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Side‑channel attacks against the human 
brain: the PIN code case study (extended 
version)
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Abstract 

We revisit the side-channel attacks with brain–computer interfaces (BCIs) first put forward by Martinovic et al. at the 
USENIX 2012 Security Symposium. For this purpose, we propose a comprehensive investigation of concrete adver‑
saries trying to extract a PIN code from electroencephalogram signals. Overall, our results confirm the possibility of 
partial PIN recovery with high probability of success in a more quantified manner and at the same time put forward 
the challenges of full/systematic PIN recovery. They also highlight that the attack complexities can significantly vary 
in function of the adversarial capabilities (e.g., supervised/profiled vs. unsupervised/non-profiled), hence leading to 
an interesting trade-off between their efficiency and practical relevance. We then show that similar attack techniques 
can be used to threat the privacy of BCI users. We finally use our experiments to discuss the impact of such attacks for 
the security and privacy of BCI applications at large, and the important emerging societal challenges they raise.
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1  Introduction
State of the art The increasing deployment of Brain–com-
puter interfaces (BCIs) allowing to control devices based 
on cerebral activity has been a permanent trend over the 
last decade. While originally specialized to the medical 
domain (e.g., [1, 2]), such interfaces can now be found 
in a variety of applications. Notorious examples include 
drowsiness estimation for safety driving [3] and gaming 
[4]. Quite naturally, these new capabilities come with new 
security and privacy issues, since the signals BCIs exploit 
can generally be used to extract various types of sensi-
tive information [5, 6]. For example, at the USENIX 2012 
Security Symposium, Martinovic et al. showed empirical 
evidence that electroencephalogram (EEG) signals can 
be exploited in simple, yet effective attacks to (partially) 
extract private information such as credit card numbers, 
PIN codes, dates of birth and locations of residence from 
users [7]. These impressive results leveraged a broad lit-
erature in neuroscience, which established the possibility 

to extract such private information (e.g., see [8] for lie 
detection and [9] for neural markers of religious convic-
tions). Or less invasively, they can be connected to lin-
guistic research on the reactions of the brain to semantic 
associations and incongruities (e.g., [10–12]). All these 
threats are gaining relevance with the availability of EEG-
based gaming devices to a general public [13, 14].

Motivation and goals Based on this state of the art, the 
next step is to push the evaluation of the side-channel 
threat model in the context of BCI-based applications 
further. In this respect, the seminal work of Martinovic 
et al. clearly puts forward the existence of an exploitable 
bias for various types of private information extraction. 
But quantifying the impact of this bias in concrete adver-
sarial contexts was left as an important challenge. Typical 
questions include:

•	 Can we exactly extract private information with high 
success rate by increasing the number of observa-
tions in side-channel attacks exploiting BCIs?
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•	 How does the effectiveness of unsupervised (aka 
non-profiled) side-channel attacks exploiting BCIs 
compare to supervised (aka profiled) ones?

•	 How efficiently can an adversary build a sufficiently 
accurate model for supervised (aka profiled) side-
channel attacks exploiting BCIs?

•	 How similar/different are the behavior and the resist-
ance of different users in the context of side-channel 
attacks exploiting BCIs?

Interestingly, these are typically questions that have been 
intensively studied in the context of side-channel attacks 
against cryptographic devices (see [15] for an engineer-
ing survey and the proceedings of the CHES conference 
for regular advances in the field [16]). In particular, a 
recurring problem in the analysis of such implementa-
tions is to determine their worst-case security level, in 
order to bound the probability of success of any adver-
sary in the most accurate manner [17]. This implies very 
different challenges than in the standard cryptographic 
setting, since the efficiency of such physical attacks 
highly depends on the adversary’s understanding and 
knowledge of his target device. Hence, a variety of tools 
have been developed in order to ensure that side-chan-
nel security evaluations are “good enough” (as described 
next). Our goal in this paper is to investigate the applica-
bility of such tools in order to answer the previous ques-
tions regarding the efficiency and impact of side-channel 
attacks against the human brain.

Contributions For this purpose, we propose an in-
depth study of (a variation of ) one of the case studies in 
[7], namely side-channel PIN code recovery attacks, that 
share some similarities with key recovery attacks against 
embedded devices. In this respect, our contributions are 
threefold. After a description of our experimental set-
tings (Sect.  2), we first describe a methodology allow-
ing us to analyze the informativeness of EEG signals and 
their impact on security with confidence (Sect. 3). While 
this methodology indeed borrows tools from the field of 
side-channel attacks against cryptographic implementa-
tions, it also deals with new constraints (e.g., the limited 
amount of observations available for the evaluations and 
the less regular distribution of these observations, for 
which a very systematic and principled approach is par-
ticularly important). Second, we provide a comprehen-
sive experimental evaluation of our side-channel attacks 
against the human brain using this methodology (Sect. 4). 
We combine information-theoretic and security analyses 
in the supervised/profiled and unsupervised/non-pro-
filed contexts, provide quantified estimates for the com-
plexity of the attacks and pay a particular attention to the 
stability of and confidence in our results. Eventually, and 
after a brief excursion toward the privacy issues raised 

by our experiments (i.e., what happens if the adversary 
aims to recover the user IDs rather than the PIN codes?), 
we conclude by discussing consequences for the security 
and privacy of BCI-based applications and list interesting 
scopes for further research (Sect. 6).

Admittedly, and as will be detailed next, our results can 
be seen as positive or negative. That is, we show in the 
same time that partial information about PINs can be 
extracted with confidence and that full PIN extractions 
are challenging because of the high cardinality of the tar-
get and risks of false positive. So they should mostly be 
viewed as a warning flag that such partial information is 
possible and may become critical when the cardinality 
of the target decreases and/or large amounts of data are 
available to the adversary.1

2 � Experimental setting and threat model
In our experiments, eight people (next denoted as users) 
agreed to provide the 4-digit PIN code that they consider 
the most significant to them, meaning the one they use 
the most frequently in their daily life. This PIN code was 
given by the users before the experiment started, stored 
during the experiment and deleted afterward for confi-
dentiality reasons. Five other random 4-digit codes were 
generated for each user (meaning a total of six 4-digit 
codes per user).

