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Abstract 

With the increase in system complexity, the intelligent heuristic optimization methods have received more and more 
attention on system reliability analysis. However, the objective functions and constraint conditions of system reliability 
are nonlinear. Thereby, a hybrid optimization method was proposed, based on the shuffled frog leaping algorithm 
and bacterial foraging algorithm, to solve the problem of system reliability and redundancy allocation. First, random 
grouping strategy was added to maintain the diversity of the population. Then, the Levy flight update strategy was 
used to increase the global search ability. Finally, the method of migration operation was introduced to escape from 
local optimums. The proposed methodology, a new version of the SFLA algorithm, was then applied to the math-
ematical test and the operation of the system reliability model, respectively. Results show that compared to the com-
mon methods, it can obtain the best solution, with the maximum value of the system reliability.

Keywords:  Hybrid optimization method, Shuffled frog leaping algorithm, Bacterial foraging algorithm, Levy flight, 
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1  Introduction
The system reliability refers to the system ability of per-
forming the required function under prescribed condi-
tions and within the stipulated time. A complex system 
generally contains several connected components which 
are parallel connection and serial connection or neither. 
The reliability directly affects the performance of the 
system. If the index of reliability cannot meet the cor-
responding requirements, the possibility of malfunction 
will be higher when the system is more complex and it 
will cause the greater damage. And the complex sys-
tem reliability optimization is aimed to obtain the high-
est reliability with seeking a best design scheme in some 
resource-constraint conditions, or to achieve maximum 
economic benefits and minimizing investment with 
meeting the requirements of a certain reliability index. 
While considerable advances have been made in sys-
tem reliability, the study in system reliability, especially 
in the problem of redundancy allocation, has been dull. 

And there is still a huge space for development. In order 
to make sure the low failure rate, the key point is to find 
an efficient and precise method to calculate the opti-
mal allocation problems. Therefore, the direction how 
to optimize the complex system reliability has become a 
foremost research topic.

In complex systems, it is not so easy to find an out-
standing reliability optimization approach which can 
completely express the system reliability and redundancy 
allocation. The redundancy allocation generally allows 
normal operation when the instruments, equipment or 
others are in the abnormal situation. Many studies have 
been made to explore the approaches. In recent years, 
a lot of researches also tried to find another method to 
analyze the system reliability. Ditlevsen and Bjerager [1] 
proposed the thought of modeling structural systems 
which consisted of series and parallel systems. What’s 
more, with considering the uncertain factors, a versatile 
reliability-based design optimization approach was put 
forward for system design, which can compute the proba-
bilities of unsatisfactory performance at both component 
and system levels [2]. Youn and Wang pointed out two 
primary challenges about system reliability evaluation 
and proposed a complementary intersection event, which 
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could develop the complementary intersection method 
(CIM) for system reliability analysis with high efficiency 
and accuracy [3]. The objective functions and constraint 
conditions of complex system reliability are nonlinear [4]. 
It tends to be the non-differentiable, discontinuity, multi-
dimensional and highly nonlinear NP-hard problem with 
constraint condition. And the objective functions usually 
have more than one local extremum. It is difficult to work 
out the results of these problems and hard to reach the 
global optimal by using the traditional methods. Thus, 
the appearance and development of intelligent algorithm 
have been provided a new tool to solve the problem of 
system reliability optimization.

To some extent, these algorithms can solve the com-
plex system reliability optimization problems. But there 
are still some limitations, and we still have a long way to 
go. Therefore, it is vital to explore the effective solving 
methods.

