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Localization of epileptic seizure focus 
by computerized analysis of fMRI recordings
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Abstract 

By computerized analysis of cortical activity recorded via fMRI for pediatric epilepsy patients, we implement algorith-
mic localization of epileptic seizure focus within one of eight cortical lobes. Our innovative machine learning tech-
niques involve intensive analysis of large matrices of mutual information coefficients between pairs of anatomically 
identified cortical regions. Drastic selection of pairs of regions with biologically significant inter-connectivity provides 
efficient inputs for our multi-layer perceptron (MLP) classifier. By imposing rigorous parameter parsimony to avoid 
overfitting, we construct a small-size MLP with very good percentages of successful classification.

Keywords:  Time series, Deep learning, Mutual information, fMRI, Epilepsy, Seizure focus

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea-
tivecommons.org/licenses/by/4.0/.

1  Introduction
Epilepsy is a common brain disorder that affects 6 out 
of 1000 children in the United States [36, 52]. Although 
medication is the mainstay of treatment for these 
patients, seizures are resistant to anti-epileptogenic 
drugs in approximately 30% of children. Such medically 
refractory epilepsies are frequently “focal”, defined as 
originating habitually from a relatively localized region 
of the brain. In appropriately selected patients, resection 
of this localized seizure origin can be curative. Despite 
the promise of this approach, surgical outcomes remain 
highly variable, even in optimal candidates [6, 7, 17, 24]. 
Emerging studies motivated by these inconsistencies 
have demonstrated that pediatric focal epilepsy is not 
a localized disorder, but rather a disease of large-scale, 
distributed neural networks [40]. Furthermore, rather 
than resulting from abnormal activity generated by one 
or more abnormal foci, the primary organization of sei-
zure origin occurs within a functionally and anatomically 
connected set of brain regions—a seizure network [2]. 
Although the exact relationship between ictal dynamics 
and the inter-ictal seizure network remains to be defined, 
pathologic connectivity within the seizure network likely 

contributes to the transition between inter-ictal and 
ictal states [40, 43]. In other words, the capacity of this 
network for seizure generation results not only from 
abnormal hyperactivity within intrinsically dysplastic 
neural elements, but also from abnormal interactions 
between otherwise “normal” brain predisposed by patho-
logic interictal connectivity within the seizure network 
[38, 43]. In some cases this network may be relatively 
restricted in extent; at other times, it encompasses neu-
ronal populations dispersed throughout multiple distant 
brain structures [40, 50]. Regardless of extent, failure to 
sufficiently resect or disconnect the seizure network may 
be associated with continued seizures after removal of 
the seizure focus, thereby contributing to surgical failure 
[1, 18]. At the current time, there is no modality that can 
accurately map the extent of the seizure network.

Advances in MRI combined with mathematical net-
work approaches have demonstrated great potential 
to study brain networks non-invasively in a variety of 
populations, including children with focal epilepsy [4, 
5, 20, 21, 41, 45–47]. Resting-state functional MRI is 
one method by which connectivity in the brain can be 
measured. This sequence quantifies the blood oxygen 
level dependent (BOLD) signal over time as an indirect 
measure of neuronal activity [3, 25]. Functionally con-
nected elements of the brain exhibit similar spontane-
ous BOLD signal fluctuations at rest [3], which enables 
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one to capture interactions between brain regions 
in  vivo. Within the network framework, the brain is 
represented as a graph, a mathematical construct con-
sisting of a set of nodes connected by edges [12, 14, 
26, 28, 30, 41, 42]. The nodes are defined as anatomi-
cal regions of the brain; the edge between each pair 
of nodes is estimated as the magnitude of association 
between their BOLD time series [14, 23, 29, 34, 53]. 
Studies based on such resting state functional network 
constructs have consistently shown global aberrations 
of the epileptic brain from normal; they have also dem-
onstrated that network features have the potential to 
predict clinically relevant aspects of brain function in 
children with epilepsy [22, 26, 28, 30, 32, 38, 44, 55]. 
However, little data exist regarding the use of neuroim-
aging-defined network models to identify the seizure 
network in an individual child.

The goal of this study was to assess the potential of 
MR imaging-defined networks to depict seizure net-
works. Specifically, we trained an artificial neural net-
work (ANN) to identify the location of seizure origin 
given access only to features derived from a resting-
state functional network. We measured the accuracy of 
the learning algorithm against the lobe of seizure origin 
determined at multidisciplinary epilepsy surgery confer-
ence. We selected this reference standard—which relies 
on the consensus of multiple objective tests as well as the 
clinical expertise from multiple disciplines—as an accu-
rate and reliable assessment of the lobe of seizure origin 
[18, 56]. Identification of the lobe of seizure origin can be 
considered an initial step toward the ultimate validation 
of the potential for resting-state functional networks to 
visualize seizure networks in children with focal epilepsy.