Each (real or random) PIN was then shown on a com-
puter exactly 150 times to each user (in a random order), 
meaning a total of 900 events for which we recorded the 
EEG signal in sets of 300, together with a tag T ranging 
from 1 to 6 (with T = 1 the correct PIN and T = 2 to 6 
the incorrect ones). We used 32 Ag–AgCl electrodes 
for the EEG signals collection. These were placed on the 
scalp using a WaveGuard cap from Cephalon, using the 
international 10-10 system. The stimulus onset asyn-
chrony (SOA) was set to 1.009 s (i.e., slightly more than 
1  s, to reduce the environmental noise). The time each 
PIN was shown was set to 0.5 s. When no PIN was dis-
played on the screen, a + sign was maintained in order 
to keep the focus of the user on the center of the screen. 
We additionally ensured that two identical 4-digit codes 
were always separated by at least two other 4-digit codes. 
The split of our experiments in sub-experiments of 300 
events was motivated by a maximum duration of 5 min, 
during which we assumed the users to remain focused 
on the screen. The signals were amplified and sampled 
at a 1000 Hz rate with a 32-channel ASA-LAB EEG sys-
tem from Advanced NeuroTechnologies. Eventually, and 

1  The experiments described next were approved by the local Research Eth-
ics Committee and performed in compliance with the Code of Ethics of the 
World Medical Association (Declaration of Helsinki). All participants gave 
written informed consent.
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in order to identify eye blinks which potentially perturb 
the EEG signal, we added two bipolar surface electrodes 
on the upper left and lower right sides of the right eye 
and rejected the records for which such an artifact was 
observed. This slightly reduced the total number of 
events stored for each user. (Precisely, this number was 
reduced to 900, 818, 853, 870, 892, 887, 878, 884, for 
users 1–8.)

This simplified setting naturally comes with limitations. 
First and concretely, the number of possible PIN codes 
for a typical smart card would of course be much larger 
than the 6 ones we investigate (e.g., 10,000 for a 4-digit 
PIN). In this respect, we first insist that the primary goal 
of the following experiments is to investigate the infor-
mation leakages in EEG signals thoroughly, and this 
limited number of PIN codes allowed us to draw conclu-
sions with good statistical confidence. Yet, we also note 
that this setting could be extended to a reasonable threat 
model. For example, one could target ≈ 1000 different 
users by repeatedly showing them ≈ 10 PIN codes among 
the 10,000 possible ones and recover one PIN with good 
confidence. Second, and since the attacks we carry out 
essentially test familiar versus unfamiliar information, 
there is also a risk of false positives (e.g., an all zero code 
or a close to correct code). In this respect, our mitigation 
plan is to exploit statistical tools minimizing the number 
of false negatives, therefore potentially allowing enumer-
ation among the most likely candidates [18].

3 � Methodology
In this section, we describe the methodology we used in 
order to assess and better quantify the feasibility of side-
channel attacks against the human brain. Concretely, and 
contrary to the case of embedded devices where the leak-
age distributions are supposed to be stable and the num-
ber of observations made by the adversary can be large, 
we deal with a very different challenge. Namely, we need 
to cope with irregular distributions possibly affected 
by outliers and can only assume a limited number of 
observations.

As a result, the following sections mainly aim to con-
vince the reader that our treatment of the EEG signals is 
not biased by dataset-specific overfitting. For this pur-
pose, our strategy is twofold. First, we apply the same 
(pre)processing methods to the measurements of all the 
users. This means the same selection of electrodes, the 
same dimensionality reduction and probability density 
function (PDF) estimation tools (with identical param-
eters), and the same outliers definition. Second, we sys-
tematically verified that our results were in the same time 
consistent with neurophysiological expectations and sta-
ble across a sufficient range of (pre)-processing param-
eters. As a result, our primary focus is on the confidence 

in and stability of the results, more than on their optimal-
ity (which is an interesting scope for further research). In 
other words, we want to guarantee that EEG signals pro-
vide exploitable side-channel information for PIN code 
recovery and to evaluate a sufficient number of obser-
vations for which such an attack can be performed with 
good success probability.

3.1 � Notations
We denote the (multivariate) EEG signals of our experi-
ments with a random variable O , a sample EEG signal as 
o , and the set of all the observations available for evalua-
tion as O . These observations depend on (at least) three 
parameters: the user under investigation, next denoted 
with a random variable U such that u ∈ {1, 2, . . . , 8} ; the 
nature of the 4-digit code observed (i.e., whether it is 
correct or a random PIN), next denoted with a random 
variable P such that p ∈ {0, 1} ; and a noise random vari-
able N. Each observation is initially made of 32 vectors 
of 1000 samples, corresponding to 32 electrodes and ≈ 1 s 
per event.

3.2 � Supervised (aka profiled) evaluation
In order to best evaluate the actual informativeness of the 
EEG signals regarding the PIN displayed in our experi-
ments and inspired by the worst-case side-channel secu-
rity evaluations of cryptographic devices, our work first 
investigates so-called profiled attacks, which correspond 
to a supervised machine learning context. For this pur-
pose, a part of the observations in O are used to esti-
mate a (probabilistic) model P̂rmodel[P = p|O = o] . The 
adversary/evaluator then uses this model in order to try 
extracting the PIN from the remaining observations. 
Note that our profiling is based on the binary random 
variable p, where p = 0 if the PIN is random and p = 1 
if the PIN is real, and not based on the value of the PIN 
tag itself. This is motivated by the following practical and 
neurophysiological reasons:

•	 From a practical point of view, building a model for 
all the PINs and users seems impractical in real-
world settings: this would require being able to col-
lect multiple observations for each of the 10,000 pos-
sible values of a 4-digit code. Furthermore, and as 
discussed in Sect. 3.3, our real versus random profil-
ing allowed us to lean toward realistic (non-profiled) 
attacks.