Nowadays, hybrid optimization algorithms have 
become popular solution methods for the nonlinear 
model. Coit and Smith early used a combined neural 
network and GA approach to solve the NP-hard prob-
lem. The GA played the role of obtaining the minimum 
cost solution by selecting the appropriate components 
for a series–parallel system, and a neural network was 
applied to assess the system reliability value [5]. Lobato 
et al. analyzed the reliability-based optimization by using 
differential evolution and inverse reliability analysis for 
engineering system design. And the double-loop model 
was used to improve the algorithm. Simulation test on 
several examples with different complexity shows that 
heuristic algorithm was more accurate than classical 
algorithm [6]. Gholizadeh and other scholars analyzed 
the Bayesian estimation for the electronic system and 
pointed out that if the faults were independent, E-Bayes-
ian algorithm can improve the accuracy of analysis [7]. 
Zhang et  al. [8] analyzed the multi-scale security sys-
tem for micro-mini smart ammunition. Coccon et al. [9] 
proposed a new approach for system reliability analysis 
of offshore structures by using dominant failure modes 
identified by selective searching technique.

The great development of the meta-heuristic optimi-
zation techniques represents the impetus for utilizing 
shuffled frog leaping algorithm to identify the unknown 
parameters of the single-diode PV model [10]. It con-
sisted of a combination of phenomenon-mimicking algo-
rithms and mathematical techniques, the hybrid shuffled 
frog leaping algorithm [11]. The shuffled frog leaping 
algorithm was used to determine the number of clus-
ters and the optimal kernel parameter. Compared with 
other swarm intelligence optimization methods, its main 
advantage is high-speed convergence where it combines 
the merits of both GA-based technique and the social 

behavior of the particle swarm optimization (PSO) 
approach [12]. Moreover, Orouji et al. indicated that the 
shuffled frog leaping algorithm has the best capability 
and most efficiency among other well-developed algo-
rithms such as the genetic algorithm (GA), harmony 
search (HS), particle swarm optimization and simulated 
annealing (SA), with 3.97, 0.03, 0.33 and 0.08% improve-
ment in obtained objective function values, respectively 
[13, 14].

In this paper, a newly hybrid optimization method was 
considered for the estimation of system reliability. Results 
were then compared with those obtained by other exist-
ing techniques in the case study.

2 � System reliability model
Series systems, parallel systems and mixed systems are 
the three mainly representative systems. Herein, we focus 
on the series systems. A series system consists of many 
components that the failure of one component can cause 
the failure of the entire system or the whole system can 
be in normal working only if the whole component can 
work. And the reliability block diagram is shown in Fig. 1.

We denote the components by C1,C2, . . . ,Cn . Cor-
respondingly, their reliabilities were denoted by 
R1,R2, . . . ,Rn . If the states of the components were con-
sidered as independence and the numerical value does not 
change over time, the system reliability is:

Here, we can clearly recognize the reliability of series 
system is always less than or equal to the reliability of 
the most unreliable components. And we can know 
Rs ≤ min{Ri} . Thus, the high reliability of components 

(1)Rs =

n
∏

i=1

Ri.

1

2

...

n

K/n(G)

Fig. 1  Reliability block diagram of k/n(G) system
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should be chosen to reduce the number of series compo-
nents in the phase of designing series system.

In the early stage of system design, one of the impor-
tant parts is to determine the system reliability index of 
the composition unit based on the system reliability index 
of the whole system [15]. In the system design phase, it 
is easy to solve the problem about the system design if 
only considering the reliability index. However, the situ-
ation does not exist in actual engineering. Recognizing 
the relationship of each optimization index in the system 
could be the basis of the system design optimization. And 
the system reliability, cost, weight and volume are most 
commonly used. In this study, therefore, we only consid-
ered the four parts to measure the system reliability. The 
detail descriptions will be narrated in the fourth part.

3 � Improved hybrid optimization method
3.1 � Basic shuffled frog leaping algorithm
First proposed by Eusuff and Lansey [16], the hybrid 
shuffled frog leaping algorithm is an artificial algorithm 
based on the shuffled complex evolution and PSO meth-
ods. The shuffled frog leaping algorithm is a population-
based heuristic optimization algorithm with cooperative 
search metaphor inspired by natural memetics. The algo-
rithm uses memetic evolution in the form of influencing 
of ideas from one individual to another in a local search 
by simulating the food searching of frogs. The swamp has 
a number of stones at discrete locations where frogs can 
leap to find a stone with the maximum amount of food. 
The frogs are allowed to communicate with one another, 
so that they can improve their memes by using others’ 
information. Improvement in a meme is achieved when 
a frog that is far from the stone with a maximum amount 
of food leaps toward a frog closer to the food [17]. This 
leap results in altering the faraway frog’s position.

