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Abstract 

Analysis of functional magnetic resonance imaging (fMRI) plays a pivotal role in uncovering an understanding of the 
brain. fMRI data contain both spatial volume and temporal signal information, which provide a depiction of brain 
activity. The analysis pipeline, however, is hampered by numerous uncertainties in many of the steps; often seen as 
one of the last hurdles for the domain. In this review, we categorise fMRI research into three pipeline phases: (i) image 
acquisition and processing; (ii) image analysis; and (iii) visualisation and human interpretation, to explore the uncer-
tainties that arise in each phase, including the compound effects due to the inter-dependence of steps. Attempts at 
mitigating uncertainties rely on providing interactive visual analytics that aid users in understanding the effects of 
the uncertainties and adjusting their analyses. This impetus for visual analytics comes in light of considerable research 
investigating uncertainty throughout the pipeline. However, to the best of our knowledge, there is yet to be a com-
prehensive review on the importance and utility of uncertainty visual analytics (UVA) in addressing fMRI concerns, 
which we term fMRI-UVA. Such techniques have been broadly implemented in related biomedical fields, and its 
potential for fMRI has recently been explored; however, these attempts are limited in their scope and utility, primarily 
focussing on addressing small parts of single pipeline phases. Our comprehensive review of the fMRI uncertainties 
from the perspective of visual analytics addresses the three identified phases in the pipeline. We also discuss the two 
interrelated approaches for future research opportunities for fMRI-UVA.

Keywords:  Functional magnetic resonance imaging (fMRI), Visualisation analysis, Uncertainty analysis, Uncertainty 
visual analytics, Functional connectivity, Issue management

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

1  Introduction
Functional magnetic resonance imaging (fMRI) is a 
medical imaging modality that measures brain activity 
via associated blood oxygenation in a series of temporal 
scans [1, 2]. The resulting four-dimensional (4D) data 
have three spatial dimensions to represent the brain and 
one temporal dimension for the functional activity. The 
modality has played a pivotal role in a number of find-
ings, such as defining a baseline default mode network 
[3] which can be used as a marker for Alzheimer’s dis-
ease [4], and distinguishing features of brains with mental 

disorders, e.g. [5–8]. There are two main modes of fMRI 
used in research, resting state (rs-fMRI)—which images 
the brain while the patient is awake, but no mental task 
is being performed—and task-based (t-fMRI)—which 
images the brain while a task is being performed, such 
as listening to music or answering questions; the mode 
commonly includes resting periods between task events 
to provide a baseline comparison [1].

Many of the fMRI discoveries are enabled by advances 
in the image analysis pipeline, which processes the com-
plex raw 4D fMRI data into meaningful information for 
interpretation. This pipeline has multiple individual 
steps that we categorise into three phases, as shown in 
Fig.  1: (i) image acquisition and processing; (ii) image 
analysis; and (iii) visualisation and human interpreta-
tion. The first phase begins with the scanner taking the 
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images and typically involves processing steps to pro-
duce an image from the raw hardware measurements. 
This usually comprises image reconstruction, motion 
correction, normalisation, filtering, denoising and regis-
tration. The second phase, which is designed to process 
the fMRI data into meaningful information for inter-
pretation, typically involves statistical image processing 
methods, such as principal or independent components 
analysis (PCA/ICA) and voxel clustering—which group 

the voxels based on temporal signal to determine which 
areas of the brain are active together and the pattern of 
this activity. This voxel grouping is different to segmen-
tation and is used, e.g. to categorise and understand 
diseases. The methods may also be used to assists with 
improving signal-to-noise ratio (SNR) or in separat-
ing matter types in the brain and understanding which 
parts of the brain are active for t-fMRI, among a range of 
other uses. These methods are examples of voxel-based 

Fig. 1  Summary of the fMRI image analysis pipeline, categorised into three phases: (i) image acquisition and processing; (ii) image analysis; and 
(iii) visualisation and human interpretation. Each of the three phases comprises multiple processing steps that introduce new uncertainties and 
compound upon existing uncertainties. A summary of the main steps in each phase is denoted in the three boxes
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functional connectivity analysis. Other methods include 
seed-based correlation analysis, fractional amplitude of 
low frequency fluctuations (fALFF) and regional homo-
geneity analysis. Alternatively, node-based functional 
connectivity analysis—which maps the 4D fMRI data to 
3D spatial regions of interest (ROIs) from a segmented 
atlas, known as a parcellation—is used to enable the com-
parison of how similar ROIs are over time and whether 
these patterns hold across multiple brains, allowing for 
an understanding of population-level characteristics. 
These techniques are advantageous in understanding the 
image data and making it possible to compare one fMRI 
to another or to a population. More recently, machine 
learning and deep learning techniques have been applied 
for many tasks, including image classification to distin-
guish between diseased and normal fMRI [7, 9, 10]. These 
techniques rely on insights and labelling from voxel-
based and node-based functional connectivity analysis 
and are thus dependent on their use. The third phase is 
for human interpretation of the information and com-
munication of the results. This is commonly performed 
using interactive visualisations [11]. Examples of tech-
niques used in the visualisations include radial views—
which list the ROIs as nodes in a circle and display the 
connections as lines between the nodes—or 3D visu-
alisations of voxel-based results—which use surface and 
volume renderings of the brain to display which voxels 
belong to which class, often using different colours [11]. 

While the fMRI analysis pipeline is used to create valu-
able information about brain activity, each of the steps in 
the phases is hampered by a range of uncertainties. Sev-
eral of these are inherent hardware limitations that arise 
during the image acquisition and processing phase, such 
as, low signal-to-noise ratio, low spatial and temporal res-
olution and questions surrounding how much functional 
activity the scanners reveal [1]. These are compounded 
during the image analysis phase, which is contingent on 
numerous image processing algorithms, each with fun-
damental weaknesses, in addition to their need for esti-
mation and complex parameter selection. The final phase 
introduces uncertainty due to information lost in visual-
ising the outcome of the earlier steps, as well uncertainty 
regarding the human’s ability to correctly understand and 
interpret the complex data, given the high cognitive load 
[12–14]. Each of these compound upon the concerns 
from previous steps due to the inter-dependence of the 
steps and the flow of the data through the pipeline. A 
summary of the main steps in each phase that create and 
compound the uncertainties, derived from [1, 11, 15, 16], 
is presented in the three outer boxes in Fig. 1.