•	 From a neurophysiological point of view, the infor-
mation we aim to extract is based on event-related 
potentials (ERPs) that have been shown to reflect 
semantic associations and incongruities [10–12]. 
In this respect, while we can expect a user to react 
differently to real and random 4-digit codes, there is 
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no reason for him to treat the random codes differ-
ently. (Up to problems due to the apparition of other 
“significant” values that may lead to false positives, as 
will be discussed next.)

The scheme of Fig. 1 represents the general procedure we 
followed to analyze our EEG data (similar to side-channel 
analysis). We next detail its main steps.

Preprocessing As a first step, all the observations were 
preprocessed using a bandpass filter. We set the low-fre-
quency cutoff to 0.5 Hz to remove the slow drifts in the 
EEG signals and the high-frequency cutoff to 30  Hz to 
remove muscle artifacts and 50 Hz noise.

Selection of electrodes As mentioned in introduction, 
each original observation is made of 32 vectors of 1000 
samples, leading to a large amount of data to process. 
To simplify our treatments, we started by analyzing the 

different electrodes independently. Among the 32 ones 
of our cap, Electrodes P7, P8, Pz, O1 and O2 gave rise 
to non-negligible signal (see Fig.  2), which is consistent 
with the existing literature where ERPs related to seman-
tic associations and incongruities were exhibited in the 
central/parietal zones [10–12]. Our following analyses 
are based on the exploitation of the Electrodes P7 and P8 
which provided the most regular information across the 
different users.2

For illustration, Figs.  3 and 4 represent the mean and 
standard deviation traces corresponding to two differ-
ent users. (Similar figures for the other users are available 
in appendices, as shown in Figs. 13, 14 and Figs. 15, 16.) 
From these examples, a couple of relevant observations 
can already be extracted (and will be useful for the design 
and interpretation of our following evaluations). First, we 

Fig. 1  Evaluation methodology

Fig. 2  Repartition of the electrodes on the scalp
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Fig. 3  Exemplary mean traces for different tag (left) and PIN (right) 
values. Top: User 8, Electrode P7. Bottom: User 6, Electrode P7

2  We further checked systematically that other electrodes did not provide 
significantly more discriminating information so that our conclusions would 
be affected.
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see (on the left parts of Fig. 3) that the EEG signals may 
be more or less informative depending on the users and 
electrodes. More precisely, we generally noticed informa-
tive ERP components after 300–600  ms (known as the 
P300 component) for most users and electrodes, which 
is again consistent with the existing literature [10–12]. 
Yet, our measurements also put forward user-specific dif-
ferences in the shape of the mean traces corresponding 
to the correct PIN value. (Note that the figures mostly 
show examples of informative EEG signals, but for one 
user and some other electrodes, no such clear patterns 
appear.) Second, and quite importantly, the difference 
between the left and right parts of the figures illustrates 
the significant gain when moving from an unsupervised/
unprofiled evaluation context to a supervised/profiled 
one. That is, while in the first case, we need the traces 
corresponding to the correct PIN value to stand out, in 
the second case, we only need it to behave differently 
than the others.

Eventually, a look at the standard deviation curves in 
Fig.  4 suggests that the measurements are quite noisy, 
hence non-trivial to exploit with a limited amount of 
observations. This will be confirmed in our follow-
ing PDF estimation phase and therefore motivates the 
dimensionality reduction in the next section (intuitively 
because using more dimensions can possibly lead to bet-
ter signal extraction, which can mitigate the effect of a 
large noise level).

Dimensionality reduction The evaluation of our met-
rics requires to build a probabilistic model, which may 
become data intensive as the number of dimensions in 
the observations increases. For example, directly esti-
mating a 2000-dimensional PDF corresponding to our 
selected electrodes is not possible. In order to deal with 
this problem, we follow the standard approach of reduc-
ing dimensionality. More precisely, we use the principal 
component analysis (PCA) that was shown to provide 
excellent results in the context of side-channel attacks 
against cryptographic devices [19]. We investigate two 
options in this direction.

First, and looking at the observations in Fig. 3, it appears 
that the mean traces corresponding to the different tags 
are quite discriminant regarding the value of p. Hence, 
and as in [19], a natural option is to compute the pro-
jection vectors of the PCA based on these mean traces. 
This implies computing average vectors ōj = E150

i≈1o
j
i , and 

then to derive the PCA eigenvectors based on the ōj’s, 
which we denote as R1:Nd

← PCA
(

{ōj}j=1:6

)

 , where Nd 
is the number of dimensions to extract. Due to the lim-
ited number of mean traces (i.e., 6), we can only compute 
Nd = 5 eigenvectors and therefore are limited to five-
dimensional attacks in this case.3 However, it turned out 
that in our experiments, this version of the PCA extracts 
most of the relevant samples in the first dimension. This 
is intuitively witnessed by Fig. 5 which represents the first 
and fifth eigenvectors corresponding to User 8 and Elec-
trode P7 (i.e., R1 and R5 ): we indeed observe that the first 
dimension corresponds to the points of interest in Fig. 3, 
while the fifth one seems to be dominated by noise. In 
the following, we will denote this solution as the “average 
PCA”. Note that such a dimensionality reduction does not 
take advantage of any secret information (i.e., it is not a 
supervised/profiled one) since it builds the mean traces 
based on public tags. In order to further confirm that 
the first dimension of the average PCA extracts relevant 
information from our observations, Fig.  6 additionally 
illustrates reconstructed signals for this first and all the 
other dimensions.

Yet, one possible drawback of the previous method is 
that estimating the average traces ōj becomes expensive 
when the number of PIN codes increases. In order to 
deal with and quantify the impact of this limitation, we 
also considered a “raw PCA,” where we directly reduce 
the dimensionality based on raw traces, next denoted as 
R1:Nd

← PCA
(

{oi}i≈1:900

)

 . While this approach is not 
expected to extract the information as effectively, it allows 
deriving a much larger number of dimensions than in the 
previous (average) case. Concretely though, exploiting 
dimensions 1–5 only was a good trade-off between the 
informativeness of the dimensionality reduction, the risk 
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Fig. 4  Exemplary standard deviation traces for different tag values 
corresponding to User 8, Electrode P7 (left) and User 6, Electrode P7 
(right)
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Fig. 5  Exemplary eigenvectors for the average PCA, corresponding 
to User 8, Electrode P7. Left: first dimension. Right: fifth dimension

3  Since we used the small sample size PCA variant in [19].
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of overfitting (useless) dataset-dependent patterns and 
the risk of outliers in our experiments (see the paragraph 
on outliers).