The hybrid shuffled frog leaping algorithm starts the 
optimization process by generating a set of frogs as the 
set of solutions in the first iteration. These frogs have a 
dimension that is equal to the number of decision vari-
ables. For example, in a problem with N  decision vari-
ables, the frogs are vectors ( Xl =

[

xl,1, xl,2, . . . , xl,N
]

 ). An 
objective function is then calculated for each frog and is 
used as the comparison criterion to compare the worth 
of each frog.

Next, frogs are sorted according to the calculated 
objective function using the descending or ascend-
ing method in a minimization or maximization prob-
lem, respectively [13]. Afterward, the frogs are divided 
into K  memeplexes. Thus, if the number of frogs is M , 
M/K  frogs will be located in each memeplex. In this pro-
cess, the first sorted frog with the best obtained objec-
tive function moves toward the first memeplex, and the 

second sorted frog moves toward the second memeplex. 
This process continues until the Mth sorted frog moves 
to the Mth memeplex. In the next step, the (M + 1)th 
frog moves toward the first memeplex, etc. By consider-
ing two best and worst frogs in each memeplex ( XKb and 
XKw ) and the best global frog in the set of frogs Xg , the 
hybrid shuffled frog leaping algorithm tries to improve 
XKw in each iteration, by using Eqs. (2)–(4):

where Dt
K  is the change of the worst frog in Kth meme-

plex in tth iteration; rand is a random value between 0 
and 1; DMin and DMax are the minimum and maximum 
allowable values for the change of the worst frog, respec-
tively; and Xt

Kw and Xt+1
Kw  are the position of the worst 

frog in Kth memeplex in the tth and (t + 1)th iterations, 
respectively. In this step, Xt+1

Kw  should be improved com-
pared to the Xt

Kw even by generating a random new worst 
frog instead of Xt

Kw.

3.2 � Improvement in the basic hybrid optimization
Application of the improved algorithm on system reli-
ability is summarized in the following steps:

Step 1: Initialize. Select m and n , where m is the num-
ber of memeplexes and n is the number of frogs in each 
memeplex. Therefore, the total sample size F  , in the 
swamp, is given by F = mn.

Step 2: Generate a virtual population. Sample F  virtual 
frogs U(1),U(2), . . . ,U(F) in the feasible space. The ith 
frog is represented as a vector of decision variable values 
U(i) =

(

U1
i ,U

2
i , . . . ,U

kd
i

)

, that is, a candidate solution 
containing K  cluster centers.

Step 3: Rank frogs. Sort the F  frogs in order of 
decreasing performance value. Store them in an array 
X =

{

U(i), f (i), i = 1, . . . , F
}

 so that i = 1 represents 
the frog with the best performance value. Record the 
best frog’s position PX , in the entire population ( F  frogs; 
where PX = U(1)).

Step 4: Partition frogs into memeplex. Partition array X 
into Y1,Y2, . . . ,Ym , each containing n frogs.

Step 5: Memetic evolutions within each memeplex. 
Evolve each memeplex Y l , l = 1, . . . ,m.

After partitioning frogs to m memeplexes, evolve each 
memeplex and each of them should iterate N  times. 
After the memeplexes have been evolved, the algorithm 
returns to the global exploration for shuffling. Below are 
the details of the local search for each memeplex.

Local exploration: NSFLA algorithm.

