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Automated epileptic seizures detection 
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Abstract 

Detection of epileptic seizure activities from long-term multi-channel electroencephalogram (EEG) signals plays a sig-
nificant role in the timely treatment of the patients with epilepsy. Visual identification of epileptic seizure in long-term 
EEG is cumbersome and tedious for neurologists, which might also lead to human error. Therefore, an automated 
tool for accurate detection of seizures in a long-term multi-channel EEG is essential for the clinical diagnosis. This 
study proposes an algorithm using multi-features and multilayer perceptron neural network (MLPNN) classifier. After 
appropriate approval from the ethical committee, recordings of EEG data were collected from the Institute of Neuro-
sciences, Ramaiah Memorial College and Hospital, Bengaluru. Initially, preprocessing was performed to remove the 
power-line noise and motion artifacts. Four features, namely power spectral density (Yule–Walker), entropy (Shannon 
and Renyi), and Teager energy, were extracted. The Wilcoxon rank-sum test and descriptive analysis ensure the suit-
ability of the proposed features for pattern classification. Single and multi-features were fed to the MLPNN classifier to 
evaluate the performance of the study. The simulation results showed sensitivity, specificity, and false detection rate of 
97.1%, 97.8%, and 1 h−1, respectively, using multi-features. Further, the results indicate the proposed study is suitable 
for real-time seizure recognition from multi-channel EEG recording. The graphical user interface was developed in 
MATLAB to provide an automated biomarker for normal and epileptic EEG signals.
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1  Introduction
EEG is a clinical procedure carried out for monitor-
ing, diagnosing, and determining neurological disorders 
related to epilepsy [1]. Epilepsy is a neurological disorder 
caused due to abnormal electrical discharges in the brain 
that are characterized by seizures and sudden changes 
in the electrical activity of the brain. An epileptic sei-
zure is commonly identified as a slow-spike waveform. 
The unpredicted nature of these seizures makes the daily 
life immobile with temporary impairments of percep-
tion, speech, memory, consciousness and may lead to an 
increased risk of injury or death [2, 3]. Nearly 4% of world 

population experience seizure at some stage of their life 
out of which 1% are epileptic. In interictal recordings, 
epileptic seizures are usually activated with photostimu-
lation, hyperventilation, and other methods. However, 
the drawback is that the behavior of provoked epileptic 
seizures is not necessarily the same as natural ones [4].

The long-term video-EEG recording is a significant 
milestone to not only capture and analyze ictal events 
but also help in the contribution of valuable clinical 
information. Traditional methods of analyzing EEG are 
time-consuming and a tedious job done by neurologists. 
Visual interpretation of these long-term EEG recordings 
can lead to human error and is inefficient [5]. Moreover, 
the EEG recordings of epileptic seizure are similar to 
the waves that are a part of background noise and arti-
facts. For these reasons, automated detection of epileptic 
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seizures is needed to reduce the analyzing time and help 
the neurologists.

The brain is a nonlinear and complex dynamic system, 
so detecting seizures by a single-channel EEG is not suf-
ficient. Thus, the processing of multi-channel EEG plays a 
vital role in seizure detection across the brain. However, 
multi-channel EEG signals impose the challenge of effi-
ciently extracting useful information, and hence, only a 
few studies have focused on them [6, 7]. An ample num-
ber of studies have been proposed for seizure detection. 
Such technique involves preprocessing, feature extrac-
tion, and classification. Selecting significant features is 
essential to distinguish between normal and epileptic 
EEG signals. Our focus is on making the job of the neu-
rological experts easy by making the abnormality visually 
understandable by using the multi-features extraction 
methods.

Multi-channel EEG recording plays a crucial role in 
recognizing the epileptic seizure activities from the 
brain lobes. Automated computed aided screening tool 
to help neurologist in saving their investigation period 
and enhance the required clinical diagnosis. Therefore, 
this study proposes the automated detection of epilep-
tic seizures from multi-channel EEG recordings using 
multi-features. It also helps neurological experts have a 
complete picture of the epileptic EEG recordings pre-
venting them from false alarms and leading to decision 
support with increased accuracy.