As a result of this dimensionality reduction phase, the 
observation vectors o(1:2000) (which correspond to the 
concatenation of the measurements for our two selected 
electrodes) are reduced to smaller vectors R1:Nd

× o (i.e., 
each dimension o(d) corresponds to the scalar product 
between the original observations o and a 2000-element 
vector Rd ). We recall that PCA is not claimed to be an 
optimal dimensionality reduction, since it optimizes 
a criteria (i.e., the variance between the raw or mean 
traces) which does not capture all the information in 
our measurements. However, it is a natural first step in 
our investigations, and we could verify that our follow-
ing conclusions are not affected by slight variations of the 
number of extracted dimensions (i.e., adding one or two 
dimensions), which therefore fits our (primary) confi-
dence and stability goal.

PDF estimation We now describe the main ingredient 
of our supervised/profiled evaluation, namely the PDF 
estimation for which we exploit the knowledge of the p 
values for the observations in the profiling sets.

In order to build a model f̂model(o1:Nd
|p) , we first take 

advantage of the fact that the dimensions of the o1:Nd
 vec-

tors after PCA are orthogonal. By additionally consid-
ering them as independent, this allows us to reduce the 
PDF estimation problem from one Nd-variate one to Nd 
univariate ones. Based on this simplification, the standard 
approach in side-channel analysis is to assume the obser-
vations to be normally distributed and to build Gaussian 
templates [20]. Yet, in our experiments no such obvious 
assumption on the distributions in hand was a priori 
available. As a result, we first considered a (nonparamet-
ric) kernel density estimation as used in [21], which has 
slower convergence but avoids any risk of biased evalu-
ations [22]. Kernel density estimation is a generalization 
of histograms. Instead of bundling samples together in 
bins, it adds (for each observation) a small kernel cen-
tered on the value of the observation to the estimated 
PDF. The resulting estimation that is a sum of kernels is 
smoother than histograms and usually converges faster. 

Concretely, kernel density estimation requires selecting a 
kernel function (we used a Gaussian one) and to set the 
bandwidth parameter (which can be seen as a counter-
part to the bin size in histograms). The optimal choice of 
the bandwidth depends on the distribution of the obser-
vations, which is unknown in our case. So we need to rely 
on a heuristic and used Silverman’s rule-of-thumb for 
this purpose [23].4

Evaluation metrics Following the general principles 
put forward in [17], our evaluations will be based on a 
combination of information-theoretic and security analy-
ses. The first ones aim at evaluating whether exploitable 
information is available in the EEG signals; the second 
ones at evaluating how efficiently this information can be 
exploited to mount a side-channel attack. Note that since 
we do not assume the users to behave identically, these 
metrics will always be evaluated and discussed for each 
user independently.

Perceived information The perceived information (PI) 
was introduced in the context of side-channel attacks 
against cryptographic devices, of which the goal is to 
recover some secret data (aka key) given some physi-
cal leakage [24]. The PI aims at quantifying the amount 
of information about the secret key, independent of the 
adversary who will exploit this information. Informally, 
we will use this metric in a similar way, by just consider-
ing P as a bit to recover and the observations as leakages. 
Using the previous notations, we define the PI between 
the PIN random variable P and the observation random 
variable O:

where we use the notation Pr[X = x] =: Pr[x] for con-
ciseness, and f(o|p) is the (continuous) PDF of the obser-
vations given the value of p. In the ideal case where the 
model is perfect, the PI is identical to Shannon’s mutual 
information. In the practical cases where the model dif-
fers from the observation’s true distribution, the PI cap-
tures the amount of information that is extracted from 
these observations, biased by the model (assumption and 
estimation) errors [22].

Of course, concretely the true distribution f(o|p) 
is unknown to the adversary/evaluator and can only 
be sampled. Therefore, the approach in side-channel 

PI(P;O) = H[P] +
∑

p

Pr[p] ·

∫

o

f(o|p) · log2 Pr
model

[p|o]do,
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Fig. 6  Reconstructed signal based on average PCA, corresponding to 
User 8, Electrode P7, using the first dimension (left) and all the other 
dimensions (right)

4  Note that for completeness, we also considered simple Gaussian tem-
plates. Comparing nonparametric and parametric approaches was useful in 
our experiments, in order to gain confidence that the kernel density estima-
tion is not capturing dataset-specific features. Yet, since no significant varia-
tion was noticed, the following sections will focus on the results obtain with 
kernel density estimation.
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analysis, that we repeat here, is to split the set of obser-
vations O in k non-overlapping sets O(i) . We then define 
the profiling sets O(j)

p =
⋃

i �=j O
(i) and the test sets 

O
(j)
t = O\O

(j)
p  . The PI is computed in two phases:

1.	 The observations’ conditional distribution is esti-
mated from a profiling set. We denote this phase 
with 

Note that the Prmodel[p|o] factor involved in the PI 
definition is directly derived via Bayes’ theorem as: 

2.	 The model is tested by computing the PI estimate: 

with njp the number of observations in the test set 
O

(j)
t |p.

Eventually, the k outputs P̂I
(j)
(P;O) are averaged to get 

an unbiased estimate, and their spread characterizes 
the accuracy of the result. Note that concretely, the 
maximum size for the profiling set in our experiments 
equals ≈ 899 , leading to a cross-validation parameter 
k ≈ 900 and a test set of size 1. In this case, the model 
building phase is repeated ≈ 900 times, and each model 
is tested once against an independent sample. (We use 
the ≈ symbol to reflect the fact that these values are 
approximated, due to the rejection of eye blinks men-
tioned in Sect.  2.) This “leave one out” strategy has a 
large cross-validation parameter compared to current 
practice (e.g., in side-channel attacks against crypto-
graphic implementations a value of k = 10 was selected 
[22]), leading to computationally intensive evaluations. 
Yet, it is justified in our study because of the limited 
number of samples available in our experiments.