(2)Dt
K = rand(XKb − XKw)

(3)DMin ≤ Dt
K
≤ DMax

(4)Xt+1
Kw = Xt

Kw + Dt
K ,
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Step 5.1 Set im = 0 , where im counts the number of 
memeplexes and will be compared with the total number 
m of memeplexes. Set iN = 0 , where iN  counts the num-
ber of evolutionary steps and will be compared with the 
maximum number N  of steps to be completed within each 
memeplex. Within each memeplex, the frogs with the best 
and the worst fitness are identified as Pb and Pw , respec-
tively. Also, the frog with the global best fitness is identified 
as Pg . Then, an evolution process is applied to improve only 
the frog with the worst fitness (i.e., not all frogs) in each 
cycle.

Step 5.2 Set im = im+ 1.
Step 5.3 Set iN = iN + 1.
Step 5.4 Improve the worst frog’s position. The position 

of the frog with the worst fitness is adjusted as follows:
Change in frog position

New position

where rand() is a random number between 0 and 1 and 
Dmax is the maximum allowed change in a frog’s position.

Step 5.5 If this process produces a better frog (solution), 
it replaces the worst frog. Then, frogs are sorted accord-
ing to the calculated objective function using the descend-
ing method. And the half better went on as predicted, and 
the half worse will update with Levy flight to increase the 
global search ability.

The location will be updated by Levy flight:

in which the x(t)i  is the t th location of xi ; ⊕ is the point-
to-point multiplication; α is the parameter of step length 
control; Levy(�) is the random search path and has the 
limit:

The essence of Levy flight is a kind of method of ran-
dom step length. And the step length conforms to Levy 
distribution. However, implementation is not realized 
currently due to the complex. Thus, it is commonly simu-
lated through Mantegna algorithm. It can be described as 
follows:

A calculation formula for the step length is:

(5)Di = rand(m)× (Pb − Pw)

(6)
Pw =current position;Pw + Di

(Dmax ≥ Di ≥ −Dmax),

(7)x
(t+1)
i = x

(t)
i + α ⊕ Levy(�) i = 1, 2, . . . , n

(8)Levy ∼ u = t−� 1 < � ≤ 3.

(9)s =
µ

|v|1/β
,

where the µ and v are the Gaussian distribution which is 
defined as:

in which β is commonly defined as 1.5 and Γ  is the stand-
ard Gamma function.

Therefore, the update location equation of Levy flight 
can be summarized as follows:

Step 5.6 The improved method of migration operation 
in BFA was introduced. In terms of the same fitness of the 
individuals, one individual will be operated by the adap-
tive migration in order to keep the diversity. And the fit-
ness of the group will be sorted by using the descending 
method. And the distribution probability can be applied 
as follows:

where i is the individual serial number and S is the popu-
lation size.

It can be seen from Eq. (11) that the probability migra-
tion of the best individual is 0, and namely, the best indi-
vidual will not migrate. And the lower the fitness of the 
individual is, the higher the migration probability is.

Step 5.7 If this process produces a better frog (solu-
tion), it replaces the worst frog. Otherwise, repeat.

Step 5.8 If no improvement becomes possible in this 
latter case, then a new solution is randomly generated to 
replace the worst frog with another frog having any arbi-
trary fitness.

Step 5.9 If iN < N  , go to step 5.3.
Step 5.10 If im < m , go to step 5.2. Otherwise, return to 

the global search to shuffle memeplexes.
Step 6: Shuffle memeplexes. After a defined number of 

memetic evolutionary steps within each memeplex, replace 
Y1, . . . ,Ym into X such that X =

{

Yk , k = 1, . . . ,m
}

 . Sort 

µ ∼ N
�

0, σ 2
µ

�

v ∼ N
�

0, σ 2
v

�

σµ =







Γ (1+ β) sin
�

πβ
2

�

Γ

�

(1+β)
2

�

β2 (β−1)
2







1/β

σv = 1

(10)Xg+1,i = Xg ,i + α
µ

|v|1/β

(

Xg ,i − Pg
)

.

(11)Ped(i) = 1−

(

S − i

S − 1

)2

,
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X in order of decreasing performance value. Update the 
population the best frog’s position PX.