2 � Methods
2.1 � Patients
The HIPAA-compliant study was approved by the local 
institutional review board. Informed consent was waived 
for this retrospective study. Patient medical records were 
retrospectively reviewed to identify patients with the fol-
lowing inclusion criteria: (1) pediatric age group (21 years 
of age or younger); (2) a clinical diagnosis of focal epi-
lepsy; (3) an available 3-T MR imaging of brain, includ-
ing a resting-state fMRI sequence; and (4) lobe of seizure 
origin identified at multidisciplinary epilepsy conference. 
This determination relies on the consensus of multiple 
objective tests (including MRI and EEG) as well as the 
clinical expertise from multiple disciplines (including 
Neurology, Neurosurgery, and Neuroradiology) [19, 20]. 
Images were performed from January 2012 to December 
2017. Forty-six patients were included. Lobe diagnoses 
for the cohort are presented in Table 1.

2.2 � MR imaging
All imaging was performed on a 3-T Achieva system 
(Philips, Andover, Massachusetts) with a 32-channel 
phased array coil. The following sequences were obtained: 
1. Structural images: sagittal volumetric T1-weighted 
images [repetition time (TR)/echo time (TE): 7.2/2.9 ms; 
1 acquisition; flip angle: 7°, inversion time: 1100 ms; field 
of view (FOV): 22  cm; voxel size (mm): 1 × 1 × 1)]. 2. 
Resting state fMRI: axial single-shot echo planar imaging 
(EPI) fMRI [TR/TE (ms): 2000/30; flip angle: 80°; 1 acqui-
sition; FOV: 24 cm; voxel (mm): 3 × 3 × 3.75; 300 volumes 
(duration: 10  min)] performed in the resting state. All 
images were visually inspected for artifacts, including 
susceptibility and subject motion.

2.3 � Image processing and analysis
The processing pipeline was implemented using MAT-
LAB scripts (version 7.13, MathWorks, Inc) in which 
adapter functions were embedded to execute FreeSurfer 
reconstruction (version 5.3.0) and several FMRIB Soft-
ware Library (FSL) suite tools [39]. Details regarding this 
pathway have been previously described [26, 28, 30]. A 
brief summary is provided here.

The reference space was created from images of one 
patient in our database, who had no visible abnormal-
ity and with optimal registration to MNI space [10]. 
Structural imaging data for each patient were aligned 
to a standard reference template (MNI152) using FSL’s 
non-linear registration algorithm [37, 39]. Nodes in 
the network were defined on the template according 
to parcellation of whole-brain gray matter as follows: 
First, FreeSurfer reconstruction of cerebral cortical sur-
faces was performed on the T1 structural image. This 
processing stream includes motion correction, skull 
stripping, intensity normalization, segmentation of 
white matter and gray matter structures, parcellation 
of the gray matter and white matter boundary, and sur-
face deformation following intensity gradients which 

Table 1  Lobe diagnosis of the cohort

The 5 classes are not perfectly disjoint because 4 patients were ambiguously 
diagnosed by clinicians and thus belong to 2 classes simultaneously (RT/C5, RF/
RT, LF/LT, LT/RF)

Lobe Frequency

Group 1—right frontal (RF) 10

Group 2—left frontal (LF) 8

Group 3—right temporal (RT) 7

Group 4—left temporal (LT) 11

Group 5—others: right and left parietal + right and left 
occipital (C5)

6
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optimally place the gray matter/white matter and gray 
matter/cerebrospinal fluid borders [8, 9]. The pial and 
gray-white surfaces were visually inspected using the 
Freeview software for accurate placement.

Next, a self-developed MATLAB program was 
applied to the FreeSurfer output to further subdivide 
the 148 standard gray matter regions according to their 
surface area [26–30]. During this process, each region 
was iteratively divided into two new regions of equal 
size until the surface area of each parcel (as defined on 
the FreeSurfer gray-white surface mesh) was less than 
a size threshold of 350 mm2. The final parcellation con-
tained 780 nodes. Each surface parcel was then con-
verted into a volume mask of gray matter at that region 
to form a node on the network. All nodes defined in 
reference space were transformed into each individual 
patient’s space by applying the non-linear transforma-
tion matrix (12 degrees-of-freedom) obtained during 
registration.

The first 5 volumes in each resting state functional 
data were removed to allow magnetization to reach 
equilibrium. Standard preprocessing and independent 
component analysis (ICA) of the functional data sets 
was performed using FSL MELODIC [39], consisting of 
motion correction, interleaved slice timing correction, 
brain extraction, spatial smoothing with a Gaussian ker-
nel full width at half maximum of 5 mm, and high pass 
temporal filtering equivalent to 100  s (0.01  Hz). Affine 
boundary-based registration as implemented in FSL 
FLIRT was then used to align the pre-processed func-
tional image volumes for each patient to that individual’s 
structural T1 dataset using linear registration [19]. The 
inverse transformation matrix was calculated in this step 
and subsequently used to transform all masks from struc-
tural to functional space. Mean BOLD-signal time series 
were then computed for each node.