Success rate and average rank In order to confirm that 
the estimated PI indeed leads to concrete attacks, we 
consider two simple security metrics. Here, the main 
challenge is that we only have models for the real and 
random PIN codes, while the actual observations in 
the test set naturally come from six different events. 
As a result, we first considered the success rate event 
per event. For this purpose, the ≈ 900 observations 

f̂
(j)
model(o|p) ← O

(j)
p .

P̂rmodel[p|o] =
f̂
(j)
model(o|p) · Pr[p]

∑

p∗ f̂
(j)
model(o|p

∗) · Pr[p∗]
·

P̂I
(j)
(P;O) = H[P] +

1
∑

p=0

Pr[p] ·
∑

o∈O
(j)
t |p

1

n
j
p

· log2P̂rmodel[p|o],

are split in 6 sets of ≈ 150 observations that corre-
spond to the six different tag values. Based on these 6 
sets, we can compute the probability that the obser-
vations are correctly classified as real or random in 
function of the number of observations exploited in 
the attack, next denoted as q. This is done by averag-
ing a success function S that is computed as follows. 
If q = 1 : S(o1) = 1 if P̂rmodel[p|o1] > P̂rmodel[p̄|o1] 
and S(o1) = 0 otherwise (where p̄ denotes 
the incorrect event); if q = 2 : S(o1, o2) = 1 if 
P̂rmodel[p|o1] × P̂rmodel[p|o2] > P̂rmodel[p̄|o1] × P̂rmodel

[p̄|o2]; . . . Concretely, this success rate is an interesting 
metric to check whether the observations generated by 
different incorrect PIN values indeed behave similarly.

Of course, an adversary eventually wants to compare 
the likelihoods of different PIN values. For this pur-
pose, we also considered the average rank of the correct 
PIN in an experiment where we gradually increase the 
number of observations per tag q, but this time con-
sider sets of 6 observations at once that we classify only 
according to the model for the real PIN. This leads to 
vectors (P̂rmodel[p|o

1
1], P̂rmodel[p|o

2
1], P̂rmodel[p|o

3
1], . . . , 

P̂rmodel[p|o
6
1]) if q = 1 , (P̂rmodel[p|o

1
1]× P̂rmodel[p|o

1
2], 

..., P̂rmodel[p|o
6
1] × P̂rmodel[p|o

6
2]) if q = 2 , ..., where the 

superscripts denote the tag from which the observa-
tions originate. The average rank is then obtained by 
sorting this vector and estimating the sample mean of 
the position of the tag 1 in the sorted vector.

Connecting the metrics (sanity check) Note that as 
discussed in [25], information-theoretic and security 
metrics can be connected (i.e., a model that leads to a 
positive PI should lead to successful attacks).5 We con-
sider both types of metrics in our experiments because 
the first ones allow a better assessment of the confi-
dence in the evaluations (see the following paragraph 
on confidence), while the second ones lead to simpler 
intuitions regarding the concrete impact of the attacks.

Outliers As mentioned in the Dimensionality Reduc-
tion paragraph, the main drawback of the raw PCA is 
that it extracts the useful EEG information less efficiently, 
which we mitigate by using more dimensions. Unfortu-
nately, this comes with an additional caveat. Namely, the 
less informative information extraction combined with 
the addition of more dimensions increases the risk of out-
liers (i.e., observations that would classify the correct PIN 
value very badly for some dimensions, possibly leading 
to a negative PI). In this particular case, we considered 
an additional post-processing (after the dimensionality 

5  More precisely, the PI is an average metric, so what is needed is that each 
line of the PI matrix defined in [17] (corresponding to 6 different events in 
our study) are positive, which we confirmed with the success rate analysis.
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reduction and model building phases). Namely, given the 
≈ 900 probabilities P̂r[p|R1:Nd

× oi] , we rejected the ones 
below 0.001 and set them to this minimum value. This 
choice is admittedly heuristic, yet did consistently lead to 
positive results for all the users. It is motivated by limit-
ing the weight of the log probabilities for the outliers in 
the PI estimation. We insist that this treatment of outli-
ers is only needed for the raw PCA. For the average PCA, 
we did not reject any observation (other than the ones in 
Sect. 2).

Confidence By using ≈ 900-fold cross-validation, we 
can guarantee that our PI estimates will be based on 900 
observations, leading to 900 values for the log probabili-
ties log2(P̂r[p|R1:Nd

× oi]) . Since this remains a limited 
amount of data compared to the case of side-channel 
attacks against cryptographic implementations, and the 
extracted PI values are small, we completed our infor-
mation-theoretic evaluations by computing a confidence 
interval for the PI estimates. To avoid any distribution-
specific assumption, we computed a 10% bootstrap confi-
dence interval [26], by resampling 100 bootstrap samples 
out of our 900 log probabilities, computing 100 mean 
bootstrap samples, sorting them and using the 95th and 
5th percentiles as the endpoints of the intervals.6 For 
simplicity, this was only done for the PI metric and not 
for the success rate and average rank since (1) successful 
Bayesian attacks are implied by the information-theoretic 
analysis [25], (2) these metrics are more expensive to 
sample (e.g., we have only one evaluation of the success 
function with q ≈ 150 per user), and (3) they are only 
exhibited to provide intuitions regarding the exploitabil-
ity of the observations (i.e., the attack complexities).

3.3 � Unsupervised (aka non‑profiled) analysis
While supervised (aka profiled) analyses are the method 
of choice to gain understanding about the information 
available in a side-channel, their practical applicability 
is of course questionable. Indeed, building a model for 
a target user may not always be feasible, and this is par-
ticularly true in the context of attacks against the human 
brain since, as will be discussed in Sect. 4.3, models built 
for one user are not always (directly) exploitable against 
another user. In this section, we therefore propose an 
unsupervised/non-profiled extension of the previous 
(supervised/profiled) information-theoretic evaluation. 
To the best of our knowledge, this variation was never 
described as such in the open literature (although it 
shares some similarities with the non-profiled attacks 
surveyed in [21]). For this purpose, our starting point 
is the observation from Fig.  3, that in an unsupervised/

non-profiled context, one can take advantage of the fact 
that the (e.g., mean) traces of the EEG signals corre-
sponding to the correct PIN value may stand out. As a 
result, a natural idea is to compute the PI metric 6 times 
independently, each time assuming a different (possibly 
random) tag to be correct during an “on-the-fly” mod-
eling phase. If the traces corresponding to the (truly) cor-
rect PIN are more singular (comparatively to the others), 
we can expect the PI estimated with this PIN to be larger, 
leading to a successful attack.