Figure 1 shows the flow of the proposed automated sei-
zure detection system. The database was obtained after 
taking consent from the ethical committee. The raw data 
that were obtained had other noises such as power-line 
noise and motion artifacts other than EEG recording. 
Suitable filtering techniques were implemented to obtain 
clean EEG. The 50-Hz power-line noise was removed 
by using a notch filter, a bandpass filter had been 

implemented to get the signals in the range of 0.5–40 Hz, 
and independent component analysis (ICA) was applied 
to remove the motion artifacts.

The EEG data consisting of both normal and epi-
leptic data annotated by the clinician were segmented 
separately for offline analysis. The features of interest to 
evaluate the epileptic EEG, namely PSD, entropy, and 
TE, were extracted, and descriptive analysis was carried 
out. The extracted features were given as input to the 
MLPNN binary classifier. Finally, a graphical user inter-
face (GUI) has been developed to label the signals as nor-
mal or epileptic.

So far, several automated epileptic seizure detection 
methods have been proposed. In the early 1980s, the 
automated seizure detection procedure for a long dura-
tion of EEG recordings was initiated [8]. Guo et  al. [9] 
proposed a line length of EEG as a feature and artificial 
neural networks classifier-based automated detection of 
epileptic seizure. The database considered was subjected 
to preprocessing, visual inspection, and artifact removal. 
EEG was decomposed into different sub-bands using dis-
crete wavelet transform (DWT), and line length feature 
was extracted. The classification was done using a three-
layer MLPNN, and a classification rate of more than 95% 
was achieved. Back-propagation neural network classifier 
with periodogram and autoregressive features was pro-
posed [10]. Orhan et  al. [11] used DWT-based features 
with MLPNN model for automated detection of epilep-
tic seizures. Kamath [2, 3] proposed Teager energy as a 
quantitative feature for EEG signals. The study used the 
University of Bonn database to extract Teager energy 
and compared the classification outcome with Higuchi’s 
fractal dimension and sample entropy. It has been proved 
that TE provided an accuracy rate of 97.8%, and it can be 
used in real-time automated applications.

Gurwinder et al. [12] proposed a study to detect epi-
leptic seizures using wavelet transformation and spike-
based features. The work used University of Bonn 
database and wavelet transformation as its preprocess-
ing technique. Spike-based parameters were extracted 
from both normal and interictal data. MLPNN was 
used for classification which gave an accuracy of 98.6%. 
Epileptic seizure detection method was developed 
using autoregressive modeling [13] and that showed the 
classification accuracy of 84.2% using MLPNN. Hierar-
chical EEG classification system using best basis-based 
wavelet packet entropy method was proposed [14]. 
Abbasi and Esmaeilpour [4] proposed a study to choose 
statistical characteristics of brain signals for detection 
of epileptic seizures using DWT and perceptron neural 
network. Their study used University of Bonn database 
and DWT as a feature extraction method. Statisti-
cal characteristics are derived, and a multi-perceptron 
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Fig. 1  Block diagram of the proposed Aepitect technique
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neural network was used as a classifier which gave an 
accuracy of 98.33%.

The features such as mean, standard deviation, skew-
ness, kurtosis, and the median in the first and second 
derivative of EEG signals were extracted for mobile-
based automated epileptic seizure detection using 
k-means clustering technique [15]. Bogaarts et  al. [16] 
extracted features such as curve length, root mean 
square, band power, zero crossing, Hjorth parameters, 
and Teager energy to classify epileptic EEG from nor-
mal using the support vector machine (SVM) classi-
fier. Empirical mode decomposition (EMD) followed 
by DWT was applied on EEG signals to compute log 
energy entropy. The obtained features were classified 
using K-NN classifier, which yields the accuracy of 
89.4% [17]. In the recent study [18], significant features 
were selected from neighborhood component analysis 
for the classification of focal and non-focal EEG sig-
nals. The highest classification accuracy of 96.1% was 
obtained using SVM classifier.