2.3.1 � Mutual information between discrete random 
variables

Mutual information MI(X ,Y ) between two random 
variables X and Y  quantifies the amount of information 
brought by the knowledge of X for the prediction ofY  . 
This quantification is symmetric in X and Y  , and is based 
on the concept of conditional entropy. When X and Y  
can take only a finite number of values denoted xk and 
ym , their marginal and joint probability distributions are:

Then the entropies of X ,Y  , and Z = (X ,Y ) are given 
by:

pk = Pty(X = xk); qm = Pty
(
Y = ym

)
;

rk ,m = Pty
(
X = xk ,Y = ym

)
.

The mutual information between X and Y  is then given 
by:

where MI(X ,Y ) = 0 if and only if X and Y  are inde-
pendent. When X and Y  have a bivariate Gaussian dis-
tribution, the mutual information MI(X ,Y ) is also 
computable as an explicit increasing function of the 
squared correlation:

However, in the non-Gaussian case, this formula is not 
valid. Mutual information can offer major advantages 
over correlation, especially in the pathologic brain [33, 
35, 54]. Mutual information has remarkable invariance 
property which we now recall. For any random variables 
(U ,V ) and any strictly increasing functions f  and g , the 
random variables X = f (U) and Y = g(V ) verify:

In this formula, f  and g can be non-linear functions. 
This MI invariance property is not satisfied by correla-
tions, since Cor(U ,V ) and Cor(f (U), g(V )) are gener-
ally different unless f  and g are both linear functions. In 
the study of fMRI recordings of brain activity, the strong 
functional invariance of mutual information offers an 
interesting advantage, which we now outline.

2.3.2 � Advantages of mutual information to estimate cortex 
connectivity

Denote our N = 780 cortex parcels by 
CP1,CP2, . . . ,CPN . For any two parcels CPi, and CPj , 
brain activity recordings by fMRI provide, after standard 
pre-treatments, two sequences of n = 295 recordings:
S(i) = [Yi(1),Yi(2), . . . ,Yi(n)] and 

S
(
j
)
=

[
Yj(1),Yj(2), . . . ,Yj(n)

]
,

which can be considered as random samples of n obser-
vations for two random variables Yi and Yj . To evaluate 
the level of neural interaction between the two parcels i 
and j , many publications use the correlations Cor(Y i,Yj) 
or their absolute values, which can easily be estimated 
from the data sequences S(i) and S(j). In this paper, we 
have preferred instead to use the same data S(i) and 
S(j) to estimate the mutual information MI(Y i,Y j) . We 
now indicate why this choice has a strong pragmatic and 

H(X) = −
∑

k

pk log(pk) ≥ 0;H(Y) = −
∑

m

qmlog(qm);

H(X ,Y ) = −
∑

k ,m

rk ,mlog
(
rk,m

)
.

MI(X ,Y ) = MI(Y ,X) = H(X)+H(Y )−H(X ,Y ) ≥ 0,

MI(X ,Y ) = −
1

2
log

(
1− cor(X, Y)2

)
.

MI(X ,Y ) = MI
(
f (U), g(V )

)
= MI(U ,V ).
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theoretical advantage over the use of Cor(Y i,Yj) . Indeed, 
the actual values Yi(n) and Yj(n) generated by fMRI 
recordings after pretreatment are essentially of the form:
Yi(n) = f [BOLi(n)] and 

where at time n, the numbers BOLi(n) and BOLj(n) 
represent the BOLD (blood oxygen level dependent) 
signals for the two parcels CPi and CPj. Here, the func-
tions f (u) and g(v) are two increasing functions of u and 
v , which are essentially unknown to the experimenter 
because they are determined by many variable factors 
such as the actual hardware settings of the fMRI acquisi-
tion modalities, the meta-parameters of the fMRI signal 
reconstruction software, the geometric positions of CPi 
and CPj within the cortex, etc. Hence, contrary to the 
actually observed data sequences S(i) and S(j) , the two 
BOLD signal sequences BS(i) = [BOLi(1), . . . ,BOLi(n)] 
and BS

(
j
)
= [BOLj(1), . . . ,BOLj(n)] are in fact not 

directly observable. Consider the sequences BS(i) and 
BS

(
j
)
 as random samples from two random variables 

BOLi and BOLj . Since the sequences S
(
j
)
 and BS

(
j
)
 are 

linked by the function f  , the observable random vari-
able Yi is of the form Yi = f (BOLi) . Similarly, Yj is of the 
form Yi = g(BOLj) . Most changes in the instrumental 
settings of the fMRI hardware may modify f  and g in an 
unknown way. Moreover, if one changes the parcels, the 
functions f  and g will also be modified. Fortunately, due 
to the functional invariance of mutual information men-
tioned above, we have:

for arbitrary increasing functions f  and g . By contrast, 
Cor(Y i,Yj) and Cor(BOLi,BOLj) can generally be quite 
different unless f  and g are linear functions, which is 
quite unlikely in this context. So to estimate cortex con-
nectivity by quantifying the strength of pairwise interac-
tions between the BOLD signals BOLi , BOLj at parcels 
CPi and CPj , the mutual information MI(Yi,Yj) will 
be more stable and more relevant than the correlation 
Cor(Yi,Yj) . Consistent with theoretical superiority, the 
real-world advantages of MI have been documented in 
this setting [35, 54].