Of course, such an attack implies an additional neuro-
physiological assumption (while in the supervised/pro-
filed setting, we just exploit any information available). 
Yet, it nicely fits the intuitions discussed in the rest of this 
section, which makes it a good candidate for concrete 
evaluation. Furthermore, we mention that directly recov-
ering the correct PIN value may not always be necessary: 
as in the case of side-channel analysis, reducing the rank 
of the correct PIN value down to an enumerable one may 
be sufficient [18].

4 � Experimental results
4.1 � Supervised (aka profiled) evaluation
As in the previous section, we start with the results of 
our supervised/profiled evaluations, which will be in 
two (information-theoretic and security) parts. Before-
hand, there is one last choice regarding the computation 
of P̂r[p|R1:Nd

× oi] via Bayes’ theorem. Namely, should 
we consider maximum likelihood or maximum a poste-
riori attacks (i.e., should we take advantage of the a pri-
ori knowledge of Pr[p] or consider a uniform a priori). 
Interestingly, in our context ignoring this a priori and 
performing maximum likelihood attacks is more rele-
vant, since we mostly want to avoid false negatives (i.e., 
correct PINs that would be classified as random ones), 
which prevent efficient enumeration. Since the a priori 
on P increases the amount of such errors (due to the a 
priori bias of 5/6 toward random PIN values), the rest of 
this section reports on the results of maximum likelihood 
attacks.

4.1.1 � Perceived information
As a first step in our evaluations, we estimated the PI 
using the methodology described in the previous sec-
tion. We started by looking at the evolution of the PI 
estimation in function of the number of observations in 
the profiling set used to build the model. The results of 
this analysis for a couple of users are in Fig. 7 (Fig. 17 in 
appendix contains the results for all users) from which 
two quantities must be observed:

•	 The value of the PI estimated using the maximum 
profiling set (i.e., the extreme right values in the 

6  We note that confidence intervals estimated based on a Gaussian assump-
tion did not lead to different conclusions in our case study.
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graphs). It reflects the informativeness of the model 
built in the profiling phases and is correlated with 
the success rate of the online (maximum likelihood) 
attack using this model [25]. Positive PI values indi-
cate that the model is sound (up to Footnote 5) and 
should lead to successful online attacks if the num-
ber of observations (i.e., the q parameter in our nota-
tions) used by the adversary is sufficient.

•	 The number of traces in the profiling set required to 
reach a positive PI. It reflects the (offline) complexity 
of the model estimation (profiling) phase [27].

In this respect, the results in Fig. 7 show a positive con-
vergence for the two illustrated users, yet toward different 
PI values which indicate that the informativeness of the 
EEG signals differs between them. Next, and quite inter-
estingly, we also see that the difference between average 
PCA (in the left part of the figure) and raw PCA (in the 
right side) confirms the expected intuitions. Namely, 
the fact that raw PCA reduces dimensionality based on 
less meaningful criteria and requires more dimensions 
implies a slower model convergence. Typically, model 
convergence was observed in the 100 observations’ range 
with average PCA and required up to 400 traces with raw 
PCA. For completeness, Table  1 contains the estimated 
PI values with maximum profiling set, for the different 
users and types of PCA. Excepted for one user (User 5) 
for which we could never reach a positive PI value with 
confidence,7 this analysis suggests that all the users lead 

to exploitable information and confirms the advantage of 
average PCA. A similar table obtained with the Gaussian 
profiling is given in Appendix 1.

Note that we leave the accurate treatment of confidence 
intervals for Sect.  4.2 where it will play an important 
role. Yet, we can already notice the stable shape of the 
PI curves as the size of the profiling set increases, which 
intuitively indicates the convergence of our estimations.

4.1.2 � Success rate and average rank
As discussed in the previous section, our information-
theoretic analysis is a method of choice to determine 
whether discriminant information can be extracted from 
EEG signals with confidence. Yet, it does not lead to 
obvious intuitions regarding the actual complexity of an 
online attack where an adversary obtains a set of q fresh 
observations and tries to detect whether some of them 
correspond to a real PIN value. Therefore, we now pro-
vide the results of our complementary security analysis 
and estimate the success rate and average key rank met-
rics. As previously mentioned these evaluations are less 
confident, since for large q values such as q = 150 we can 
have only one evaluation of the success function. Con-
cretely, the best success rate/average key rank estimates 
are therefore obtained for q = 1 . We took advantage of 
resampling when estimating them for larger q’s.

Figures 8 and 9 illustrate that these metrics are indeed 
correlated with the value of the PI estimates using the 
maximum profiling set, which explains the more efficient 
attacks against Users 2, 3 and 8. Concretely, the average 
rank figure suggests that correct PIN value can be exactly 
extracted in our 6-PIN case study with 5–10 observations 
for the most informative users and 30–40 observations 
for the least informative ones. The success rate curves 
also bring meaningful intuitions since they highlight that 
all (correct and random) PIN values can be correctly clas-
sified with our profiled models (in slightly more traces). 
This confirms our neurophysiological assumption from 
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Fig. 7  Evolution of the PI in function of the size of the profiling set 
for Users 3 (top) and 6 (bottom), using average PCA (left) and raw PCA 
(right)

Table 1  Estimated PI values with maximum profiling set

User P̂I(P;O) with avg. PCA P̂I(P;O) 
with raw 
PCA

1 0.0739 0.0618

2 0.1643 0.1315

3 0.1494 0.1398

4 0.0920 0.0228

5 ∅ ∅

6 0.0521 0.0214

7 0.0759 0.0568

8 0.1697 0.0458

7  As mentioned in Sect.  2, this is due to the presence of another familiar 
event for this user, which he mentioned to us after the experiments were 
performed. Further analysis of this critical case was not possible since the 
experiment approved by our ethical board was conditioned on the fact that 
no user PIN was stored.
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the previous section that the users react similarly to all 
random values.8

Besides, Fig. 8 is interesting since it shows how confi-
dently the correct PIN value is classified independent of 
the others. Hence, its results would essentially scale with 
larger number of PIN values.