Efforts have been made to mitigate these uncertain-
ties using interactive visualisation tools, known as visual 

analytics. Such tools combine human expertise and vis-
ual pattern recognition ability with automated process-
ing that enables users to analyse and see the effects of 
the uncertainties on the data throughout the pipeline. 
Research has shown that awareness of such issues in the 
data positively influences human decision making and 
that it is thus critical to quantify uncertainties for analysis 
[17, 18]. The push for visual analytics comes as a result 
of considerable research investigating issues throughout 
the fMRI analysis pipeline, e.g. [13, 19], and due to the 
successes of uncertainty visual analytics (UVA) [20, 21] in 
other related fields. UVA techniques have been broadly 
explored in related biomedical fields, such as analysis of 
segmentation errors in medical images including MRI 
and PET images [22], and widely adopted in a range of 
other areas [23], such as climate [24], security [25] and 
astronomy [26]. Reviews have been performed into 
UVA for specific topics, including medical visualisation 
[15]—which broadly categorised fMRI within functional 
imaging, but did not explore the pipeline or visual analyt-
ics—promoting the benefits of such research. However, 
to the best of our understanding, there is yet to be a com-
prehensive review on the importance of visual analytics 
in addressing the challenges in fMRI uncertainties. The 
uncertainties, and issues caused by them, are often rec-
ognised as one of the last major hurdles for widespread 
fMRI use and clinical application. The potential for fMRI 
to leverage the advances in UVA, which we define as 
fMRI-UVA, has only started to be explored. For exam-
ple, there are initial fMRI-UVA approaches, e.g. [27–29], 
that simplify the presentation of the data to improve 
human understanding, thereby reducing uncertainty in 
the interpretation. Similarly, initial attempts have focused 
on specific aspects of the uncertainty during the process-
ing, primarily towards analysing the temporal sequence, 
e.g. [30, 31]. These approaches have begun to resolve 
some of the uncertainties. However, there are numer-
ous others that arise throughout the pipeline, such as 
threshold selection in the image analysis phase, which 
have not been targeted. More importantly, despite the 
progress in addressing the concerns at an individual step 
or phase level, the more challenging compound effects of 
the uncertainties, arising from the multiple steps within 
and among the phases, are not well understood and 
have received limited attention in research. This greatly 
impacts fMRI research, raising questions and concerns 
about many of the findings in the field, such as high false-
positive rates in defining clusters of active voxels [12, 
14, 32–38]. Consequently, the field of fMRI analysis has 
not reached its full potential and has seen limited clini-
cal uptake [1, 39]. Thus, fMRI-UVA stands to benefit the 
field greatly by effectively communicating uncertainties 
throughout the pipeline.
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In this review paper, we first introduce the uncer-
tainties that arise during the fMRI analysis pipeline; in 
Sect. 2, these are present in both resting-state and task-
based studies. Section  3 reviews existing research in 
image analysis, visualisations and visual analytics, includ-
ing limitations, the compound effects, and related UVA 
from other domains. In both these sections, we place 
specific emphasis on the compound effects of the uncer-
tainties as the data move within and among the phases. 
We then discuss future directions and opportunities for 
fMRI-UVA in Sect. 4.

2 � Uncertainties in fMRI
In this section, we further discuss the range of uncer-
tainties present in the three phases of the fMRI analysis 
pipeline. These include both data uncertainty, primarily 
in the first two phases relating to automatic processing: 
are the data correctly representing the underlying brain 
function; and human uncertainty, primarily in the third 
phase, but also in earlier steps, relating to decisions made 
by humans: is the user correctly interpreting the infor-
mation and adjusting for the issues arising from the data 
uncertainty.

2.1 � Image acquisition and processing
2.1.1 � Acquisition steps
Many of the uncertainties in the acquisition steps are 
derived directly from inherent limitations of the fMRI 
scanner hardware. A comprehensive review of the fMRI 
hardware, including its limitations, is beyond the scope 
of this paper, and interested readers are directed to 
recent works, e.g. [40–42]. fMRI hardware limitations 
commonly include poor image resolution, both spatially 
and temporally; low signal-to-noise ratio; head motion 
artefacts; functional state differences within the slice 
sequences in a scan that are caused by the difference in 
time points taken to get through all the slices sequentially 
[43]; and others such as the ghosting artefact [44] which 
results in apparent activation through increased intensity 
of overlapping signals caused principally by inaccurate 
timing of reads and magnetic field inhomogeneity [1, 12, 
33, 42, 44]. As an example of these limitations, scans typi-
cally image the brain at a spatial resolution of 1–2 mm, 
depending on the hardware and study, with each volu-
metric scan in the temporal sequence taking between 
1 and 3  s, depending on the spatial resolution chosen, 
resulting in a total scan duration typically taking between 
10 and 60 min [42, 45]. However, each cubic millimetre of 
brain can contain approximately one hundred thousand 
cells, and the brain can go through tens of state changes 
per second [42]. This mean an fMRI can only estimate the 
micro-level function of the brain, likely containing het-
erogeneity within a voxel, and is susceptible to imaging 

different brain states as though they are a single contigu-
ous event. While these limitations are inherent to the 
hardware, some, such as head motion, may be greatly 
reduced using later processing steps [46].

2.1.2 � Preprocessing steps
Image processing procedures are used to preprocess fMRI 
data for analysis. These introduce a range of uncertain-
ties that compound the hardware limitations discussed in 
Sect. 2.1.1. Required preprocessing steps include motion 
correction, registration, smoothing and filtering. These 
steps are common to most medical imaging modali-
ties. However, for fMRI preprocessing, the steps lead to 
uncertainty as baseline features for each patient, which 
are used in parameter selection are difficult to deter-
mine [47, 48]. For example, landmarks which are often 
used in motion correction and registration are not easily 
distinguished in fMRI data [41]. Physiological monitor-
ing, such as head and eye tracking, are used to minimise 
some of the uncertainty; yet the mapping between the 
tracking data and the preprocessing algorithms is imper-
fect [41]. Further steps such as tissue segmentation, for 
example, of white and grey matter, background stripping 
and registration to a common atlas space, are important 
but difficult tasks for fMRI analysis [1, 49–51]. First, the 
modality is temporal with the potential for unaccounted 
motion between frames, which affects the quality of all 
three mentioned steps, e.g. for background stripping a 
single mask may not represent the whole sequence; sec-
ond it contains three forms of matter—white matter, grey 
matter and cerebrospinal fluid—that have low contrast 
between them, hampering image segmentation and reg-
istration as both are reliant on contrast separations over 
the functional activity curve; and third, the anatomical 
structure is often fuzzy [1, 34, 46, 50, 51]. Moreover, each 
of the image processing steps require manual tuning and 
refinements, such as parameter selection, that can have 
a major impact on the data and introduce or compound 
multiple uncertainties about, for example, the accuracy 
of what data were removed or modified [13, 32, 52].

