinct patterns of behavior [5, 6].

The study of the movement of C. elegans is important 
because the knowledge gained from understanding the 
mechanism underlying the moving of these worms can 
be useful for discovering new characteristics in behavio-
ral genetics. It is known that behavior is a visual display 
of sensitive and integrative information of nervous sys-
tem function and plays as an effective measure for evalu-
ating the effects of mutation or efficacy of drug treatment 
for animals [7]. Ultimately, such knowledge is expected 
to provide potential alternatives for better diagnosis and 
therapeutics of human disease [8].

An interesting study reported in [9] carried out an 
experiment on the movements of C. elegans. An explana-
tory summary of the study can be found online (https://​
ilove​sympo​sia.​com/​2008/​10/​02/​eigen​worms/). In this 
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study of the dimensionality and dynamics of C. elegans, 
the shape of a worm was modeled as a vector of 100 
angles measured between 101 adjacent segments. Con-
sequently, a 100 × 100 correlation matrix was then con-
structed and its 100 eigenvalues were computed. The 
study discovered that only 4 of the 100 eigenvalues 
accounted for more than 90% of the variability of worm 
shapes. These 4 eigenvectors define 4 fundamental worm 
shapes, which are called eigenworms. As a finding, the 
worm motion could be categorized into four character-
istic shapes whose combination can describe any shape 
that the worm can form. The first two eigenworms, 
which correlate with a wave propagating along the body 
of a worm, contribute to the forward motion. The third 
eigenworm correlates with the curvature whose varia-
tions navigate the movement of a worm along its trajec-
tory. Finally, the fourth eigenworm correlates with the 
movement of the worm’s head as it searches for food and 
traverses.

As an important step toward the elucidation of behav-
ior in C. elegans, an ability to measure the difference 
between patterns of motion of these worm types is nec-
essary to allow for pattern prediction that can provide 
insights into the control of the dynamics of movement 
[10]. It is therefore of interest to explore methods for 
quantifying and differentiating complexity in time and 
vision series of eigenworm motions between wild type 
and mutant strains of C. elegans [10, 11].

Neurodegenerative diseases affect many physical activ-
ities of the patients, particularly balance and movement. 
Many of these diseases are thought to be gene inheritance 
disorders, but the cause is largely unknown [12]. Dis-
eases of degenerative nerves can be life-threatening and 
currently have no cure. Therefore, effective treatments, 
including medications and surgery, may help the patients 
improve mobility and relieve pain. Gait impairment is 
a common symptom in neurodegenerative disorders. 
Specifically, gait variability, which is the stride-to-stride 
fluctuations measured with time, has been known to be 
associated with neurodegeneration [13].

Several studies on gait dynamics in human neuro-
degeneration have been reported in literature [14–19]. 
These studies attempted to discover new features of 
gait time series mainly used for pattern classification of 
healthy control (HC), Parkinson’s disease (PD), Hun-
tington’s disease (HD), and amyotrophic lateral sclerosis 
(ALS) subjects. However, quantitative characterization of 
gait and its impairments has not been well investigated. 
New computational methods that can provide scalar 
values to represent some attributes of the gait dynam-
ics of the HC and diseases can be useful because these 

quantitative descriptors can used for early disease detec-
tion or physiological makers.

In this paper, the method for computing the largest 
eigenvalue of a convolutional fuzzy recurrence plot of 
time series [20] is investigated for measuring the quantity 
of the complexity of behavioral and moving patterns of 
eigenworm behavioral phenotypes of different C. elegans 
strains, and patients with neurodegenerative disorders 
(PD, HD, and ALS) and HC subjects. Here, based on the 
concepts of nonlinear dynamics and chaos theory, time 
series of the time series are reconstructed into phase 
space sets and their matrices of spatial recurrence fea-
tures extracted. A convolutional kernel is then iteratively 
applied on these recurrence features to encode feature 
invariance. Finally, the largest eigenvalues of the deep-
est convolutional recurrence matrices are determined 
and used as indicators of complexity of motion or walk-
ing patterns in different worm types or human subjects, 
respectively.