Other studies have introduced approximation entropy 
[19], log and norm entropy [20, 21], variants of entro-
pies [22, 23], DWT-based features [24], time–frequency-
domain features [25], Shannon, Renyi, log entropy and 
spectral entropy [20, 21], spectral and statistical features 
[26], and the classification of epileptic seizures. An opti-
mal configuration of MLPNN was derived for the classifi-
cation of epileptic seizures [27].

It was inferred from various studies that automated sei-
zure detection was based on using single feature extrac-
tion. However, using multi-features would help in better 
classification of normal and epileptic data and classifica-
tion accuracy.

2 � Materials and methods
2.1 � EEG data acquisition
The EEG recordings used in this study were obtained 
from Ramaiah Memorial College and Hospital, Ben-
galuru, after getting consent from the ethical com-
mittee. Unipolar multi-channel (19 channels) EEG 
recordings from 20 patients (11 male and nine female), 
each of 20-min duration, were considered for the study. 
International 10–20 system was used for the electrode 
placement, and data were recorded at a sampling rate 
of 128 Hz. The data, consisting of both normal and epi-
leptic seizures annotated by clinician, were segmented 
separately for offline analysis. The 19 channels include 
the recordings from the following placement of the elec-
trodes: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, 
P3, Pz, T6, O1, and O2. Table 1 shows each patient infor-
mation used in our study.

2.2 � Preprocessing
Suitable filtering techniques were introduced to elimi-
nate noise and artifacts. An infinite impulse response 
(IIR) notch filter of order 2 was implemented to remove 
the 50-Hz power-line noise. A bandpass filter of order 5 
with a higher cutoff frequency of 40 Hz and a lower cut-
off frequency of 0.5 Hz was implemented to retain the 
EEG rhythms of interest in the data. The filter design 
specifications are: the passband ripple and attenuation 
in the stop band were set to 3  dB and 40  dB, respec-
tively. Artifacts were removed from the filtered EEG 
using joint approximation diagonalization of eigen-
matrices-based ICA technique [28–30].

2.3 � Feature extraction
Selecting significant features is essential for the proper 
classification of epileptic seizures. The number of 
extracted features should be less and easy to compute 
with reduced computational time. The significant char-
acteristic of an epileptic EEG is a slow wave followed 
by a spike. The epileptic EEG varies significantly from 
that of a normal EEG in frequency, period, complexity, 
etc. Considering all these parameters, the following fea-
tures were selected for our research work: power spec-
tral density, entropy (Shannon and Renyi entropy), and 
Teager energy [19–23].

Table 1  Information of each patient EEG data used in our 
work

M Male, F Female, SPS Simple partial seizure, CPS Complex partial seizure, GTCS 
Generalized tonic–clonic seizure, MCS Myoclonic seizure

Patient no. Sex Age Seizure type

1 M 80 SPS, CPS, GTCS

2 F 20 SPS, CPS, MCS

3 F 5 SPS, CPS

4 M 11 SPS, CPS

5 F 12 CPS, GTCS

6 F 26 SPS, CPS, MCS

7 F 7 SPS, CPS, GTCS

8 M 3 SPS, CPS

9 M 12 SPS, CPS, MCS

10 M 44 SPS, CPS, GTCS

11 M 13 SPS, CPS, MCS

12 M 16 CPS, MCS

13 M 5 CPS, MCS, GTCS

14 F 7 SPS, CPS, GTCS

15 F 9 CPS, GTCS

16 M 6 SPS, CPS

17 M 5 SPS, CPS, GTCS

18 F 13 SPS, CPS

19 F 21 SPS, CPS, MCS

20 M 18 CPS, MCS
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In this paper, PSD was used as the power of the EEG sig-
nal increased during epileptic activity. Entropy is a measure 
of the complexity or uncertainty of a signal, higher during 
epileptic activity, and gives a clear distinction between nor-
mal and epileptic. Teager energy depends on the amplitude 
of the epileptic data that is higher than that of the normal 
signal. From the preliminary study, it was identified that 
PSD using Yule–Walker method showed better results as 
compared to the other methods of PSD like Welch method, 
Burg’s method, and Thomson’s method.