2.1.3 � Other causes
Underpinning all these uncertainties are unknowns 
about individual patient physiology, including to what 
extent these physiological differences between patients 
affect the analysis outcomes [1, 12, 13, 35]. One of the 
major concerns regarding physiology is the effect of indi-
vidual activity baselines in the brain. This refers to each 
person’s level and pattern of underlying brain activity that 
is related background brain function. This baseline is dif-
ferent for each person and can depend on other factors, 
such as time of day, functional state differences between 
scans and scanner environment [41], for a single patient 
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at different time points [35]. This introduces uncertain-
ties, such as whether the same image processing pipeline 
can be applied to different patients, and what it needs to 
be adjusted per patient.

2.2 � Image analysis
Common image analysis approaches aim to abstract the 
data by, e.g. grouping related voxels by their temporal 
sequences into a single value representing the groups. 
This process is done to reduce the amount of data that 
requires analysis, making the process manageable and 
potentially reducing the impact of voxels affected by con-
cerns such as noise, because they become a small part of 
the representative data point, rather than the whole data 
point [53, 54]. Image analysis can also provide the abil-
ity to directly compare images, which allows researchers 
to find similarities and differences between individuals 
and populations, for example, understanding Alzheimer’s 
disease [8]. Methods for doing this include voxel-based, 
such as PCA/ICA, which group voxels based on tempo-
ral signal, and node-based functional connectivity analy-
sis, which groups voxels based on spatial location from 
predefined ROIs in a parcellation, as shown in Fig.  2. 
A comprehensive review of image analysis methods is 
beyond the scope of this paper, and interested readers are 
directed to recent works, e.g. [39, 50, 51]. These methods 
involve the selection of parameters and models, such as 
whether to delete time points prior to voxel-based and 
which parcellation to use in node-based analysis. How-
ever, these decisions cause uncertainty as there is no 
way to easily understand the impact of the decision on 
the data. For example, it is difficult to measure how well 
the parcellations in node-based analysis fit individual 

subjects. They may inaccurately map because when 
nodes are defined at the group level in standard space, 
there is a high risk for incorrectly defined node bounda-
ries resulting from misalignment of individual subject 
data to the parcellation [55, 56]. Mapping can alterna-
tively be done at the group level, which includes a step to 
refine the node boundaries in a way that is optimised for 
each individual subject. This improves the correspond-
ence while still allowing some flexibility in specific node 
boundaries; however, the difficulties in measuring the fit 
of the parcellations have a large impact [55–58]. These 
uncertainties are in part due to the potential issues from 
the image acquisition and processing phase and thus 
compound the overall effects in the pipeline. The con-
tinued development of parcellations that attempt to pro-
vide more subject- and purpose-specific mappings of the 
brain, highlights this problem. For example, the authors 
of [56] note that their work is only an initial outcome of 
an ongoing development which will improve as better 
data and processes become available, both of which are 
impacted by the uncertainties in the image acquisition 
and processing phase.

Beyond selecting the parameters, other concerns arise 
in the steps to quantify how “coactive” regions of the 
brain are. Coactive refers to how similar the activity is 
over the temporal dimension for voxels or regions of the 
brain and is indicated by a single number, typically the 
correlation, for the temporal similarity of each pair of 
regions [39, 50]. This involves taking the temporal activ-
ity curve of each voxel in a region to create a curve that is 
deemed representative for the whole region, commonly 
through averaging the signals. The resulting abstraction 
replaces the hundreds of thousands of voxels, each with a 

Fig. 2  Functional connectivity networks are created by grouping voxels in the brain using parcellations: a voxels are grouped by anatomical 
regions from a predefined parcellation; b all the temporal signals in a region are summarised into a representative signal, and then the coactivation 
is calculated for each pair of regions; and c the coactivation values are formatted into a matrix that can be viewed as a network for analysis and 
interpretation. Uncertainties arise from this process regarding how well the parcellations fit each subject, heterogeneity in the temporal and spatial 
data, as well as the loss of spatial information in formatting as a matrix
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unique activity curve, with a set of coactivation values for 
under ten to a few thousand ROIs. Comparison of regions 
and subjects, e.g. for evaluating diseases, is accordingly 
made much simpler, faster and more understandable. 
However, the steps create two forms of heterogeneity 
that lead to uncertainty: spatial and temporal. Spatial het-
erogeneity is more prevalent in node-based functional 
connectivity analysis as ROIs are based primarily on ana-
tomical location and not the activity curves, although it 
is still a concern for voxel-based analysis as the group-
ing can be influenced by outlier voxels. Due to inherent 
limitations in parcellation, the resulting regions almost 
always contain a mixture of heterogeneous voxels that are 
not accurately captured by the representative signal, or in 
the case of larger outliers, affect the activity curve of the 
representative signal. Spatial uncertainty is compounded 
because each region is compared to other regions in 
the brain to measure the coactivity, thereby multiply-
ing errors. Consequently, spatial heterogeneity leads to 
issues in the representative temporal signal regarding 
how accurately it summarises the activity in the region, 
and whether the heterogeneous signals are, e.g. noise 
[59]. Temporal uncertainty arises because brain activity 
can represent a number of state changes within a scan, 
such as short bursts of activity [60]. However, in abstract-
ing the data, each pair of temporal signals is summarised 
into a single coactivation value. This value cannot reflect 
all the temporal variability within the data and thus may 
not be an accurate quantification of the coactivity during 
part of the sequence. Some statistical techniques, such 
as dynamic node-based functional connectivity analysis, 
which uses a sliding-window approach to summarise the 
temporal activity [61], attempt to minimise the temporal 
heterogeneity by accounting for the state changes within 
each window. However, these techniques still reduce 
the variability to a single number. The combination of 
temporal and spatial heterogeneity results in local and 
global levels of uncertainty. That is, local refers to how 
accurately the representative temporal signal depicts the 
signals of each internal voxel; and global is how well the 
relationship between the representative temporal signals 
is quantified in the coactivation value [30].

Finally, before progressing to the visualisation and 
human interpretation phase, the abstracted data are com-
monly processed further through thresholding [34]. In 
the case of node-based functional connectivity analysis, 
the threshold is used to filter coactivation values, so only 
those that are desired, e.g. highly coactive, are retained. 
Meanwhile, in PCA/ICA, the thresholding is performed 
at both a voxel- and cluster-level and in fALFF threshold-
ing is performed based on the source signal details, such 
as frequency and amplitude. The voxel-level threshold is 
set as a cut-off parameter that determines which voxels 

belong to which group by quantifying how similar the 
voxel’s signal needs to be to the representative signal of 
the group. The group-level is then thresholded to filter 
out components that do not represent a high enough por-
tion of the activity in the fMRI. Thresholding, however, 
creates new uncertainty as there are no accepted meth-
ods for defining a good threshold [34, 62–64]. Instead, 
thresholds that are simply considered “high enough” or 
“low enough” are commonly used, resulting in multiple 
questions regarding whether meaningful data have been 
thresholded out [62, 63]. This negatively impacts the 
reproducibility of studies and has led to a repository for 
sharing processed but unthresholded fMRI data, as each 
parameter and algorithm selected in the fMRI analysis 
pipeline to this step changes the data in a different way 
[65]; however, use of this repository is currently limited. 
Unlike the uncertainties inherent to the data acquired 
from the hardware, many of these issues have the poten-
tial to be improved through user interaction, visualisation 
and data analysis, as discussed in the following sections.