Step 7: Check convergences. If the convergence criteria 
are satisfied, stop. Otherwise, return to step 4. Typically, 
the decision on when to stop is made by a prespecified 
number of consecutive time loops when at least one frog 
carries the “best memetic pattern” without change. Alter-
natively, a maximum total number of function evalua-
tions can be defined.

4 � Simulation and test
In order to verify the convergence, speed and accuracy of 
the hybrid algorithm, the five simulation tests are carried 
out. In this paper, we selected standard hybrid shuffled 
frog leaping algorithm (SFLA) and compared four kinds 
of other algorithms, such as BFA, SFLA [17] and PSO-
SFLA [14]. And the test environment is: Windows 7, 4G 
memory, 2.5 GHz. Table 1 shows the details of these test 
functions, where f (x1, x2, . . . , xn) = objective function for 
x1 to xi decision variables; i = counter for dimension; and 
n = total number of dimensions.

The f1 Sphere is simple unimodal function to verify 
the rate of convergence. f2 Shubert possesses 760 local 
minimum points. However, there are only 18 global mini-
mum points, and the value is − 186.73. Within the range 
of (10, 10), its minimum value is − 24.062499. The func-
tion is able to fully test the ability of seeking the global 
optimal with jumping out the local extremum. f3 Rastri-
gin is a typical nonlinear multimodal function which has 
a wide range of search space, tall obstacles and a lot of 
local minimum points. It is commonly considered to be 
difficult to deal with the complex multimodal problems. 
f4 Rosenbrock is a classic complex optimization func-
tion which the function of each contour is roughly para-
bolic, and the global minimum value is also located in the 
valley of parabolic. It is easy to find the valley, but it is 
tough to find the global minimum because the change of 
value is small in the valley. The critical point is that the 
global optimal value is located in a smooth and narrow 
parabolic in the valley. f5 Easom is a nonlinear function 

which is hard to obtain the optimal solution. Because the 
global minimum solution distributes in the very narrow, 
its peripheral is almost flat.

5 � Engineering application
In this section, a case study will be applied to validate and 
compare the performance of the proposed hybrid optimi-
zation method with three other algorithms. In the pro-
cess of prefabricated building design and construction, 
there are mainly four parts, such as design, manufacture, 
transportation and construction. The target is realizing 
the high system reliability and the low cost. Herein, a 
prefabricated house will be built, and there are four cost 
limits which consist of design cost Cd , manufacture cost 
Cm , transportation cost Ct and construction cost Cc . And 
the main system goal of optimal design can be described 
as: seeking the optional design subsystem α1,α2,α3,α4 
and the subsystem redundancy m1,m2,m3,m4 to ensure 
the highest system reliability R with the limitation of the 
whole cost. The model can be expressed as follows:

(12)
R(δ)max = R(m,α) =

n
∏

i=1

Ri(mi,αi)

= R1(m1,α1)+ R2(m2,α2)

+ R3(m3,α3)+ R4(m4,α4)

(13)

Cd(m,α) =

4
∑

i=1

cdi(αdi)mdi ≤ Cdmax

Cm(m,α) =

4
∑

i=1

cmi(αmi)mmi ≤ Cmmax

Ct(m,α) =

4
∑

i=1

cti(αti)mti ≤ Ctmax

Cc(m,α) =

4
∑

i=1

cci(αci)mci ≤ Ccmax

Table 1  Definition of the selected unconstrained and constrained test function

Test function Formula Search domain Global optimum

f1 Sphere
f (x1, . . . , xn) =

n
∑

i=1

x2i
− 5 ≤ xi ≤ +5 f (x1, . . . , xn) = f (0, . . . , 0) = 0

f2 Shubert
f (x1, . . . , xn) = −

n
∑

i=1

5
∑

j=1

j sin
[

(j + 1)xi + j
] −10 ≤ xi ≤ +10 f (x1, . . . , xn) = −24.0625

f3 Rastrigin
f (x1, . . . , xn) =

n
∑

i=1

(

x2i − 10 cos (2πxi)+ 10
) −5.12 ≤ xi ≤ +5.12 f (x1, . . . , xn) = 0

f4 Rosenbrock
f (x1, . . . , xn) =

n
∑

i=1

(

100
(

xx − x2i
)2

+ (1− xi)
2
)