2.3.3 � Numerical computation of mutual information matrix
As above, we expect strong values of MIi,j = MI

(
Yi,Yj

)
 

to detect the frequent presence of simultaneous high 
blood oxygen levels BOLi and BOLj within cortex parcels 
CPi and CPj , a phenomenon indicative of strong neu-
ronal interactivity between CPi and CPj . Each observed 
time series Yi(t) involves n = 295 observations of the 

Yj(n) = g[BOL
j
(n)],

MI(BOLi,BOLj) = MI(f (BOLi), g
(
BOLj

)
= MI(Yi,Yj)

continuous random variable Yi , we discretize each Yi to 
transform it into a random variable taking only 5 values. 
To this end we first compute 6 quantiles of the n obser-
vations Yi(t) , at levels 0, 20, 40, 60, 80, 100%. This sub-
divides the range of Yi into 5 intervals [Z1, . . . ,Z5] with 
midpoints [z1, . . . , z5], and whenever Yi(t) falls in Zk , we 
replace Yi(t) by Ŷi(t) = zk . Then we approximate MIi,j by 
MI(Ŷi, Ŷj).

To evaluate the accuracy of our mutual information 
estimates, we have applied a variant of the “Jackknife res-
ampling” technique by randomly taking out 10% of time 
points (29 time points) and re-calculating MI on the new 
data set. This process has been repeated 1000 times and 
the absolute error of MI estimation has been calculated. 
For 60% of the mutual information matrix coefficients 
MIi,j , the relative estimation error on MIi,j is inferior to 
10%. The use of 20 bins instead of 5 bins to generate the 
discretized Yi(t) tends to double the average errors of 
estimation for the MIi,j , as can be expected from theory. 
Indeed, our exploration of more detailed discretization, 
and even optimized discretization, has shown that using 
5 bins of equal frequency 20% for each Yi was quite effec-
tive in our context. Figure  1 displays two nodes whose 
BOLD time courses have high MI and another two nodes 
whose time courses have low MI.

2.3.4 � Mutual information between pairs of cortex subregions
For each patient, there are roughly 780 parcels of size 
350  mm2 and for each parcel one time series with 295 
recordings. We characterize the cortex connectivity of 
each patient by the symmetric 780 ×  780 mutual infor-
mation matrix MIi,j . The coefficients of this MI matrix 
provide a very large number of features ∼= 7802/2 for 
each patient [31]. To reduce the number of features we 
have developed and implemented an innovative multi-
scale analysis of these MI matrices.

For any cortex subregion A , denote L(A) the list of 
nA cortex parcels contained in A . For any two cor-
tex subregions A and B generate the set S(A,B) of all 
nA by nB mutual information coefficients MIi,j with i in 
L(A) and j in L(B). Let L(A,B) to be the list of all ele-
ments of S(A,B) . We then define the mutual informa-
tion MI(A,B) = MI(B,A) as the 75% quantile of the list 
L(A,B) . When MI(A,B) is high, at least 25% of cortex 
parcels pairs CPi in L(A) and CPj in L(B) have high MIi,j 
and hence are expected to have strong neural interaction.

In our definition of MI(A,B) , instead of the 75% 
quantile, we could a priori have used other quan-
tiles of S(A,B) . To explore these possibilities, for each 
patient and each mutual information coefficient MIi,j , 
we have computed the Relative Standard Error of esti-
mation RES(A,B) for MI(A,B) . These results show that 
RES(A,B) becomes fairly small when MIi,j lies between 
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the 70%-quantile and 90%-quantile of the patient’s MI 
matrix coefficients, so that these MI(A,B) can be con-
sidered as quite robustly estimated. Moreover, for 
regions A and B of small or only moderate sizes, the 
high quantiles of all the MIi,j in the list L(A,B) are of 
course very sensitive to possible outliers. This has led 
us to explore defining MI(A,B) by quantiles of L(A,B) 
between 70 and 90% to define MI(A,B) . We have thus 
separately tested 4 quantiles namely 70, 75, 80, 85%. 
These tests showed that, using any one of these 4 possi-
ble quantiles to implement our features selection algo-
rithm, we ended up with fairly similar performances for 
our neural network classifier, with a small qualitative 

advantage for the 75% quantile. This explains our 
choice for the definition of the regional MI coefficients 
MI(A,B).

We then compute the coefficients 
MIreg(m, n) = MI(REGm,REGn) for any two regions 
in our list of 148 anatomically defined cortex regions 
to obtain for each patient a symmetric matrix MIreg 
of”inter-region connectivity”. MIreg has size 148 × 148, 
and each one of its (148*149)/2 = 11,026 distinct coef-
ficients will provide 11,026 potential input features 
MIreg(m, n) for our patient classification task. We 
have also studied the symmetric 10  ×  10 symmetric 
matrices MIlob of mutual information between our 10 

Fig. 1  BOLD time courses for two parcels with high MI (left-hand fig.) and low MI (right-hand fig.)