2.3 � Visualisation and human interpretation
2.3.1 � Visualisation
Visualisation and visual analytics is designed to draw 
the attention of a user to certain aspects of the data over 
others. While this reduces the cognitive load on users 
and is done to highlight important aspects of the data, 
this inherently adds the risk of introducing uncertainty. 
For example, a visualisation may highlight a difference 
between coactivation values of two images; however, 
to do so, it is forced to make assumptions about which 
aspects are important, such as whether the absolute or 
relative coactivation differences are more important. This 
introduces uncertainties related to whether the, typi-
cally automatic, assumptions about what to highlight and 
what to de-emphasise are correct. These can then com-
pound previous concerns, e.g. by emphasising coactiva-
tion between two regions that are affected by high spatial 
heterogeneity, as described in Sect. 2.2. This has a large 
impact because the coactivation does not carry any infor-
mation about the heterogeneity and the coactivation will 
be read as meaningful when it is caused by issues in the 
data.

2.3.2 � Cognition
Interpretation of complex fMRI data, even with the use 
of visualisations, is known to increase cognitive load 
that can lead to difficulty in understanding results. As 
an example, users can have trouble mentally recon-
structing the brain due to the complex 3D structure 
with varying ROIs depending on the parcellation or 
known network [11]. Similarly, fMRI interpretation is 
heavily influenced by user expectation and bias, such 
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as expectation of a certain coactivation between ROIs 
[66, 67]. This is exacerbated due to the current limited 
knowledge of the brain, which results in researchers 
having different ideas about what causes phenomena 
[66, 67]. Each of these can lead to misinterpretation of 
the fMRI data that has a compound effect as the inter-
pretations are used to inform and create future studies 
[11, 66].

3 � Methodology
The visualisation and visual analytics tools described in 
the following sections were identified through search-
ing leading publishers and major indexing databases: 
IEEE, Springer, Science Direct, ACM, Wiley and Google 
Scholar. The search terms: “functional magnetic reso-
nance imaging”; “fMRI”; “connectome”; “functional con-
nectivity”; “brain connectivity”; “neuroimaging”; “brain 
activity”; “neural activity”; “blood oxygen level depend-
ent”; and “BOLD”; were used in combination with 
“visualisation”; “visual analytics”; and “information visu-
alisation”; and the terms “uncertainty”; “issues”; “chal-
lenges”; and “concerns”. References lists of selected papers 
were also checked. As papers were found, we categorised 
them into the three phases described in Sect. 2 and then 
into themes based on how they presented fMRI data. 
We also performed specific searches on aspects such as 
temporal uncertainty or thresholding as we determined 
categories and themes; these augment our main search 
strategy. As a result, the works presented are not exhaus-
tive; however, they cover in detail the key themes which 
need to be understood for future fMRI-UVA.

4 � Existing analysis processes, visualisations 
and visual analytics

Visual analytics tools aim to reduce the cognitive load on 
users during interpretation, intuitively present results of 
interpretation for communication between researchers, 
and allow researchers to interactively refine to present 
relevant information. Recently, there have been attempts 
at fMRI-UVA in the image analysis phase, exposing some 
of the uncertainties in the intermediate steps; these allow 
for decisions to be made about aspects of the data qual-
ity, for example, temporal heterogeneity as introduced in 
Sect. 2.2. Yet, many of the processes in the fMRI pipeline 
utilise statistical toolkits that introduce the uncertainties 
without employing any fMRI-UVA. In this section, we 
discuss the key toolkits, processes and software libraries 
that are used throughout the pipeline. While our analysis 
focuses on the visualisation and visual analytics tools, we 
also introduce standard statistical methods where these 
are commonplace.

4.1 � Image acquisition and processing
To the best of our knowledge, no research exists specifi-
cally for fMRI-UVA of the image acquisition and pro-
cessing phase, largely due to the recent emergence and 
relative immaturity of fMRI-UVA in comparison with the 
range of established statistical toolkits. Standard statisti-
cal toolkits, such as AFNI [68], Freesurfer [69], FSL [70] 
and SPM [71], which perform processes introduced in 
Sects.  2.1.1 and 2.1.2, are commonly used. Often, these 
processes contain semi-automatic steps that allow a 
user to visualise the data they have processed and make 
decisions regarding the parameters. For example, Fig.  3 
presents visualisations available in the SPM process-
ing software [71] that can be used to adjust parameters 
relating to segmenting white matter, grey matter and 
cerebrospinal fluid. However, selecting these parameters 
is a difficult, error prone task [32]. Consequently, it can 
be very challenging to estimate the effects of parameter 
selections before they are performed, while observing 
whether a selection has caused an issue relies on exten-
sive visual inspection as the tools do not currently pre-
sent adequate guidance [1, 12, 13, 35].

Despite the lack of existing fMRI-UVA in this phase, 
there are visualisation tools from other medical imag-
ing domains that could be useful for the issues in image 
acquisition and processing. For example, volume render-
ing of segmentation uncertainty, e.g. highlighting areas 
that are deemed to be “suspicious” [22], could allow an 
expert user to evaluate how well a skull stripping process 
has been performed. However, visualisation analytics for 
data acquisition issues, such as motion, noise, bias field 
and patient biology, are not, to our knowledge, studied 
in other imaging domains due to the robustness of exist-
ing procedures for the modalities. Yet, for fMRI there is 
a need to discover more about the effects of the uncer-
tainties as an adequate level of robustness has not been 
reached [13]. For these concerns, researchers can look 
to UVA tools from outside the medical imaging domain. 
For example, TimeTubes [72] is a visual analytics tool 
that highlights the uncertainty in astronomical observa-
tions of “blazars”, which relate to black holes. The data 
similarly contain 4D spatial and temporal information, 
have to be reconstructed from signals with multiple arte-
facts and can vary depending on the source black hole, 
similar to patient physiology. TimeTubes uses opacity, 
shape, size and interactivity in its visualisation to indi-
cate potentially inaccurate or missing information. The 
techniques explored in the tool, and other similar tools 
made for complex 4D data, could be adapted to fMRI-
UVA. For instance, the TimeTubes technique could be 
adapted to map physiological measures during the scan, 
such as heart rate, which may assist in understanding the 
patient’s biology.
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4.2 � Image analysis
Most of the limited fMRI-UVA research into the image 
analysis phase has targeted the temporal aspects of the 
data because the temporal aspects are generally what is 
used to compare patients during analysis. Such tools can 
be used to determine temporal periods that may con-
tain differences to the whole sequence, or be indicative 
of uncertainties in the temporal sequence. This can be 
done for local or global uncertainty, wherein local allows 
users to observe uncertainties between  individual ROIs, 
while global allows users to observe uncertainties across 
the whole brain. Notable fMRI-UVA tools for temporal 
analysis include:

TemporalTracks [73], shown in Fig. 4, was designed 
to explore how well node-based functional connec-
tivity values represent the underlying brain activity 
of ROIs for local uncertainty and whether subsets 
of time hold important information, such as unique 
patterns. Interaction with TemporalTracks is pro-
vided, so users can compare the temporal sequences 
between pairs of ROIs to determine whether the 

coactivation value is accurate or whether it is affected 
by any underlying differences, such as outliers caused 
by unaccounted head motion or a machine artefact. 
Users can also shift temporal sequences and view 
how the FCN changes during subsets of time which 
can assist with uncovering phase-based concerns. 
This visual analytics tool was developed specifically 
to target the temporal uncertainty prior to human 
interpretation of the FCN information.
TimeCurves [74], in Fig. 5, was not designed spe-
cifically for fMRI-UVA of temporal sequences; 
however, it is useful in examining global uncer-
tainty. The tool can be used to visualise cycles, 
repeated patterns or rapid changes in the overall 
signal in a temporal sequence. In contrast to Tem-
poralTracks, TimeCurves is applied to whole fMRI 
images, rather than ROIs. The visualisation takes 
the linear temporal sequences of all ROIs and visu-
ally bends the timeline based on how similar tem-
poral points are. Thus, features such as cycles can 
be used to draw out subsets of time for detailed 
uncertainty analysis, e.g. repeated machine arte-

Fig. 3  An example of an fMRI visualisation using SPM [71] showing the results of white matter (WM), grey matter (GM) and cerebrospinal fluid 
(CSF) after segmentation with FSL FAST [70]: a the original fMRI image with a voxel size of 2 × 2 × 2 mm; b the image with the uncertain, calculated 
matter types overlaid in shades of yellow (WM in the dark yellow; GM in the middle yellow; CSF in the bright yellow)
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facts. Similarly, large jumps in the curved timeline 
may be indicative of outliers and other features, 
such as temporal state changes, which can nega-
tively impact further interpretation. The fMRI-
UVA tool provides interaction for changing the 
linearity of the overall line, so a largely clustered 
graph can be slowly unpacked.

SmallMultipiles [28], in Fig. 6, was proposed for visu-
alising “fuzzy state changes” in brain activity over 
time by grouping different brain activity states. Thus, 
it was designed to uncover global uncertainty in the 
temporal data. In the visualisation, temporal points 
are represented as FCN matrices for the whole brain. 
These matrices are then clustered into “piles” which 
represent different brain states. Therefore, users can 
observe piles which have  potentially meaningful or 
uncertain data, e.g. coactivation outliers, to deter-
mine whether the brain state is useful for further 
human interpretation or whether it is the result of an 
issue, such as head motion. Interaction is provided in 
the fMRI-UVA to alter the level of clustering and to 
flip through the piles, allowing for drill-down analy-
sis.

The major concern of threshold selection, as discussed 
in Sect. 2.2, has not, to our knowledge, been addressed in 
any visual analytics studies. However, as selected thresh-
olds change the network structure in node-based analy-
sis, visualisations that summarise the overall network 
structure for comparison may be useful. For example, 
graph decomposition techniques are used to simplify 
large networks before they are visualised. This could 
be used to show an overview of different threshold val-
ues or techniques, allowing for direct comparison of the 
thresholds and indication of when different networks 
undergo similar changes. Such an approach may lead 
to simpler selection of patient-specific thresholds. For 
other uncertainties in the image analysis phase, such as 

Fig. 4  The TemporalTracks interface. The FCN matrices at the top change to reflect the user modifications to the tracks below. Each track shows the 
pairwise coactivation beween two ROIs—when lines are at the top, the ROIs highly coactive and when the lines are at the bottom, the ROIs are not 
very coactive

Fig. 5  An example of a TimeCurve. The location of points on the 
plane is influenced by the underlying temporal measures. Cycles 
represent repeating patterns, in which close points or tightly 
clustered sections are highly similar. The bar at the bottom adjusts 
the level of curvature presented
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the fit of atlases and known networks, spatial heteroge-
neity, biological differences between patients, and the 
compound effects of the image acquisition and process-
ing phase, there are many UVA tools that can be adapted. 
For example, spatial heterogeneity could be represented 
in a similar visualisation to what was presented in [75], 
which used colour and associated graphs to visualise het-
erogeneity for classification. Such techniques could be 
combined with statistical approaches for improving the 
fit of atlases, e.g. [57, 58, 76], by indicating visually what 
impact different parameters have on the heterogeneity of 
ROIs.

4.3 � Visualisation and human interpretation
While the first two phases of the pipeline had limited 
fMRI-UVA research, the visualisation and human inter-
pretation phase has been addressed by many solutions 
due to the direct benefits of reducing cognitive load on 
users and need for interactivity during interpretation. 
Although fMRI interpretation can take many forms, 

these works principally focus on node-based functional 
connectivity analysis because of the wide use of the tech-
nique and because of the inherent, yet complex, network 
structure. These can be categorised into:

Direct connectivity measure visualisations, such as 
matrices, node–link diagrams and radial connectivity 
diagrams for FCN analysis. One of the most widely 
used fMRI visual analytics tools, BrainNet Viewer 
[77] (Fig.  7a) is in this category. The tool combines 
node–link diagrams with a 3D rendering of the anat-
omy. The tool allows interaction for user navigation 
of the scene, filtering and thresholding. By doing so, 
uncertainty relating to the mental reconstruction of 
the anatomy is minimised; however, there are con-
cerns with visual clutter and implied direct connec-
tions. A notable example of a radial visualisation 
by Irimia et  al. [78] (Fig.  7c) uses node ordering to 
indicate anatomical location of ROIs. By doing so, 
the authors aim to reduce the impacts of cognitive 

Fig. 6  Example of SmallMultipiles. Each pile consists of highly similar frames in the temporal sequence. Users can adjust the number of piles (level 
of clustering). The height of piles can be used to see how common patterns are in the temporal sequence