2 � Materials and methods
2.1 � Eigenworm data
The time-series dataset used in this study was described 
in [21]. The data relate to 258 traces of worms converted 
into eigenworm time series. Worm motions on an agar 
plate were recorded and a range of human-defined fea-
tures measured [22]. The worm outline was extracted, 
where each frame of the worm motion was captured and 
represented with amplitudes when the shape was pro-
jected onto the eigenworms. There are five classes of C. 
elegans: N2, goa-1, unc-1, unc-38, and un63. The N2 is 
wild type (normal), and the other four are mutant strains. 
This dataset, which is publicly available online [23], 
consists of the time series of the first dimension or first 
eigenworm. Table 1 shows the number and length of the 
time series of each of the five worm types.

2.2 � Gait in neurodegenerative disease data
This third-party public database [24] includes gait sig-
nals recorded from patients with PD, HD, ALS, and HC 
subjects. The database also provides clinical information 
for each subject, including age, gender, height, weight, 

Table 1  Caenorhabditis elegans data

Worm class Number of time series Length

N2 (wild type) 109 900

goa-1 (mutant) 44 900

unc-1 (mutant) 35 900

unc-38 (mutant) 45 900

unc-63 (mutant) 25 900
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walking speed, and a measure of disease severity or dura-
tion. The signals were obtained using force-sensitive 
resistors, with output proportional to the force under 
the foot. Stride-to-stride measures of footfall contact 
times were derived from these signals. Detailed infor-
mation about these data was provided in [25, 26]. Both 
time series of the left swing interval (LSI) and right swing 
interval (RSI) are used in this study. Both LSI and RSI 
were measured in seconds. Because these original time 
series have not been filtered, they are filtered using 1-D 
median filtering that applies a third-order one-dimen-
sional median filter to the input time series and considers 
the signal to be zero beyond the endpoints. To ensure the 
time series of all subjects are of the same length, all the 
time series have a truncated length of the first 120 time 
points, which is equivalent to the original shortest time-
series length. Table 2 shows the numbers of HC, PD, HD, 
and ALS subjects and truncated length of the LSI and RSI 
time series.

2.3 � Eigenvalues of recurrence dynamics
A sequence of values in time can be transformed into 
an object in space, which is called the phase space of a 
dynamical system, and the object in the phase space is 
referred to as the phase space set. Such a transformation 
is particularly useful because some properties underly-
ing complex data can be more easily discovered from 
the phase space set than from the original time series 
[27]. According to the embedding theorem [28, 29], it 
is always possible to reconstruct the phase space from a 
time series. A popular method for the phase-space recon-
struction is the technique of time delay [28, 29], which is 
applied for reconstructing the phase space of the eigen-
worm time series as follows.

Let t = (t1, t2, . . . , tN ) be a time series of sca-
lar values generated by the eigenworm motion. 
Given m as an embedding dimension and τ as a 
time delay, the time series t can be reconstructed as 
X = (x1, x2, . . . , xM)T , where M = N − (m− 1)τ , and 
xi = (ti, ti+τ , ti+2τ , . . . , ti+(m−1)τ ) . Now it can be seen 
that the time series t can be transformed into X that is 

expressed as a matrix, where each row is a phase-space 
vector xi , i = 1, 2, . . . ,M.

Based on the phase space set reconstructed from 
a time series, a method for studying behaviors of sys-
tems of nonlinear dynamics is the recurrence plotting 
that examines the revisit or recurrence of the trajec-
tory in the phase space [30]. A recurrence plot (RP) is a 
binary symmetrical matrix showing either pairs of time 
points at which the trajectory is at the same place (rep-
resenting with a black dot) or not (representing with 
a white dot). As an extended algorithm of an RP, the 
construction of a fuzzy recurrence plot (FRP) [31] was 
introduced to overcome the difficulty for determining 
the threshold for similarity and limited binary expres-
sion of recurrence imposed by the RP method. An FRP 
represents the recurrence of the trajectory in the phase 
space as a grayscale image taking values in [0, 1], where 
0 is a black pixel, 1 a white pixel, and other values gray 
pixels. The construction of an FRP works by partition-
ing X into a number of clusters, denoted as c, using the 
fuzzy c-means (FCM) algorithm [32]. The FCM assigns 
a fuzzy membership grade, denoted as µij taking values 
in [0, 1], to each xi , i = 1, 2, . . . ,M , with respect to each 
cluster center vj , j = 1, 2, . . . , c . The fuzzy member-
ship variable µij expresses the degree that xi possibly 
belongs to vj.