2.3.1 � Yule–Walker method
Yule–Walker method is an autoregressive (AR) method 
that estimates spectra with narrow peaks by placing the 
poles of the polynomial close to unity. Narrowly banded 
spectra are quite common in practice. Hence, this has 
been chosen as the best method for feature extraction 
for the study. The AR parameters are represented as θ by 
forming a biased estimate of the signal’s autocorrelation 
function and a minimization of a prediction error [31].

For this study, a fourth-order autoregressive model 
was used to produce the PSD estimates. The preproc-
essed signal was segmented at a length of 0.5 s, followed 
by obtaining the PSD estimates, and then, the maximum 
PSD of each segment was determined. This process was 
carried out in the complete study.

2.3.2 � Shannon entropy
It is a measure of the randomness or disorder in physi-
cal systems or the amount of average information gained 
by observations of disordered systems. It is the best pos-
sible lossless compression and gives low entropy values 
for varied distribution and high entropy values when 
outcomes are uniformly distributed. Shannon’s entropy is 
given by the equation [32]:

where pi is the probability of occurrence of the signal.

2.3.3 � Renyi entropy
It is a generalized form of Shannon’s entropy when the Renyi 
estimation factor α = 1 . It is also called quadratic entropy as 
α = 2 . The value of α is estimated to be taken as 2 as peak 
accuracy is achieved with specificity higher than for Shan-
non’s case. Renyi’s entropy equation is given as [33]:

(1)E = −
∑

pi log2 pi

(2)E =
1

1− a

∑
log2 p

a
i

where α ≥ 0 and α �= 1.
There are a few special cases in case of Renyi entropy. 

They include:

α = 0—obtains maximum entropy.
α = 1—recovers the Shannon’s entropy.
α = ∞—obtains the minimum entropy.

It can also be added that when α has larger positive 
value, it is sensitive to events that occur often and when α 
has larger negative value, and it is sensitive to events that 
occur seldom.

Since entropy is a function of probability, in this 
study, the probability was estimated using the histogram 
method by setting the bins with a uniform width.

2.3.4 � Teager energy
Teager energy is a nonlinear operator, which can be used 
for energy estimation of a non-stationary signal. This fea-
ture is extremely sensitive to amplitude and frequency 
changes of a signal. The method is computationally very 
efficient, as it requires only three samples at any given 
instance to calculate the physical energy. Since the EEG 
signal is non-stationary, Teager energy operator can be 
used as a discriminating feature for normal and epileptic 
data set.

As per the Teager algorithm, the Teager energy (TE) 
is estimated from the signal x(n) through the formation 
of time-delayed state-spaced vectors x(n) = [x1, x2, x3,…, 
xn−1, xn] where n is the data points as follows [34]:

where N is taken to be 64 (segmentation length of 0.5 s).
From the equation, it is clear that Teager energy takes 

into account the amplitude and the corresponding fre-
quency to determine the physical energy.