Fig. 7  Examples of the three most common direct connectivity measure visualisation techniques: a node–link diagram which is overlaid on a 3D 
anatomy (created in BrainNet Viewer [77]). This minimises the need for mental reconstruction of the anatomy, but can increase clutter and imply 
direct connections; b matrix visualisation where pairwise coactivation values are displayed on the grid. This requires more mental reconstruction of 
the anatomy, but it is better for subject comparison and is clutter free; c radial connectivity diagram (created in the pipeline by Irimia et al. [78]). This 
implies anatomical location through node ordering, while also not implying direct connections and minimising visual clutter
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load on interpretation as users have to undertake 
less mental work to map an ROI name to the spatial 
location of the ROI in the brain. Alongside, the tool 
also presents secondary measures, such as grey mat-
ter volume, in coloured boxes and circles. The tool is 
designed to sit statically at the end of a pipeline as a 
reporting tool and thus has limited interactivity. The 
techniques in this category are often used for com-
parison of subject graphs due to the nodes and edges 
always being in the same location, which helps to 
facilitate comparison and minimise cognitive load 
[79]. A user study by Alper et al. [80] evaluated alter-
native direct connectivity visualisations—various 
node–link and adjacency matrix visualisations—for 
their strength in comparison. They found that the 
matrix visualisations improved user accuracy and 
speed of performing tasks because they are better at 
presenting large volumes of dense data without visual 
clutter. Moreover, matrices were also preferred by the 
users.
Anatomy-based visualisations, which present fMRI 
data on surface and volume renderings of the brain. 
One of the seminal works in this category, MindSeer 
[81] (Fig. 8a), combines volume visualisation of the 
raw fMRI and structural MRI data, with a surface 
rendering of the brain with coloured highlights for 
connectivity data. Interaction is provided to navi-
gate the scene, alter transparency and threshold the 
different data sources. This minimises the need to 
mentally reconstruct anatomical features and thus 
reduces potential misinterpretation. A more recent 
significant example, by Böttger et  al. [82] (Fig.  8b), 
displays visual glyphs on a 3D surface rendering of 
the brain. The glyphs are designed to encode func-
tional information between ROIs. This approach 

is designed to minimise cognitive load in mentally 
reconstructing the brain; however, it is susceptible to 
visual clutter and the edges, when shown, can seem 
like direct physical connections rather than, e.g. cor-
relations. A third work, by Li et al. [83] (Fig. 8c) is a 
visualisation which encodes functional information 
in surface rendered textures. In this way, the tool 
is able to encode some of the underlying temporal 
information into surface renderings of ROIs, rather 
than simply presenting coactivation values. As a 
result, the visualisation has the ability to potentially 
display regions affected by heterogeneity and tem-
poral variability as an unintended benefit alongside 
reducing the human uncertainties. Interaction is 
provided to navigate the 3D space and to threshold 
measures. Users can also view the ROI data in polar 
coordinate space, which partially overlaps with the 
next category.
Abstract anatomy visualisations are an extension 
to anatomy-based visualisations which modify the 
surface and volume renderings to make them easier 
for humans to view and comprehend. The trade-
off is that some mental reconstruction of the origi-
nal anatomy is required and they are not as clutter 
free as direct FCN visualisations. An early example, 
called Brain Constellation [85] (Fig. 9a), flattens the 
anatomical data by performing PCA on the ROI 
positions and areas. FCN information for each sub-
ject is then presented in a small multiples display. 
Interaction for navigating the 2D spaces and filter-
ing is provided. Such an approach minimises the 
cognitive load of understanding 3D data on a 2D 
screen; however, the diagrams imply direct connec-
tions between ROIs and some mental reconstruc-
tion is required to relate back to the 3D anatomy 

Fig. 8  Examples of anatomy-based visualisations; these minimise the cognitive load required to map fMRI information back to the anatomy. a 
The connectivity data in a heatmap on the brain surface (created in MindSeer [81]). The software also allows for volume and raw fMRI visualisation 
in a cutaway fashion. b Glyph visualisation on a slightly inflated brain surface (Böttger et al. [82] via the NeuroBeuro [84]). This can present more 
information for interpretation without adding much extra human processing because it adds more depth and texture in the glyphs. c An extension 
to surface heatmaps (from Li et al. [83]) which encodes extra temporal information into the ROI surfaces. This information could be used to help 
understand underlying data uncertainties
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of the brain. PyCortex [86] (Fig.  9b) is one of the 
more widely used tools; it flattens and opens the 3D 
structure of the brain before highlighting important 
details using colours and visual cues including out-
lining. Users can interact with the visualisation by 
altering how flat the brain surface is and navigating 
the 3D space. Users can also change which measures 
are shown and how they are displayed. Alternative 
approaches provide interaction and visual vari-
ability to the abstract anatomy; instead presenting 
visual information in associated elements, such as 
glyphs. For example, Yang et al. [27] combined a 2D 
sketch of the brain with a NodeTrix visualisation of 
the functional data (Fig. 9c). This was done to facili-
tate comparison of subjects while balancing avail-
able information and the requirements of cognitive 
load in mentally reconstruct the anatomy. Users can 
view networks side by side and interact by filtering 
and thresholding. This representation also indirectly 
helps with visualising local area issues that may be 
caused by  issues such as motion or machine arte-
facts as the brain is subdivided into sections for each 
trix. Thus, outliers in one section of the brain (e.g. in 
the case of accidental auditory stimulation during a 
scan which can cause activity in the somatosensory 
cortex [87]) may be visible.
Abstract visualisations are ones which take the 
available data and present it in a way that does not 
obviously represent the anatomy or the underly-
ing BOLD; from, e.g. FCN, PCA or voxel clustering. 
These techniques usually perform some extra pro-
cessing on the data prior to displaying the visualisa-
tions. As a result, the works can be quite disparate; 
however, they have similar benefits for human uncer-
tainty. One of the notable works, by DeYoe and Raut 

[88], creates what they term a functional field map 
for analysis of fMRI during a visual task. This com-
bines the fMRI data with details about the visual 
location of the stimuli to create an orthogonal graph. 
Thus, both input sources can be represented with-
out visualising the anatomy and comparison of the 
functional field maps can be performed with minimal 
visual clutter. Such an approach may be appropriate 
in specific circumstances, for example, when the ana-
tomical location is constrained to the visual cortex, 
so mental reconstruction of the anatomical neigh-
bourhood is not as critical. Other abstract visualisa-
tions focus more on the analysis of population data 
sets. A significant recent example, by Fujiwara et al. 
[89], projects subject FCN data into what is termed a 
multidimensional scaling space (Fig. 10). This allows 
subjects to be grouped and classified easily without 
users needing to remember specific FCN details. The 
tool also allows users to drill into the data by select-
ing and presenting FCN matrix visualisations and 
anatomical renderings of node–link diagrams. As a 
result, the fMRI-UVA tool minimises the amount of 
information users need to remember when perform-
ing high level comparisons. Thus, a large amount of 
misinterpretation and cognitive load concerns are 
accounted for.