The FRP method applies the two following properties:

•	 Reflexivity: 

•	 Symmetry: 

The fuzzy relation between the pairs of the phase-space 
vectors xi and xk ; i, k = 1, 2, . . . ,M can be inferred by 
transitivity using the max–min composition operator 
[33] as

•	 Transitivity: 

As a result, an FRP is a square grayscale image or 
matrix defined as

By using on the concept of convolutional filtering in deep 
learning for invariant feature extraction of image objects, 

(1)µii = 1, i = 1, 2, . . . ,M.

(2)µij = µji, i = 1, . . . ,M, j = 1, 2, . . . , c.

(3)µik = max[min(µij ,µjk)], j = 1, . . . , c.

(4)FRP =







µ11 µ12 . . . µ1M

µ21 µ22 . . . µ2M

.̇ .̇ .̇ .̇

µM1 µM2 . . . µMM






.

Table 2  Gait in neurodegenerative disease data

Cohort Number of subjects Length of 
LSI and RSI

HC 16 120

PD 15 120

HD 20 120

ALS 13 120
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where convolutional layers are building blocks for the 
design of convolutional neural networks [34], a deep con-
volutional FRP, denoted as cFRP, can be performed by a 
series of convolutions of the FRP and a convolution ker-
nel as [20]

where w is a convolution kernel and ⊛ denotes the convo-
lutional operator.

In this study, the kernel is used as a sharpening-effect 
3× 3 matrix, whose elements are given as

After each step of the convolution, the rectified linear 
unit (ReLU) is then applied to eliminate negative values 
of the cFRP. The ReLU for a cFRP returns a zero or posi-
tive value to each element cFRP(i, k) as

The next step is to reduce the size of the convolved FRP 
by using a pooling operator, which aims to reduce the 
dimensionality of a convolutional feature map but still 
keeps the useful information. Different types of pool-
ing include the max, average, or sum operator. A popu-
lar choice for the pooling of a convolutional matrix in 
deep learning is the max pooling operator. Let a set 
of pooling regions be � = (�1,�2, . . . ,�Q) , where 
�q = (ωq,1,ωq,2, . . . ,ωq,m×m) , q = 1, 2, . . . ,Q . The num-
ber of pooling regions Q within a convolutional matrix is 
determined by the pool size m×m and stride that is the 
step size for traversing the convolutional FRP. The max 
pooling that operates on a pooling region of size m×m , 
denoted as Pmax , is defined as

Finally, the eigenvalues of a cFRP having a certain small 
square matrix size can be determined, where the largest 
eigenvalue, denoted as �max , is used as the characteristic 
value of recurrence dynamics.

(5)cFRP = w ⊛ FRP,

(6)w =





0 − 1 0

−1 5 − 1

0 − 1 0



 .

(7)
cFRP

∗(i, k) = max[0, cFRP(i, k)]; i, k = 1, 2, . . . ,M.

(8)Pmax(�q) = max
1≤l≤m×m

(ωq,l).

Procedure for computing the largest eigenvalue of a 
cFRP:

1	 Input: an N × N  FRP
2	 Given w, ReLU, pool size, and stride
3	 Given n as the desired final n× n convolved FRP
4	 While N > n

5	 Perform convolution of the FRP and w.
6	 Apply ReLU on the convolved FRP.
7	 Perform max pooling on the convolved FRP.
8	 End While loop.
9	 If N = n , compute the largest eigenvalue of the n× n 

cFRP.

Figure  1 shows the iterative process for computing 
the final convolved FRP whose largest eigenvalue is 
determined.

3 � Results
3.1 � Eigenworm behavioral phenotypes
To determine the largest eigenvalues from the time series 
of the C. elegans behavioral phenotypes presented in 
the foregoing section, the embedding dimension m = 4 
was selected based on the identification of the four prin-
cipal dimensions of the eigenworms, time delay τ = 1, 
and number of clusters c = 3, 5, and 7. Figure  2 shows 
some time series and FRPs of the five C. elegans classes, 
where the FRPs were constructed with m = 4, τ = 1, and 
c = 3. It can be seen that, the texture of the FRP of N2 
(wild type or normal) is distinctive from the four mutant 
classes (goa-1, unc-1, unc-38, and unc-63), while the tex-
ture patterns of (goa-1 and unc-1) and (unc-38 and unc-
63) are similar to each other.