2.4 � Descriptive analysis
Descriptive analysis was performed on the extracted 
feature samples obtained from epileptic and normal 
data. The mean, standard deviation (SD), minimum, 
maximum, interquartile range (IQR), first quartile (Q1), 
median (Q2), third quartile (Q3), and semi-interquartile 
deviation (SID) were estimated for extracted features 
using box plot. The p and z values were found for individ-
ual patients for normal and epileptic feature values. The 
p value should be less than 0.05 which gives a confidence 
level of greater than 95%, and the z value should be less 

(3)TE =
1

N − 1

N−1∑

n=2

x2n − xn−1 ∗ xn+1



Page 5 of 10Sriraam et al. Brain Inf.  (2018) 5:10 

than 1.96 and greater than − 1.96 [34]. The descriptive 
analysis of extracted features showed that the obtained 
features are significant for further analysis.

2.5 � Classifier
MLPNN is a feed-forward neural network, which was 
used for binary classification of the EEG signal. It con-
tains three consecutive layers, namely input, hidden, 
and output layer [35–38]. In this study, we have used the 
MLPNN model with a single hidden layer of 10 neurons. 
Hyperbolic tangent and tangent sigmoid were used as 
input to hidden and hidden to output activation function, 
respectively. A scaled conjugate gradient back-propaga-
tion was used as a training function. The classification 
target was set to 0 for normal and 1 for epileptic [27].

2.6 � Performance evaluation
The performance of the proposed method was evaluated 
based on the sensitivity (S+), specificity (S−), and false 
detection rate (FDR) for individual patients as follows 
[11, 19, 25]:

3 � Results
This study takes into account 20 patients’ multi-channel 
EEG recordings. Notch filter and bandpass filters with 
appropriate cutoff frequencies were used to remove line 
noise of 50  Hz and other background noises. ICA was 
used to remove motion artifacts, and artifact-removed 
multi-channel EEG is shown in Fig.  2. To maintain the 
uniformity of the signal, the EEG was segmented at 0.5 s 
duration. 

(4)S+ =
Correctly detected epileptic seizures

Total number of epileptic seizures

(5)S− =
Correctly detected normal activities

Total number of activities

(6)FDR(per hour) =
Number of false detections

Total length of the data

Fig. 2  Preprocessed multi-channel EEG signal

Table 2  Descriptive analysis of extracted features

‘N’ stands for normal and ‘E’ stands for a person with epilepsy

Feature EEG Mean STD Min Q1 Q2 Q3 IQR Max SID

Yule–Walker PSD N 0.6027 1.0179 0.0018 0.1536 0.3402 0.5719 0.4183 15.063 0.2091

E 20.866 19.7967 0.1609 7.0496 15.703 27.513 20.4636 259.5852 10.2318

Shannon entropy N 3.2285 0.5698 1 2.9579 3.4082 3.6565 0.6986 4.1804 0.3493

E 2.0793 0.5666 0.9016 1.6943 2.0441 2.4196 0.7252 3.8029 0.3626

Renyi entropy N 3.4005 0.7148 0.8493 3.1329 3.4929 3.8295 0.6966 5.3897 0.3483

E 5.8863 0.5731 2.9858 5.5831 6.1188 6.2974 0.7142 6.7119 0.3571

Teager energy N 0.7101 2.9253 0.0012 0.0719 0.1917 0.4419 0.3700 80.621 0.1850

E 19.24708 51.654 0.0337 3.6780 7.0098 13.378 9.7003 720.1391 4.8501
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A descriptive analysis of the obtained feature from epi-
leptic and normal data was performed. Table  2 shows 
that the statistical parameters for both epileptic and nor-
mal EEG samples obtained from patients were highly dis-
tinguishable. Results show that PSD, entropy, and Teager 
energy in epileptic EEG were more compared to that of 
normal EEG. A p value was found between normal and 
epileptic extracted feature samples using a two-sided 
Wilcoxon rank-sum test. For all the features, p value was 
found to be less than 0.05 and z value greater or lesser 
than the prescribed limits, which indicates that all the 
features were suitable for classification. Table 2 shows the 
obtained p and z values (Table 3).  