Each of the above works is primarily designed to 
encode the information on a single graph or in one 
graphical window—some of the tools do provide other 
windows in a drill-down fashion—which minimises the 
screen space required and allows users to understand 
all the information at once. Other approaches, e.g. [90, 
91], use a windowed approach which allows the user to 
present multiple graphs about related information from 

Fig. 9  Example abstract anatomy visualisations; these trade off some of the benefits of the direct anatomical reference for improved 
representations of the fMRI data: a two-dimensional representation of the ROIs throughout a brain with edges displaying coactivity (from Brain 
Constellation [85]); b a split and flattened view of the brain surface with a heatmap overlaid (made in PyCortex [86]); c NodeTrix visualisation on a 
2D sketch of the brain, showing connections and local neighbourhood information, which may be useful for investigating data uncertainties
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the fMRI and from other data sources, such as diffusion 
tensor imaging (DTI) or electroencephalography (EEG) 
readings, which can provide more information about the 
subject and add to the interpretation. Such tools can be 
categorised into:

Windowed approaches, which present data in mul-
tiple movable and resizable windows. These often 
augment the fMRI human interpretation process by 
including data from other imaging modalities, e.g. 
DTI, and data sources, e.g. EEG. A notable exam-
ple is BraViz [90] (Fig. 11a) in which users can view 
fMRI data alongside DTI, underlying temporal and 

second-order statistics. The benefit of presenting 
these disparate data types in windows is that users 
can gather more information about the brain, yet 
they are only presented with what their interested 
in. This can help in preventing cognitive overload; 
however, because the windows can change size and 
move, the interface itself can lead to issues caused 
by clutter and visual searching [79]. This approach 
is also used to present fMRI data from multiple 
angles, e.g. Brain Modulyzer [92] (Fig.  11b). The 
provided interaction similarly enables exploration 
of the different windows as they are linked together 
and users do not have to mentally couple the dis-

Fig. 10  Example of an abstract visualisation (by Fujiwara et al. [89]). This visualisation allows users to explore population datasets without needing 
to remember specific details about subjects, thus reducing cognitive load. The drill-down functionality, shown in the matrices, means that users can 
access the information when required
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parate data sources. However, the interface is again 
not structured, which leads to clutter and searching 
issues.
Linked views similarly enable users to view fMRI 
data from multiple angles. However, the visual ele-
ments are fixed in size and position. One of the main 
examples for fMRI-UVA, CereVA [91] (Fig. 12), uses 
linked views to present fMRI data from different pro-
cessing pipelines. This tool has traded off some of the 
flexibility of the windowed approaches for a struc-
tured interface containing defined module location, 

thus prioritising repeatability and minimising visual 
searching [79]. The modules are designed to present 
the FCN data in direct connectivity visualisation, 
alongside temporal and anatomical visual compo-
nents. Interaction is provided so that navigation in 
one section is mirrored in the other visual compo-
nents. Such an approach means there is more infor-
mation for a user to interpret, yet the information 
can provide direct insights into the data uncertain-
ties, such as heterogeneity and temporal artefacts. 
Moreover, the inclusion of the anatomy is designed 

Fig. 11  Examples of multimodality and data source windowed approaches: a three windows created in BraViz [90] showing an fMRI timeline above 
two windows of population demographic statistics; b Brain Modulyzer [92] displaying derived statistics alongside fMRI connectivity data

Fig. 12  Example of viewing fMRI from multiple angles in CereVA [91]. The three linked views are statically placed, so users always know where to 
look, minimising visual searching. Each of the elements also presents a different view of the underlying fMRI data, which is designed to assist with 
uncovering the data uncertainties alongside minimising human issues, such as cognitive load
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to minimise cognitive load in mentally reconstruct-
ing the location of ROIs without implying direct con-
nections or cluttering the FCN visualisation.

Many fMRI-UVA tools which are designed to target 
human uncertainties are widely used and thus present 
a platform and common set of visualisation techniques 
that could expedite research into further fMRI-UVA. 
Specifically, most of the presented works focus on reduc-
ing certain aspects of cognitive load, such as mental 
reconstruction of anatomical location; these benefits 
could be combined with visualisations which target data 
uncertainties, as demonstrated in CereVA [91]. When 
selecting a category of fMRI-UVA tools, users should 
consider the purpose of their study alongside the exper-
tise of the users. For example, direct connectivity visu-
alisations are well suited to comparing small numbers of 
subjects, while abstract visualisations may be better for 
larger populations. Similarly, anatomy-based visualisa-
tions are likely better suited to novice users who do not 
know the structure of the brain well. The various win-
dowed approaches can also be useful depending on the 
study as they can facilitate multiple data types for studies 
such as [93–95].

5 � Research opportunities
There are several research opportunities to be explored 
in the field of fMRI-UVA which we group into two 
rough, interrelated streams: summative and targeted 
approaches. Summative approaches refer to works which 
aim to present the effects of the uncertainties alongside 
the data for interpretation; the goal is to present infor-
mation about the uncertainties such that the interpreta-
tions can be made with the potential issues in mind. In 
contrast, targeted approaches refer to works that aim to 
resolve or minimise the impact of specific issues during 
the fMRI analysis pipeline. This often means semi-auto-
matic tools to be used during individual processing steps, 
such as for misrepresentation of the temporal variability, 
or during skull stripping.

5.1 � Summative approach
Although current fMRI-UVA approaches for the visu-
alisation and human interpretation phase regularly pre-
sent multiple different graph representations of the fMRI 
and associated data types, e.g. [77, 90], they often fail 
to convey the uncertainties in the underlying data and 
compounded uncertainties arising from earlier, man-
datory, pipeline phases. These can have a huge impact 
on the outcomes of human interpretation [13] and can 
further embed user expectations or bias [66, 67]. Thus, 
summative approaches need to be developed to present 
these uncertainties during the human interpretation 

and visualisation phase, so they simultaneously allow 
for interpretation of the data, while providing an under-
standing of the impacts from all the pipeline phases. The 
key benefit of this approach is that users can improve 
and adjust their interpretation based on the quality of 
the data [17, 18]. For example, displaying the hetero-
geneity of ROIs in node-based functional connectivity 
analysis will have a huge impact on the interpretations 
by allowing a user to judge the quality of the coactiva-
tions. Research should attempt to explain and summarise 
which image processing pipelines have been utilised, and 
how these may impact the fMRI information available for 
interpretation. Furthermore, frameworks should be cog-
nizant that the abstractions themselves are imprecise and 
show potentially spurious measures. Interactivity must 
be embedded that allows a user to observe these poten-
tially spurious measures and then form and test hypoth-
eses related to the data concerns that may have formed 
them. Likewise, instead of presenting the results of the 
analysis pipeline for interpretation, summative solutions 
should be made to follow a top-down approach that first 
presents an overview of the data, the abstraction and the 
uncertainties, then allows a user to drill down and adjust 
parameters along the whole analysis pipeline. The crucial 
challenge of the summative approach is to present such a 
large volume of information, with a high proportion of it 
being uncertainties, in a way that still minimises cogni-
tive load and increases human understanding.