To compute the largest eigenvalues, the size of the final 
cFRPs for the five C. elegans classes was set as n = 2, that 
is a 2× 2 matrix, to allow the deepest feature extraction 
based on the deep-learning approach.

Table  3 shows the average largest eigenvalues and 
standard deviations (SDs) of the C. elegans behavioral 
dynamics with embedding dimension = 4 and different 
numbers of clusters. Table 3 also shows the p-values, 95% 

Fig. 1  Process for computing the largest eigenvalue of a convolutional FRP
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confidence intervals (95% CI), and 99% confidence inter-
vals (99% CI) of largest eigenvalues.

To compare the results obtained from the largest eigen-
values with one of the most popular methods for quan-
tifying the fluctuation or predictability of time series, 
the method of sample entropy (SampEn) [35] was used 

to compute the SampEn values of the time series of the 
five C. elegans types. Input parameters for comput-
ing SampEn values of the time series were selected 
as: embedding dimension m = 4, time delay τ = 1, and 
threshold δ = 0.1σ , 0.2σ , and 0.3σ , where σ is the stand-
ard deviation of the time series (a practical and well-
adopted selection of δ was suggested to be between 0.1σ 
and 0.25σ [36, 37]). Table  4 shows the average SampEn 
values and SDs of the C. elegans dynamics with different 
values for δ as well as the p-values, 95% CIs, and 99% CIs.

3.2 � Gait in neurodegenerative diseases
To determine the largest eigenvalues from the time series 
of gait patterns of the HC, PD, HD, and ALS cohorts, 
the embedding dimension m = 1 was selected based on 
the one dimension of the signals, time delay τ = 1, and 
number of clusters c = 3. Figures 3 and 4 show some time 
series and FRPs of the HC, PD, HD, and ALS subjects. 
Being similar to the case of the C. elegans, to compute 
the largest eigenvalues, the size of the final cFRPs for the 
HC, PD, HD, and ALS time series was set as n = 2, that 
is a 2× 2 matrix, to allow the deepest feature extraction 
based on the deep-learning approach.

Table  5 shows the average largest eigenvalues with 
standard deviations (SDs), p-values, 95% confidence 
intervals (95% CI), and 99% confidence intervals (99% CI) 
of the LSI and RSI of the HC, PD, HD, and ALS subjects. 
Table 6 shows the average SampEn values with standard 
deviations (SDs), p-values, 95% confidence intervals (95% 
CI), and 99% confidence intervals (99% CI) of the LSI and 
RSI of the HC, PD, HD, and ALS subjects. Input parame-
ters for computing SampEn values of the time series were 
selected as: embedding dimension m = 2 (m = 1 result-
ing in some SampEn values = ∞ ), time delay τ = 1, and 
threshold δ = 0.3σ.

4 � Discussion
The average largest eigenvalues of the eigenworm recur-
rence dynamics that were computed with the embed-
ding dimension of 4 show consistently with evidence of 
statistical significance that the average largest eigenvalues 
of N2 (wild type/normal) are smaller than those of the 
four mutant worms with c = 3 and 5. The mutant type 
goa-63 has the average largest eigenvalues for c = 3 and 
5. The goa-1 has the largest average largest eigenvalue for 
c = 7, but the average largest eigenvalue of N2 (5.2862) is 
slightly larger than unc-1 (5.2543). The mutant type unc-
38 has the smallest average largest eigenvalues among the 
other three mutant types for both c = 3 and 5. However, 
the upper bounds of 95% and 99% CIs of the four mutants 
are higher than those of the wild type for all three differ-
ent numbers of clusters. In general, these results suggest 
the use of c being either 3 or 5 for producing consistent 

(a) N2 (b) N2

(c) goa-1 (d) goa-1

(e) unc-1 (f) unc-1

(g) unc-38 (h) unc-38

(i) unc-63 (j) unc-63
Fig. 2  Time series (left) and fuzzy recurrence plots (right) of wild type 
(a, b) and mutant (c–j) Caenorhabditis elegans 
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results, and the use of the maximum eigenvalues of cFRPs 
can differentiate between wild type and mutant classes of 
C. elegans.