Fig. 2  Mutual information matrices for 148 cortex regions (right-hand fig.) and for 10 cortex lobes (left-hand fig.) in a representative epilepsy 
patient
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anatomically defined cortex lobes. Figure 2 displays (for 
only one patient) the matrices MIreg andMIlob.

2.4 � Automatic classification by multilayer perceptron
The chart in Fig.  3 shows the workflow of the pipe-
line from fMRI time series to epileptic seizure focus 
localization.

Here we explain the MLP architecture and its input 
selection procedure.

2.4.1 � Architecture of our multi‑layer perceptron (MLP)
To implement automatic classification of seizure origin 
by computer analysis of fMRI recordings of resting state 
brain activity, we have decided to use and evaluate Arti-
ficial Neural Networks (ANNs). Our ANNs are feed for-
ward MLPs (multi-layer perceptrons), technically similar 
to the classical type of ANNs used to classify handwritten 
digits (MNIST data).

We first implement, as detailed further on, our fea-
ture selection algorithm which extracts a set of f  highly 
discriminating input features, selected among our 
11,026 region/region mutual information coefficients 
MIreg(m, n). For each patient, the f  selected input fea-
tures are encoded by f  “neurons” which constitute the 
1st layer of our MLP. The 2nd layer (called the hidden 

layer) contains h neurons, with all-to-all “synaptic” links 
between input layer and hidden layer. Each hidden neu-
ron has a Sigmoid Response Function combining the f  
input features and using f + 1 unknown parameters ( f  
weights and one threshold). The 3rd layer of our MLP 
contains k = 5 neurons (1 neuron for each one of our k 
classes of patients). Each one of these k neurons is linked 
to all the h hidden neurons and has a Sigmoid Response 
function, involving h+ 1 unknown parameters. The 4th 
MLP layer is the output layer and contains k neurons. 
Each output neuron is linked to all the k neurons of the 
3rd layer. The response function of output neuron j is 
classically computed by the SoftMax formula, which 
involves no unknown parameter, and which generates 
the probability p(j) that the current f  inputs come from a 
patient belonging to class CL(j).

2.4.2 � Parameters parsimony constraints for the MLP inputs
Most MLPs trained on very large training data sets, 
such as the MNIST data, have many layers successively 
generated by deep learning, and a quite large number of 
neurons. But here, given the moderate number of diag-
nosed patients in our data set, we have instead focused 
on implementing a radical reduction of the number of 
weights and thresholds to be learned during MLP train-
ing, in order to enforce a robust learning of synaptic 

Fig. 3  Flowchart for the pipeline
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weights and thresholds. Enforcing a strong parsimony 
for the number of unknown parameters (weights and 
thresholds) to be “learned” by an MLP is indeed known 
to enhance the robustness of automatic classifiers [15, 
16]. Indeed, deep theoretical results of Vapnik [48] have 
demonstrated that this is a good recipe to perform sta-
ble automatic learning on a moderately large training 
set.

In such situations, feedforward neural networks 
(such as MLPs) are known to exhibit better generali-
zation capacity and less overfitting when their archi-
tecture involves fewer weights. But one still wants 
the MLPs to achieve good classification performance, 
which often requires to increase the number of weights. 
Our approach to implement an ideal balance between 
these two criteria has involved a meticulous algorith-
mic selection of a small number of highly discriminat-
ing input features for our MLPs. Let “ f  ” be the number 
of selected input features and “ k ” be the number of 
patient classes. Our MLP classifiers involve 4 succes-
sive layers of artificial neurons: an input layer of size f  , 
a hidden layer of size h , a 3rd layer of size k = 5 , and 
finally an output layer of size k which computes k prob-
abilities p(1) . . . p(k) verifying p(1)+ · · · + p(k) = 1 . 
The number w of weights and thresholds (also called 
“unknown parameters”) of such an MLP is given by:

Call W  the vector of all w unknown parameters. 
Each patient provides a vector U  of f  input values for 
our MLP, and the outputs p(1) . . . p(k) computed by 
the MLP are all of the form p

(
j
)
= Gj(U ,W ) where 

Gj is an explicit non-linear function of U  and W  . But 
these functions are linearly dependent because by con-
struction one always has G1 + · · · + Gk = 1. For the 
nth training case, the input Un is known, as well as 
the true values v1(n) . . . vk(n) for the k MLP outputs 
p(1) . . . p(k) . In the coding of true outputs, for a case 
in class CL(j) , the only non-zero true output is vj = 1 , 
so that v1 + · · · + vk = 1. Hence the nth training case 
yields k non-linear equations satisfied by the vector W  
of unknown parameters, namely:

But these k equations are linearly dependent because 
as seen above their sum is always equal to 1. Thus, each 
training case yields in fact only (k − 1) non-linear inde-
pendent constraints to be satisfied by the w unknown 
parameters. Hence a training set of size S provides 
(k − 1)× S non-linear equations to be satisfied by w 
unknown parameters. To avoid overfitting, one should 

w = h(f + k + 1)+ k .