The classifier was trained using holdout cross-valida-
tion method with the ratio of 70 − 30 used for training 
and testing. Highest sensitivity and specificity of 86.2% 
and 95.2% were obtained using Renyi entropy for indi-
vidual features, respectively. Further, sensitivity, specific-
ity, and FDR of 97.8%, 96.4%, and 0.15 h−1 were recorded 
using multi-features which were highest than all other 
combinations. Table 4 shows the classification results of 
the proposed system for all individual features and multi-
feature combination.

Figure 3 shows the ROC curve obtained from the clas-
sification results of PSD, Shannon entropy, Renyi entropy, 
Teager energy, and multi-features. Maximum AUC of 
0.97 was obtained for multi-features, whereas a mini-
mum of 0.83 attained for Shannon entropy. Classification 
results revealed that the highest performance measures 
were achieved using multi-features than the single fea-
tures with the betterment of sensitivity, specificity, and 
FDR.

4 � Discussion
The foremost objective of this study was to introduce an 
automated detection of epileptic seizures using multi-
channel EEG. Four features, namely PSD, variants of 
entropy, and Teager energy, were utilized followed by 
MLPNN classifier. These features were selected for the 
study based on previous performance on other databases. 
Experimental results show that multi-features perform 
better as compared to single features. Figure  4 shows 
the best validation performance of MLPNN classifiers 
for multi-features. It can be seen that the best validation 
performance of 0.08 was obtained at epoch 54. Further, 
Fig.  5 shows the error histogram of training, validation, 

Table 3  Wilcoxon rank-sum test results

Feature name p value z-score

Yule–Walker PSD < 0.05 − 50.8174

Shannon entropy < 0.05 49.87157

Renyi entropy < 0.05 − 51.2641

Teager energy < 0.05 − 51.2896

Table 4  Epileptic seizure detection results using 
the proposed method

Feature name S+ S− FDR (h−1)

Yule–Walker PSD 86.5 94.4 3

Shannon entropy 86.9 80.0 3

Renyi entropy 96.2 95.2 2

Teager energy 82.0 94.8 3

Multi-features 97.8 96.4 1
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Fig. 3  ROC curve for different features obtained from EEG data
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and the testing state. As it can be seen, error difference 
between target and predicted values is minimum, exhib-
iting the good convergence.  

A GUI was built using MATLAB for automated clas-
sification of epileptic seizures using the trained model 
developed. The name assigned to the GUI developed was 
‘Aepitect’, which stands for automated epileptic seizure 
detection. The GUI was designed in such a way that it dis-
plays the 20 s of EEG every page. Features were extracted 
at a segmentation length of 0.5 s, and the same were used 
to classify using the trained model. Figure  6 shows the 
screenshot of ‘Aepitect’, and it was cross-validated with 
the neurologist and found 98.5% matching.

The button ‘Select File’ allows the user to select the 
patient file, and the button ‘Biomark’ performs preproc-
essing, feature extraction, classification, and biomarking.

The performance of the proposed approach was com-
pared with the other existing studies reported earlier. 
Table 5 shows the comparison results between different 
studies. As it is seen from Table 5, most of the studies 
have used single-channel EEG data from the University 
of Bonn and achieved better results. One should take 
the attention while comparing the performance of dif-
ferent methods since different EEG databases were used 
in their respective studies. University of Bonn database 
was found to be clean EEG, and it works well for all the 
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methods. However, the challenge arises while dealing 
with long-term multi-channel EEG. Therefore, we have 
used our database for the study to overcome the exist-
ing issues such as less sensitivity, specificity, and FDR.

The results of seizure detection algorithms are usually 
evaluated based on the sensitivity of the raised alarms 
(number of detected seizures/total number of seizures) 
and false detection rate; it is not evaluated by the sensi-
tivity and specificity of epochs/segments. It was noticed 

that studies using University of Bonn database had clas-
sified epileptic seizures as epochs/segments instead of 
detecting them as a complete seizure. When comparing 
with other methods, our method follows the evaluation 
criteria of sensitivity and FDR to evaluate the perfor-
mance of the algorithm. As compared to other meth-
ods listed in Table 5, the proposed method matches the 
results of other studies without using any DWT on EEG 
signal.