Finally, Fig. 9 confirms the presence of a parasitic famil-
iar event for User 5, for which the average rank is reduced 
to 2 rather than optimal 1.9

4.2 � Unsupervised (aka non‑profiled) analysis
We now move to the more challenging problem of unsu-
pervised/non-profiled attacks. For this purpose, we 
first applied the attack sketched in Sect.  3.3 with the 
maximum number of traces in the profiling set. That is, 
we repeated our evaluation of the PI metric six times, 
assuming each of the tag values to be the real one. Fur-
thermore, we computed the confidence intervals for each 

of the PI estimates according to the confidence paragraph 
in the previous section. The results of this experiment are 
in Fig. 10 for two users and lead to three observations.

First, looking at the first line of the figure, which corre-
sponds to the correct PIN value, we can now confirm that 
the PI estimates of Sect.  4.1.1 are sufficiently accurate 
(e.g., the confidence intervals clearly guarantee a positive 
PI). Second, the confidence intervals for the random PIN 
values (i.e., tags 2–6) confirm the observation from our 
success rate curves (Fig. 8) that the users react similarly 
to all random values. Third, the middle and bottom parts 
of the figure show the results of two (resp. 4) non-pro-
filed attacks where the profiling set was split in 2 (resp. 
4) independent parts (without resampling), therefore 
leading to the evaluation of 2 (resp. 4) confidence inter-
vals for each tag value. Concretely, the PI estimate for the 
correct PIN value consistently started to overlap with the 
ones of random PINs for all users, as soon as the num-
ber of attack traces q was below 200, and no clear gain 
for the correct PIN could be noticed below q = 100 . This 
confirms the intuition that unsupervised/non-profiled 
side-channel attacks are generally more challenging than 
supervised/profiled ones (here, by an approximate factor 
5–10 depending on the users).

This conclusion also nicely matches the one in 
Sect.  4.1.1, Fig.  7, where we already observed that the 
(offline) estimation of an informative model is more 
expensive than its (online) exploitation for PIN code 
recovery as measured by the success rate and average 
rank (by similar factors). Indeed, in the unsupervised/
non-profiled context such an estimation has to be per-
formed “on-the-fly”.

4.3 � Model portability
Since the previous section suggests a significant advan-
tage of supervised/profiled attacks over unsupervised/
non-profiled ones, a natural question is whether the pro-
filing can lead to realistic attack models. Clearly, estimat-
ing a model for the correct PIN of each user an adversary 
would like to target seems hardly realistic (especially 
if 10,000 PIN values are considered). Therefore, and in 
order to get around this drawback, a solution would be 
to use the model built for one user against another user. 
Despite limited by the number of users in our experi-
ments, we made preliminary analyses in this direction. 
Interestingly, while for most pairs of users the resulting 
attacks failed and the PI estimates remained negative, we 
also found two pairs of users for which the models could 
be mutually exchanged. Namely, targeting User 1 (resp. 
User 6) with the model of User 6 (resp. User 1) leads to 
a PI of 0.0211 (resp. 0.0357). And targeting User 1 (resp. 
User 3) with the model of User 3 (resp. User 1) leads to 
a PI of 0.0281 (resp. 0.0246). Intuitively, this positive 
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Fig. 8  Success rates per tag value for Users 1, 3, 5 and 7 (left column) 
and Users 2, 4, 6 and 8 (right column)

8  We may expect more singularities (such as the one of User 5) to appear 
and launch false alarms in case studies with more PIN values. Yet, this 
would not contradict the trend of a significantly reduced average rank for 
the correct PIN value.
9  Despite a positive PI, the key rank for User 7 also stabilizes to 2. Yet, in 
this case we observed that it is due one single misleading observation that is 
not rejected by our outlier management).
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result is in part explained by the similar shapes of the 
first eigenvectors used to reduce the dimensionality when 
estimating these models. Overall, this problem of model 

portability is in fact similar to the problem of variability 
faced in the context of side-channel attacks against cryp-
tographic devices [24]. Hence, it is an interesting scope 
for further research to investigate how advanced profiling 
techniques (e.g., profiling multiple users jointly with mix-
ture models) could be used to increase the practical rel-
evance of supervised/profiled attacks against the human 
brain.

Note that in this context, the impact of certain param-
eters in our methodology is susceptible to evolve too. 
For example, and as just mentioned, the user specificities 
that make the portability of the models challenging are in 
part due to the shape of the eigenvectors produced by the 
average PCA. So using the raw PCA may gain interest in 
this case. As a preliminary experiment in this direction, 
we evaluated the PI when targeting a user with a model 
profiled with all the other users.10 As a result, we could 
obtain positive PI values for 5 out of 7 users, with both 
the average and the raw PCA (and similar informative-
ness). For illustration, the success rate curves for such 
a (successful and unsuccessful) profiling are given in 
Fig. 11. These results suggest that profiling classes of sim-
ilar users is certainly a promising approach for realistic 
attacks.

5 � From security issues to privacy issues
Before concluding, we make a short excursion from the 
evaluation of security toward the risks of privacy in BCI-
based applications. That is, since the previous investiga-
tions exhibited significant differences between the EEG 
signals of different users reacting to their correct PIN val-
ues, we reverse the problem and now try to identify the 
users rather than the PIN values. For this purpose, we fol-
lowed exactly the same methodology and estimated the 
modified perceived information P̂I(U;O) . A plot of the 
mean and standard deviation traces corresponding to 
our 7 different users (similar to Figs. 3 and 4) is given in 
Fig. 12. And the evaluation of the partial PI estimates for 
each user (i.e., P̂I(U = u;O) ) is given in Table 2.