G1(Un,W ) = v1(n); . . . ;Gk(Un,W ) = vk(n).

“ideally” have w < (k − 1)S , which yields the following 
dimensional constraint on “ h ” and “ f ”:

Parameters parsimony constraint h
(
f + k + 1

)
<

(k − 1)S − k .

Here, we have k = 5 patient classes and S = 45 because 
we use leave-one-out training. Hence, the parameters parsi-
mony constraint on (h, f ) becomes here as h

(
f + 6

)
≤ 175.

2.4.3 � Implementation of automatic learning
After selecting f  highly discriminating input features for 
our MLP, we also fix the size h of its hidden layer, mak-
ing sure that f  and h verify the parsimony constraint 
h
(
f + 6

)
≤ 175 . During training of this MLP, when a case is 

ambiguously diagnosed as belonging to 2 classes CL(i) and 
CL(j) , we assign to this case MLP outputs vi = vj = 1/2 . 
Automatic learning is performed by standard Gradient 
Descent, to minimize the average “Cross Entropy” between 
true outputs and MLP-computed outputs. Indeed, for clas-
sification tasks, minimizing cross entropy is generally more 
efficient than minimizing mean squared error.

Since our training set is of moderate size, we implement 
the classical leave-one-out technique. Namely, one elimi-
nates one patient from the training set before performing 
automatic learning; then one evaluates by 0 or 1 the cor-
rectness of our MLP classification of this left-out patient. 
Final performance is the average of these evaluations over 
all possible choices of the left-out patient.

2.4.4 � Input selection for minimal size MLP classifiers
We want to select “features” discriminating between 5 
classes of patients CL(1),…CL(5) of sizes s(1) . . . s(5) . This 
requires solving at least 10 basic tasks of the type “discrimi-
nate CL(p) versus CL(q) ”. Consider any feature F comput-
able from fMRI recordings, and hence providing for each 
patient PAT  a number F(PAT ). For each class CL(p), the 
s(p) patients [ PAT  1, PAT  2, …] of CL(p) generate a list 
V (p) of s(p) values F1 = F(PAT1), F2 = F(PAT2) , …. The 
probability distribution µp(F) of [F1, F2, . . . ] is unknown, 
and difficult to estimate if s(p) is not very large. For feature 
efficiency evaluation only, we roughly approximate µp(F) 
by a uniform distribution on an unknown interval Jp(F) . A 
classical algorithm to estimate Jp(F) is the “German Tank 
Estimate” (see Appendix), which computes first the min 
m(p) and the max M(p) of the list V (p), and then extends 
adequately the interval [m(p),M(p)].

When Jp(F) and Jq(F) are nearly disjoint intervals, we 
naturally consider that the classes CL(p) and CL(q) are 
strongly separated by feature F.To quantify this notion, 
define the separability sep(J , J ′) of two intervals J and J′ 
with intersection I = J ∩ J ′ by:
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where K  is the length of interval K  . Then 
0 ≤ sep(J , J ′) ≤ 1 , and values of sep(J , J ′) close to 
1 mean that J , J ′ are nearly disjoint. Now define 
DISp,q(F) = sep(Jp(F), Jq(F)) as the discriminating power 
of feature F  to differentiate between classes CL(p) and 
CL(q).

To select a small but efficient set of “ f  ” input features 
for our MLP classifier, we start from the (148)(149)/2 
mutual information coefficients MIreg(m, n) at the cortex 
regions “scale”. For each pair m ≤ n , the “regions based” 
feature Fm,n = MIreg(m, n) provides for each patient an 
indicator of the neuronal interaction level between cor-
tex regions REGm and REGn . Fix any two distinct classes 
CL(p),CL(q). For all (m, n) with 1 ≤ m ≤ n ≤ 148 , we 
compute the power POW (m, n) = DISp,q(Fm,n) of fea-
ture Fm,n to discriminate CL(p) vs CL(q) . Then we rank 
the features Fm,n by decreasing POW (m, n) , and select 
only the top two Fm,n having highest discriminating 
power POW (m, n).

3 � Results
3.1 � Inter‑region connectivity input to MLP
For each one of the 10 pairs CL(p),CL(q) with 
1 ≤ p < q ≤ 5, the preceding selection algorithm selects 

sep(J , J ′) = min

(
|J − I |

|J |
,

∣∣J ′ − I
∣∣

|J ′|

)
,

two regions Regm , Regn . This algorithm, then, gener-
ates a set of 20 pairs of cortex regions REGm, REGn with 
strongly discriminating coefficients MIreg(m, n) (Fig.  4). 
To respect the parameter parsimony constraint, we keep 
only a set of 18 of these Inter-region Connectivity Coef-
ficients, to be used below as a set of 18 inputs features 
Fm1,n1, . . . , Fm18,n18 for our first MLP classifier.