In contrast to the maximum eigenvalues, the average 
SampEn values of the wild type for all three thresholds 
are smaller than those of mutant types goa-1 and unc-1 
but larger than those of mutant types unc-38 and unc-63. 

Such results suggest the SampEn method fails to differ-
entiate between the wild type and mutant strains of C. 
elegans.

For the analysis of gait dynamics, the results shown in 
Table 5 consistently indicate that the average eigenvalue 
of the HC is lower than those of the patients with neu-
rodegenerative disorders using either LSI or RSI data. 

Table 3  Average largest eigenvalues and confidence intervals of eigenworm recurrence behavior

Worm class Mean ± SD p-value 95% CI 99% CI

m = 4, τ = 1, c = 3

N2 (wild type) 5.4800 ± 0.8322 5.5114e-91 (5.3220, 5.6380) (5.2710, 5.6890)

goa-1 (mutant) 5.5729 ± 0.8274 1.1304e-37 (5.3213, 5.8244) (5.2367, 5.9091)

unc-1 (mutant) 5.5454 ± 0.6354 6.8754e-34 (5.3272, 5.7637) (5.2524, 5.8385)

unc-38 (mutant) 5.5037 ± 0.7124 4.4008e-41 (5.2896, 5.7177) (5.2178, 5.7896)

unc-63 (mutant) 5.7802 ± 1.0175 5.5225e-20 (5.3602, 6.2002) (5.2110, 6.3494)

m = 4, τ = 1, c = 5

N2 (wild type) 5.2741 ± 0.4828 2.1497e-114 (5.1825, 5.3658) (5.1529, 5.3954)

goa-1 (mutant) 5.4309 ± 0.5718 5.4091e-44 (5.2571, 5.6048) (5.1986, 5.6633)

unc-1 (mutant) 5.4701 ± 0.7688 6.4414e-31 (5.2060, 5.7342) (5.1155, 5.8247)

unc-38 (mutant) 5.3694 ± 0.5343 4.7729e-46 (5.2089, 5.5299) (5.1550, 5.5838)

unc-63 (mutant) 5.6012 ± 0.8915 5.2205e-21 (5.2333, 5.9692) (5.1026, 6.0999)

m = 4, τ = 1, c = 7

N2 (wild type) 5.2862 ± 0.4946 2.2152e−113 (5.1923, 5.3801) (5.1620, 5.4104)

goa-1 (mutant) 5.5029 ± 0.6823 5.5972e−41 (5.2955, 5.7104) (5.2257, 5.7802)

unc-1 (mutant) 5.2543 ± 0.5388 1.6446e−35 (5.0692, 5.4394) (5.0058, 5.5028)

unc-38 (mutant) 5.3543 ± 0.4108 5.5942e−51 (5.2308, 5.4777) (5.1894, 5.5191)

unc-63 (mutant) 5.3377 ± 0.3878 4.3521e−29 (5.1777, 5.4978) (5.1208, 5.5546)

Table 4  Average SampEn values and confidence intervals of eigenworm recurrence behavior

Worm class Mean ± SD p-value 95% CI 99% CI

m = 4, τ = 1, δ = 0.1σ

N2 (wild type) 0.3091 ± 0.2032 5.1478e−30 (0.2705, 0.3477) (0.2580, 0.3601)

goa-1 (mutant) 0.4239 ± 0.1309 1.2866e−24 (0.3841, 0.4637) (0.3707, 0.4770)

unc-1 (mutant) 0.4692 ± 0.2278 5.8924e−14 (0.3909, 0.5475) (0.3641, 0.5743)

unc-38 (mutant) 0.2169 ± 0.1342 5.2455e−14 (0.1766, 0.2572) (0.1630, 0.2708)

unc-63 (mutant) 0.1723 ± 0.1003 8.6758e−09 (0.1309, 0.2137) (0.1162, 0.2284)

m = 4, τ = 1, δ = 0.2σ

N2 (wild type) 0.1845 ± 0.1326 3.7199e−27 (0.1593, 0.2097) (0.1512, 0.2178)