Fig. 6  Screenshot of GUI referred as ‘Aepitect’ developed in MATLAB

Table 5  Comparison results of some epileptic seizure detection methods

Author Features Classifier Results Database

Kiymik et al. Autoregressive features Back-propagation neural network Accuracy 95% Neurology department of the 
Medical Faculty Hospital of 
Dicle University

Orhan et al. DWT-based features MLPNN Accuracy 99.6 University of Bonn

Kamath 2013 Teager energy Radial basis function neural 
network

Accuracy 97.8% University of Bonn

Gurwinder et al. 2015 Wavelet transformation and spike-
based features

MLPNN Accuracy 98.6 University of Bonn

Ahammad et al. Energy, entropy, standard devia-
tion, maximum, minimum, and 
mean

MLPNN Accuracy 84.2 University of Bonn

Wang et al. 2011 Wavelet packet entropy K-NN Accuracy 100% University of Bonn

Abbasi et al. 2017 DWT-based features MLPNN 98.33% University of Bonn

Srinivasan et al. 2007 ApEn Recurrent Elman neural network Accuracy 100% University of Bonn

Proposed method PSD, entropy, and Teager energy MLPNN Sensitivity 97.8%
Specificity 96.4%
FDR 1 h−1

Ramaiah Memorial College and 
Hospital, Bengaluru
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The significant contributions of the proposed study 
were:

1.	 EEG data were recorded at Ramaiah memorial hospi-
tal, Bengaluru, and were used for the study.

2.	 Artifacts were removed automatically using ICA 
technique and experts validated same at Ramaiah 
memorial hospital, Bengaluru.

3.	 From the preliminary study, the best PSD method 
(Yule–Walker) was selected for the feature extrac-
tion.

4.	 Three features, namely PSD, variants of entropy, and 
Teager energy, were used for the feature extraction.

5.	 The descriptive analysis shows the noticeable band 
difference between normal and epileptic EEG activi-
ties.

6.	 Wilcoxon rank-sum test shows the evidence to reject 
the null hypothesis at the 5% significance level.

7.	 Classification results show the better performance 
using multi-features as compared to the single fea-
tures.

8.	 A MATLAB GUI called ‘Aepitect’ was developed for 
automated detection.

The above findings suggest that the proposed method 
is suitable for automated detection of epileptic seizures 
in real time. The complete study was implemented in 
MATLAB 2016b using 8  GB RAM, CPU 2  GHz with 
Intel i5 processor. As a future step, more features will 
be included to increase the sensitivity and decrease the 
FDR. Further, deep learning concept will be explored 
for the classification of epileptic seizures.

5 � Conclusion
This study provides a multi-channel EEG analysis for 
the detection of epileptic seizures using PSD, entropy, 
Teager energy, and MLPNN classifier. Initially, EEG 
signals were preprocessed to remove noise and arti-
facts, and features were extracted. Descriptive analysis 
and Wilcoxon rank-sum test proved the suitability of 
the extracted features for classification with noticeable 
band difference between normal and epileptic EEG. The 
simulation results showed sensitivity, specificity, and 
false detection rate of 97.8%, 96.4%, and 1 h−1, respec-
tively, using multi-features. Results indicate that the 
proposed study is suitable for real-time seizure recog-
nition from multi-channel EEG recording. The graphi-
cal user interface referred as ‘Aepitect’ was developed 
in MATLAB to provide an automated biomarker for 
normal and epileptic EEG signals. It is anticipated that 
the proposed algorithm will offer a faster and accurate 
diagnosis and also reduce the time spent on detecting 

seizures from long-term multi-channel EEG recordings 
and can be extended to more patients for long-term 
EEG.
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