3.2 � Intra‑region connectivity input to MLP
The intra-region connectivity coefficient MIreg(m,m) 
of cortex region Regm is an indicator of the level of 
neuronal interactions within Regm . The selection algo-
rithm outlined above can detect the regions Regm 
for which the feature Fm,m = MIreg(m,m) has strong 
power POW (m,m) to discriminate between at least two 
classes CL(p),CL(q). We have thus selected a set of 21 
such cortex regions, 21 intra-connectivity coefficients 
(Fig. 5), from which we keep only a set of 18 coefficients 
to be used below as input features of our second MLP 
classifier.

3.3 � Discriminating power for inter‑ and intra‑region 
connectivity coefficients:

For each one of the 10 basic discrimination tasks 
CL(p) vs CL(q) the highest discriminating power 
DIS(p, q) reached for this task among all the 

Fig. 4  20 pairs of cortical regions with strongly discriminating inter-region connectivity coefficients
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connectivity coefficients MIreg(m, n), is a crude indi-
cator of “how well” the task may be solved by an effi-
cient classifier. In Fig.  6, we display in red the ten 
DIS(p, q) values reached by inter-connectivity coef-
ficients and in blue the DIS(p, q) values reached by 
intra-connectivity coefficients. Clearly the red values 
dominate the blue values.

3.4 � Patient classification by minimal MLP with highly 
discriminating inputs

3.4.1 � MLP classifier based on inter‑region connectivity 
coefficients

The set of 18 inter-connectivity coefficient MIreg(m, n) 
selected above provides the f = 18 inputs of our first 
MLP classifier, for which we impose a hidden layer size 
h = 7 . The 4 layers of this MLP have then sizes (18, 
7, 5, 5). Our parameter parsimony equation becomes 
h
(
f + 6

)
= 168 < 175 , and is hence correctly verified, 

again assuring a reasonable robustness of the MLP train-
ing results.

After training this small-size MLP, we evaluate its 
performances by leave-one-out technique. The global 
percentage of successful patient classifications over 
all 5 patient classes was 89 ± 2.1%. In Table  2, we dis-
play the percentage of successful classifications within 
each patient class. Most errors occur for discrimination 
between Classes RF and LF.

Fig. 5  Twenty-one cortical regions with strongly discriminating intra-region connectivity coefficients

Fig. 6  Highest power reached for the 10 basic discrimination tasks

Table 2  Automatic classification accuracy in  a  leave-one-
out design based on  18 strongly discriminating inter-
connectivity coefficients at cortex regions scale

Patient class RF LT RT LF Other

Accuracy (%) 82 90.5 100 87 90
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3.4.2 � MLP classifier based on 18 intra‑region connectivity 
coefficients

The set of  18 intra-connectivity coefficients MIreg(m,m) 
selected above provides f = 18 inputs for our second 
MLP classifier which has again a 4-layer architecture with 
dimensions (18, 7, 5, 5) (see Section 2) and hence satis-
fies our parsimony equation. After training this second 
MLP, performance evaluated by leave-one-out technique 
demonstrates a global percentage of successes of 88 ± 
2.1%. Table 3 displays classification accuracy within each 
patient class. Results are slightly weaker than for our first 
MLP, particularly for Class RF and Class LF. Discrimina-
tion between these two classes generate most errors of 
classification.

3.5 � Patient classification by support vector machine (SVM) 
with highly discriminating inputs:

The set of 18 inter-connectivity/intra-connectivity coef-
ficients MIreg(m, n) selected above can be input to a mul-
ticlass SVM classifier that uses a one-vs-rest approach. 
Table  4 displays classification accuracy within each 
patient class (leave-one-out technique).

4 � Discussion
Our goal was to explore automatic classification of fMRI 
data in young epileptic patients to identify the origin of 
epileptic seizures. Given the moderate size of our data 
set, one challenge was to avoid using machine learn-
ing techniques involving large numbers of parameters. 
We have solved this challenge by introducing a rigorous 
“parameters parsimony principle”.

A second challenge was to identify strongly discrimi-
nating input features computable from our fMRI data. 
To this end, we have systematically used large matri-
ces of mutual information coefficients between all pairs 

of roughly 780 time series extracted from each patient’s 
fMRI data. We have introduced a computable version of 
mutual information between any two cortex regions, as 
an indicator of neuronal interactions between these two 
regions. This led us to define and compute the discrimi-
nating power of all these 1482/2 inter-region connectivity 
coefficients.