goa-1 (mutant) 0.2666 ± 0.0916 8.4893e−23 (0.2387, 0.2945) (0.2294, 0.3038)

unc-1 (mutant) 0.2423 ± 0.1306 1.0195e−12 (0.1974, 0.2871) (0.1820, 0.3025)

unc-38 (mutant) 0.1020 ± 0.0548 4.7314e−16 (0.0855, 0.1185) (0.0800, 0.1240)

unc-63 (mutant) 0.0753 ± 0.0419 3.8214e−09 (0.0580, 0.0925) (0.0518, 0.0987)

m = 4, τ = 1, δ = 0.3σ

N2 (wild type) 0.1261 ± 0.0833 7.2039e−30 (0.1103, 0.1419) (0.1052, 0.1470)

goa-1 (mutant) 0.2039 ± 0.0759 1.8169e−21 (0.1808, 0.2270) (0.1731, 0.2347)

unc-1 (mutant) 0.1485 ± 0.0916 3.3498e−11 (0.1171, 0.1800) (0.1063, 0.1908)

unc-38 (mutant) 0.0612 ± 0.0281 1.8702e−18 (0.0527, 0.0696) (0.0499, 0.0725)

unc-63 (mutant) 0.0431 ± 0.0233 2.1791e−09 (0.0335, 0.0527) (0.0301, 0.0562)
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While the eigenvalues of PD, HD, and ALS are closer 
together, the eigenvalues of HD and ALS are closest 
for the case of LSI; but PD and HD are closest for RSI 
(see phylogenetic trees in Figure 5a, b, which were con-
structed using the unweighted pair group method with 
arithmetic mean (UPGMA) [38]). In both cases of LSI 
and RSI, the HC is clearly separated from the neurode-
generative−disorder cohort (Figure 5a, b).

On the contrary, values of the SampEn computed using 
either LSI and RSI time series as shown in Table 6 do not 
differentiate gait patterns between the HC and neurode-
generative-disorder subjects. These results can be visual-
ized with the phylogenetic trees in Fig. 5c, d constructed 

using the UPGMA, where HC and HD are located in the 
same group (Fig. 5c) for the case of the LSI, and HC and 
ALS in the same group (Fig. 5d) for the RSI. Furthermore, 
for SampEn analysis of gait patterns of HC, PD, HD, and 
ALS subjects, it was found that for m = 1, SampEn = ∞ 
for some LSI and RSI time series. This was because no 
similarity between sub-segments of the time series had 
been detected, giving a conditional probability of zero 
and resulted in an infinite value of SampEn. Therefore, 
m=2 was then chosen.

Findings from the eigenvalues of gait suggest that LSI 
and RWI are potential markers of neurodegenerative 

(a) HC (b) HC

(c) PD (d) PD

(e) HD (f) HD

(g) ALS (h) ALS
Fig. 3  Time series of left swing intervals (left) and fuzzy recurrence 
plots (right) of healthy control and neurodegenerative subjects

(a) HC (b) HC

(c) PD (d) PD

(e) HD (f) HD

(g) ALS (h) ALS
Fig. 4  Time series of right swing intervals (left) and fuzzy recurrence 
plots (right) of healthy control and neurodegenerative subjects
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disorders, which can help identify early stage of the dis-
eases for optimal treatment and intervention.

In deep learning, which is the state-of-the-art of arti-
ficial intelligence, convolutional layers, which perform 
convolution operations, are the critical basic units imple-
mented in convolutional neural networks. In functional 
analysis, a convolution is a mathematical operation on 
two functions or in this case it applies a kernel to an 
input, resulting in a transformed feature that expresses 
how the property of the original input is modified by the 
kernel. The iterative operation of the same kernel to the 
subsequent inputs results in a powerful feature map that 
can be used for classifying images of different objects. 
This application of the same kernel across an input image 
is a powerful idea [39].

In this study, the filter kernel was designed to sharpen 
edges or fuzzy information of the input FRP. The kernel, 
which was repeatedly applied across the FRP after the 
operations of the ReLU and max pooling, allowed the 
creation of deep features in the down-sampled FRPs. 
This ability of the AI method is commonly referred to as 
translational invariance that has been proven to be robust 
for addressing prediction problems [39]. This deep-learn-
ing mechanism offers an insight into the capability of the 
cFRP-based eigenvalues for identifying the dynamics of 
movements controlled by brain signals.