Consequently, future work in this area is about tak-
ing steps to create a single fMRI-UVA entity. One of 
the initial steps should be in discovering the interfaces 
between the existing visualisation techniques and the 
presentation of the underlying uncertainties. Current 
statistical approaches are taking this interconnected 
approach, combining multiple modalities or statisti-
cal analysis methods together, which allow for a deeper 
understanding of the brain as an overall system [96, 97]. 
Extending on this idea by visualising the outcomes of dif-
ferent techniques together holds great promise. Similarly, 
using one technique to influence the interpretation of 
another will be able to improve analysis. For example, the 
voxel-based PCA/ICA could be used in fMRI-UVA with 
dynamic node-based functional connectivity to weight 
or visually highlight the contribution of each temporal 
sub-sequence. The possibility for this approach is high-
lighted by recent tools, such as BraViz [90], beginning to 
integrate multiple data types into their interfaces. With 
some further research into creating such multifaceted 
approached, the balance between information and cogni-
tive load can be found.

The next step to be taken in realising the summative 
approach is to integrate the temporal, spatial and abstrac-
tion contexts into a single interface and then to display 
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the uncertainties present in each context, thereby being 
able to highlight the relationship to the pipeline and 
between each of the contexts. Such an approach has 
recently become possible due to the combination of sta-
tistics, such as ReHo [98] for calculating the heterogene-
ity of regions, with the image analysis fMRI-UVA tools 
discussed in Sect. 4.2.

5.2 � Targeted approach
Targeted fMRI-UVA has the potential to be used to mini-
mise or remove some of the uncertainties in the fMRI 
pipeline. This is a process that has been used to great 
effect in other medical imaging fields, e.g. quantifying 
the differences between fibres in diffusion tensor imag-
ing [99]. However, due to the temporal aspect of fMRI 
it is challenging to isolate meaningful measures at spe-
cific frames or subsets for visualisation. Moreover, other 
issues, such as the poor SNR and low resolution, hinder 
direct visualisation. Overcoming these barriers is possible 
and should begin with building upon existing UVA tools 
from other these medical imaging fields to target how the 
imaging uncertainties manifest in fMRI. Examples from 
the other medical imaging fields commonly use opac-
ity, colour, shape and area as modifications on visualisa-
tions to compare effects of unknowns [23]. Visualisations 
for other data related to the brain will be a good place to 
start; for example, temporal neuron and EEG data, e.g. 
[100, 101], for exploring more into temporal uncertain-
ties. In adapting these tools to fMRI, there will be missing 
information; but if data are unknown, it should be either 
presented in a raw form, possibly alongside a heuristic 
visualisation, or noted as such. This will increase cogni-
tive load on users; however, it will also improve the out-
comes of the fMRI pipeline, which still lands it on the 
positive side of the trade-off. Targeted methods should 
also be cognizant of which phase they are designed for 
in the fMRI pipeline and accordingly take input and cre-
ate output in standard formats. This will allow them to 
be integrated, like the summative tools, into standardised 
software.

Future work into targeted approaches should be more 
diverse than for summative visualisations. As with 
the summative approach, uncertainty visual analyt-
ics research into analogous fields, such as other medi-
cal imaging domains, or fields that deal with complex 
4D data, should be exploited. Similarly, more statistical 
methods can be combined with interactive visual tools, 
as current fMRI-UVA is heavily tied to FCN analysis 
alone. Suggested future works include:

1.	 An initial key area that should be targeted is fMRI-
UVA of the temporal sequence. As discussed in 
Sect.  4.2, researchers are beginning to create tools 

for temporal uncertainties, while statistical research 
into the temporal data is creating techniques, such 
as dynamic node-based functional connectivity 
approach [61]. As a result, the processes surrounding 
temporal uncertainty in the data are reaching a level 
of maturity that benefits the emergence of visualisa-
tions.

2.	 Correspondingly, there has been recent research that 
attempts to adjust parcellations to better fit individ-
ual subjects, e.g. [57]. The combination of such tech-
niques with interactive visualisation enables targeted 
fMRI-UVA that was not previously possible.

3.	 Reducing spatial heterogeneity is another target area 
which can benefit from statistical methods, such as 
ReHo [98]. Approaches can be combined with the 
previous application of parcellations, or they could 
be designed to sit earlier in the pipeline during the 
image acquisition and processing phase.

4.	 Thresholding concerns can benefit from graph topol-
ogy and summarisation methods, e.g. graph decom-
position [102], as these allow for comparison in small 
amounts of screen space.

5.	 Application to other processing methods, such as 
PCA/ICA, can use works already created for fMRI-
UVA, such as volume rendering to assist with param-
eter selection and to elucidate potential issues in 
independent components analysis.

Targeted fMRI-UVA approaches should limit auto-
matic statistical processing to those that are known to be 
accepted, or otherwise present the risks that come with 
the statistical analysis. These should aim to provide an 
ordinal, interval or ratio comparison, while highlighting 
where the uncertainties are. In this way, targeted solu-
tions will be positioned to integrate into the analysis 
pipeline and help in uncovering the concerns surround-
ing fMRI.

5.3 � Implications
Both summative and targeted approaches to fMRI-
UVA have the potential to greatly impact the future of 
brain research. While all the suggested methods will 
increase the cognitive load on users compared to existing 
approaches, due to the increase in information presented 
and the complexity of the information, the overall ben-
efits of presenting uncertainty information far outweigh 
the drawbacks of increased cognitive load. Further, as 
the fMRI-UVA solutions are developed, researchers will 
discover how they can present the information without 
increasing the cognitive load too much. Similarly, some of 
the suggested methods have not been attempted because 
they are challenging with fMRI data. Nonetheless, we 
believe that fMRI research has recently advanced to a 
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point where the uncertainties are causing major impacts 
on published findings that must be resolved. Moreover, 
these impacts allow researchers to better understand 
what the uncertainties are and how they compound, thus 
creating a large knowledge based and in turn reducing 
the challenges in creating fMRI-UVA.
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