Clearly, we see that the EEG signals are also (in fact 
even more) informative in this case. Interestingly, this 
observation is consistent with the related literature trying 
to exploit EEG signals for biometric applications [28, 29].

6 � Consequences and conclusions
The results in this paper lead to two conclusions.

First, and from the security point of view, our experi-
ments show that PIN extraction attacks using BCIs are 
feasible, yet require several observations to succeed with 
high probability. In this respect, the difference between 

0 10 20 30 40 50

1
3

5

q

av
g.

 r
an

k

0 10 20 30 40 50

1
3

5

q

av
g.

 r
an

k

0 10 20 30 40 50

1
3

5

q

av
g.

 r
an

k

0 10 20 30 40 50

1
3

5

q

av
g.

 r
an

k

0 10 20 30 40 50

1
3

5

q

av
g.

 r
an

k

0 10 20 30 40 50

1
3

5

q

av
g.

 r
an

k

0 10 20 30 40 50

1
3

5

q

av
g.

 r
an

k

0 10 20 30 40 50

1
3

5

q

av
g.

 r
an

k

Fig. 9  Average rank of the correct PIN for Users 1, 3, 5 and 7 (left 
column) and Users 2, 4, 6 and 8 (right column)
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Fig. 10  Confidence intervals for the (non-profiled) PI evaluation of 
Sect. 3.3 with ≈ 900 observations (top), ≈ 450 observations (middle) 
and ≈ 225 observations (bottom), for Users 8 (left) and 6 (right)

10  Excluding User 5 because of its previously computed negative PI.
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the complexity of successful supervised/profiled attacks 
(around 10 correct PIN observations) and unsuper-
vised/non-profiled attacks (more in the hundreds range) 
is noticeable. It suggests the aggregation of users into 
classes for which the models are sufficiently similar as 
an interesting scope for further research (which would 
require larger scale experiments, with more users). In this 
setting, a better investigation of the impact of enumera-
tion would also be worthwhile. Indeed, the reduction of 
the average rank of the correct PIN is also significant in 

our analyses. Therefore, combining side-channel attacks 
against the human brain with some enumeration power 
can reduce the number of observations required to suc-
ceed. (Roughly, we can assume that the average key rank 
will be reduced exponentially in the number of observa-
tions, as usually observed in side-channel attacks [30].)

More generally, our results suggest that extracting con-
crete PIN codes from EEG signals, while theoretically 
feasible and potentially damaging from some users and 
PINs, is not yet a very critical threat for systematic PIN 
extraction. This may change in the future, if/when mas-
sive amounts of BCI signals start to be collected. Besides, 
other targets with smaller cardinality could already be 
more worrying (e.g., extracting the knowledge of one 
relative among a set of unknown people displayed on a 
screen), because of avoiding issues related to users loos-
ing their focus due to too long experiments.

Second, and given the importance of profiling for 
efficient information extraction from EEG signals, our 
experiments also underline that privacy issues may be 
even more worrying than security ones in BCI-based 
applications. Indeed, when it comes to privacy, the 
adversary trying to identify a user is much less limited 
in his profiling abilities. In fact, any correlation between 
his target user and some feature found in a dataset is 
potentially exploitable. Furthermore, the amount and 
types of correlations that can be exhibited in this case 
are potentially unbounded, which makes the associ-
ated risks very hard to quantify. In this respect, the 
data minimization principle does not seem to be a suf-
ficient answer: it may very well be that the EEG signals 
collected for one (e.g., gaming) activity can be used 
to reveal various other types of (e.g., medical, politi-
cal) correlations. Anonymity is probably not the right 
answer either (since correlations with groups of users 
may be as discriminant as personal ones). And such 
issues are naturally amplified in case of malicious appli-
cations (e.g., it seems possible to design a BCI-based 
game where situations lead the users to incidentally 
reveal preferences). So overall, it appears as an impor-
tant challenge to design tools that provide evidence of 
“fair treatment” when manipulating sensitive data such 
as EEG signals, which can be connected to emerging 
challenges related to computations on encrypted data 
[31] which can be connected to emerging challenges 
related to computations on encrypted data [31].
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Fig. 11  Exemplary success rates per tag value for “all against one” 
profiling: (left: User 3, right: User 4)
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Fig. 12  Exemplary mean traces (left) and standard deviation traces 
(right) for the reaction of different users to the correct PIN value 
(Electrode P8 on top row and Electrode P7 on bottom row)

Table 2  Estimated PI values with maximum profiling set

User P̂I(U = u;O) with avg PCA P̂I(U = u;O) 
with raw 
PCA

1 0.7044 0.5257

2 0.7217 0.6378

3 0.2680 0.2138

4 0.3337 0.8044

5 ∅ ∅

6 0.2620 0.4254

7 0.4003 0.5650

8 1.4532 1.1351
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Appendix 1: Gaussian template results
See Table 3.

Appendix 2: Additional figures
See Figs. 13, 14, 15, 16 and 17.

Table 3  Gaussian counterpart to Table 1

User P̂I(P;O) with avg. PCA P̂I(P;O) 
with raw 
PCA

1 0.0795 0.0563

2 0.1454 0.1522

3 0.1542 0.1247

4 0.0824 0.0256

5 ∅ ∅

6 0.0586 0.0200

7 0.0841 0.0633

8 0.1752 0.0364
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Fig. 13  Mean traces for different tag (left) and PIN (right) values. User 
1 (top) to 8 (bottom), Electrode P7
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Fig. 14  Mean traces for different tag (left) and PIN (right) values. User 
1 (top) to 8 (bottom), Electrode P8
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Fig. 15  Standard deviation traces for different tag values corresponding 
to Users 1, 3, 5 and 7 (left) and Users 2, 4, 6 and 8 (right), Electrode P7
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Fig. 16  Standard deviation traces for different tag values 
corresponding to Users 1, 3, 5 and 7 (left) and Users 2, 4, 6 and 8 
(right), Electrode P8
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Fig. 17  Evolution of the PI in function of the size of the profiling set 
for Users 1 (top) to User 8 (bottom), using average PCA (left) and raw 
PCA (right)
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