5 � Conclusion
The proposed algorithm for computing the largest eigen-
values of convolutional fuzzy recurrence plots of time 
series can differentiate normal from mutant types of Cae-
norhabditis elegans, and gait patterns between healthy 
control subjects and patients with neurodegenerative 
disorders. Methods for prediction of worm types by 
using time series of spatial movements recorded from 
the eigenworms are needed to assist life-science and 
neuroscience researchers to gain deeper understand-
ing of the genetic basis of behavior and facilitate stud-
ies to probe how molecular, cellular, and systems-level 
approaches can use sensory inputs to infer neural circuits 
and behaviors [6] as well as other complex neural actions 
[40]. The eigenvalues of left and right swing intervals of 
gait dynamics can be useful for gaining insight into the 
dynamics of the sub-phases of the stride as well as effect 
of the diseases on gait asymmetry, and potentially used as 
markers of disease progresses.

The method for computing eigenvalues of a convolu-
tional FRP appears to be a useful computational tool for 
nonlinear time-series analysis to quantify other types of 
behavioral dynamics and movements produced from 
brain signals. There are several other different filter ker-
nels that can be explored and implemented either sepa-
rately or parallelly to extract deep feature maps of FRPs 

Table 5  Average largest eigenvalues and confidence intervals of 
left and right swing intervals

Cohort Mean ± SD p-value 95% CI 99% CI

Left swing interval

 HC 5.9875 ± 
1.0132

2.7660e−13 (5.4476, 
6.5274)

(5.2411, 6.7339)

 PD 6.2174 ± 
0.8175

5.3718e−14 (5.7647, 
6.6701)

(5.5891, 6.8458)

 HD 6.4782 ± 
0.9651

1.7884e−17 (6.0266, 
6.9299)

(5.8608, 7.0956)

 ALS 6.3764 ± 
1.0848

7.0810e−11 (5.7209, 
7.0320)

(5.4574, 7.2954)

Right swing interval

 HC 6.3076 ± 
1.1803

1.2009e−12 (5.6786, 
6.9365)

(5.4380, 7.1771)

 PD 6.5289 ± 
1.2089

5.8534e−12 (5.8594, 
7.1983)

(5.5997, 7.4581)

 HD 6.5297 ± 
0.9547

1.2600e−17 (6.0829, 
6.9765)

(5.9190, 7.1404)

 ALS 6.6049 ± 
1.0707

4.0205e−11 (5.9579, 
7.2519)

(5.6979, 7.5120)

Table 6  Average SampEn values and confidence intervals of left 
and right swing intervals

Cohort Mean ± SD p-value 95% CI 99% CI

Left swing interval

 HC 1.0265 ± 
0.2934

5.1449e−10 (0.8702, 
1.1829)

(0.8104, 1.2427)

 PD 0.8603 ± 
0.2849

1.2989e−08 (0.7025, 
1.0180)

(0.6413, 1.0792)

 HD 1.0914 ± 
0.2077

1.6635e−15 (0.9942, 
1.1886)

(0.9586, 1.2243)

 ALS 0.9138 ± 
0.2606

2.7036e−08 (0.7563, 
1.0713)

(0.6930, 1.1346)

Right swing interval

 HC 0.9627 ± 
0.3257

5.2881e−09 (0.7891, 
1.1362)

(0.7228, 1.2026)

 PD 0.8592 ± 
0.3037

2.9780e−08 (0.6910, 
1.0274)

(0.6258, 1.0927)

 HD 1.0843 ± 
0.2923

9.2497e−13 (0.9475, 
1.2211)

(0.8973, 1.2713)

 ALS 0.9523 ± 
0.3480

4.1369e−07 (0.7420, 
1.1625)

(0.6575, 1.2471)
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to enhance the discriminatory power of the convolu-
tional eigenvalue method for intraclass identification. 
Such a future study, if being successful, will be very useful 
because it can overcome the difficulty for using machine 
learning when training data are limited and the cost for 
data acquisition can be expensive.
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