−2 ≤ xi ≤ +2 f (x1, . . . , xn) = f (1, . . . , 1) = 0

f5 Easom f (x1, x2) = − cos (x1) · cos (x2) · e
−
(

(x1−π)2+(x2−π)2
)

−100 ≤ xi ≤ +100 i = 1, 2 f (x1, x2) = f (π ,π) = −1



Page 6 of 7Li and Yan ﻿Brain Inf.             (2019) 6:1 

in which mi(i = 1, 2, 3, 4) , and the other system param-
eter values are shown in Table 2:

We can obtain the stable optimal solution after a lot of 
running as follows.

And we can obtain the detailed solutions as given in 
Table 3.

Then, we can obtain the reliability of the whole system 
based on Eq. (3): R(δ) = 0.9989 . We can obtain:

δ = [(2, 1), (2, 3), (3, 2), (2, 2)]. Then, the iteration curves of system reliability which 
are calculated by basic SFLA and ISFLA are shown in 
Fig. 2.

From Fig. 2, we can see that, when the iteration reaches 
200 runs, the system reliability will gradually increase. 

(14)

Cd(m,α) =

4
∑

i=1

cdi(αdi)mdi = xx ≤ Cdmax

Cm(m,α) =

4
∑

i=1

cmi(αmi)mmi = xx ≤ Cmmax

Ct(m,α) =

4
∑

i=1

cti(αti)mti = xx ≤ Ctmax

Cc(m,α) =

4
∑

i=1

cci(αci)mci = xx ≤ Ccmax.

Table 2  System parameter values

Subsystem i Optional design

1 2 3

Cd Cm Ct Cc Cd Cm Ct Cc Cd Cm Ct Cc

1 0.98 0.92 0.97 0.98 0.99 0.92 0.96 0.96 0.96 0.95 0.97 0.97

2 0.97 0.94 0.97 0.94 0.96 0.92 0.97 0.94 0.98 0.97 0.96 0.95

3 0.94 0.96 0.96 0.97 0.92 0.96 0.99 0.95 0.98 0.95 0.97 0.95

4 0.96 0.94 0.98 0.97 0.94 0.95 0.99 0.97 0.99 0.95 0.94 0.98

Table 3  Optional design of δ and redundancy allocation

Subsystem i Optional 
design

Redundancy 
allocation

Subsystem reliability

1 1 2 1 − (1 − X)2 =
2 3 2 1 − (1 − X)2 =
3 2 3 1 − (1 − X)2 =
4 2 2 1 − (1 − X)2 =

Basic SFLA  
ISFLA

Fig. 2  Comparison chart of TSP Eil51
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And the optimal solution will be stable. Although the 
running curve is not exactly the same due to the random 
of the algorithm, the most results will eventually reach 
the optimal solution.

6 � Conclusion

1.	 In the design of the building, it is necessary to con-
sider the reliability of the system, especially for the 
prefabricated building with large-scale, complicated 
and systematic construction system. The mistakes 
of the construction will cause huge losses. To find 
a more effective algorithm to optimize the system 
reliability, an improved leapfrog algorithm was pro-
posed. The results show that the proposed method 
is more accurate for structural reliability calcula-
tion. It provides a new idea and method for assembly 
research and reliability analysis.

2.	 Aiming at the shortcomings of the frog jump algo-
rithm, an improved algorithm was proposed to 
enhance its calculation efficiency and accuracy.

3.	 The improved algorithm was applied to the standard 
frog jump algorithm to enhance the global and local 
search ability and improve the convergence speed.

4.	 As a new algorithm for the optimization problem, 
the hybrid shuffled frog leaping algorithm still has 
many imperfections. To improve the algorithm more 
effectively, for example, the parameter setting, we still 
have a long to go.
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