We have then extracted one set of 18 strongly discrimi-
nating inter-region connectivity coefficients, and used 
them as input features for a small-size multi-layer percep-
tron (MLP) with 4 layers (dimensions: 18, 7, 5, 5), includ-
ing a “SoftMax” terminal layer. After automatic training 
by a leave-one-out technique, this MLP provided 89% 
successful patients classification. For comparison, a stand-
ard support vector machine applied to our patient classifi-
cation has yielded less than 71% successes. Our innovative 
development of mutual information between pairs of 
cortex regions, and of algorithmic selection of highly 
discriminating pairs of cortex regions has shown good 
capacity to extract useful and interpretable brain activ-
ity features from fMRI recordings. The small size of the 
MLP classifier we have thus constructed rigorously avoids 
overfitting and reaches good performance on our group of 
epileptic patients. To confirm these exploratory findings, 
we plan to test our approach on larger groups of patients.

We also designed and implemented an analysis to 
interpret why interactivity between two specific regions 
(say A,B ) can separate two specific lobes (say L1,L2 ). 
We found out that for almost all the patients with sei-
zure focus in L1 , we can find within L1 one or more cor-
tex regions having strong interaction with A and with B , 
while all subregions of L2 have much weaker simultane-
ous interactions with A and B . This means that A,B are 
simultaneously excited whenever specific subregions 
of  L1 become strongly active, while hyperactivity in any 
subregion of L2 has a weak impact on the simultaneous 
activity of A and B . For example, the inter-connectivity 
between the regions = A “Transverse frontopolar gyri and 
sulci” and = B “Vertical ramus of the anterior segment 
of the lateral sulcus” has strong discriminating power 
between lobes L1 = LF  and L2 = RF  and we can actually 
find two subregions U and V  of LF  with high interactivity 
with A:
MI(U ,A) = 0.22 and MI(V ,B) = 0.25,
while for all subregions K  of RF  one has:
MI(K ,A) < 0.12 and MI(K ,B) < 0.11.
These data suggest the potential for a similar approach 

to depict specific nodes that constitute important drivers 
of the seizure network.

Our methods are generally consistent with previous 
applications of network connectivity to invasive EEG. 
Wilke et  al. observed a correlation of betweenness cen-
trality, a network graph metric, with the location of 

Table 3  Classification accuracy in  leave-one-out design 
based on  18 highly discriminating intra-connectivity 
coefficients

Patient class RF LT RT LF Other

Accuracy (%) 70 80 100 87 100

Table 4  Classification accuracy for  SVM in  leave-one-out 
design based on  18 highly discriminating connectivity 
coefficients

Patient class RF LT RT LF Other

Accuracy (inter-connectivity) %59 %64 %83 %78 %69

Accuracy (intra-connectivity) %57 %62 %73 %71 %64
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network nodes whose resection was likely to result in 
seizure freedom [51]. Sinha et al. also validated a model 
of epileptogenicity based on connectivity against surgi-
cal outcomes in a cohort consisting largely of adults [38]. 
They observed a correlation between their index of epi-
leptogenicity and the putative seizure onset zone; they 
also found areas of high epileptogenicity outside of the 
resection zone in several cases of unsuccessful surgery. 
Tomlinson et  al. applied a network approach to a pedi-
atric cohort with focal epilepsy [44]. They observed a 
significant increase in connectivity outside of the seizure 
onset zone; further, global synchrony (a measure of the 
overall strength of connectivity) within the field of inva-
sive EEG could be used to classify patients with regard to 
seizure-free outcome after surgery. These studies not only 
reinforce the relevance of network features to seizure 
onset, they highlight the importance of broader areas of 
dysconnectivity (beyond the traditional zone of seizure 
onset) in achieving seizure freedom. Invasive monitor-
ing in the form of electrocorticography (ECOG) or stereo 
EEG (SEEG) is gold standard for localization of the sei-
zure onset zone. These modalities, however, are limited 
in their spatial sampling; large areas of the brain are left 
unexplored, leading to the potential for erroneous and 
biased conclusions [13]. Optimal use of invasive moni-
toring therefore requires an accurate pre-test hypothesis 
regarding the location and extent of the epileptogenic 
network. It is likely, therefore, that optimal patient out-
comes would result from the addition of global network 
approaches to standard invasive monitoring.

5 � Conclusion
We developed machine learning algorithms to evalu-
ate the connectivity obtained from resting-state fMRI 
in terms of differentiating the lobe of seizure origin in a 
pediatric cohort with focal epilepsy. These findings sup-
port the potential for neuroimaging-based network con-
structs to depict pathophysiologically relevant features 
of seizure genesis. If these approaches can be tailored to 
identify individual elements within the seizure network, 
biomarkers based on functional networks may ultimately 
contribute to personalized management strategies in 
children undergoing epilepsy surgery.
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Appendix: “German Tanks” estimate for uniform 
distributions
Let µ be a uniform probability distribution on an 
unknown interval = [a, b]. Let X1, . . . ,XN be N  inde-
pendent random observations having the same probabil-
ity distributionµ . From these N  observations, one can 
compute the classical “German Tank” (GT) estimators 
(AN ,BN ) of (a, b), which are unbiased and have minimal 
variance.

To compute the GT estimators, denote

One then has [11, 49]:
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