
Removal of muscular artifacts in EEG signals: a comparison of linear
decomposition methods

Laura Frølich1 • Irene Dowding2

Received: 25 September 2017 / Accepted: 16 December 2017 / Published online: 10 January 2018
� The Author(s) 2018. This article is an open access publication

Abstract
The most common approach to reduce muscle artifacts in electroencephalographic signals is to linearly decompose the

signals in order to separate artifactual from neural sources, using one of several variants of independent component analysis

(ICA). Here we compare three of the most commonly used ICA methods (extended Infomax, FastICA and TDSEP) with

two other linear decomposition methods (Fourier-ICA and spatio-spectral decomposition) suitable for the extraction of

oscillatory activity. We evaluate the methods’ ability to remove event-locked muscle artifacts while maintaining event-

related desynchronization in data from 18 subjects who performed self-paced foot movements. We find that all five

analyzed methods drastically reduce the muscle artifacts. For the three ICA methods, adequately high-pass filtering is very

important. Compared to the effect of high-pass filtering, differences between the five analyzed methods were small, with

extended Infomax performing best.

Keywords Electroencephalogram (EEG) � Artifact removal � Muscle artifacts � Blind source separation (BSS) �
Independent component analysis (ICA) � Filtering

1 Introduction

The removal of undesired artifacts from the electroen-

cephalogram (EEG) is a major preprocessing step for most

EEG analysis. Such artifacts stem from eye and muscle

movement, the heart beat or external technical sources. In

this paper, we are concerned with the removal of muscle

artifacts. These are typically caused by muscle activity near

the head, such as swallowing or head movements, and are

characterized by high-frequency activity ([ 20 Hz) [1].

Because muscle activity arises from different type of

muscle groups, muscle artifacts are harder to stereotype

than eye artifacts (cf. [2–4]).

The most widespread technique to reduce muscle arti-

facts in EEG recordings is the linear decomposition of EEG

signals into source components. The overall goal is to

separate artifactual from neural activity in different com-

ponents, such that the artifactual components can be dis-

carded and cleaner signals can be reconstructed from the

neural components only. The most commonly deployed

techniques to achieve this goal are variants of independent

component analysis (ICA) [5–8], which solve the blind

source separation (BSS) problem by maximizing the

independence of the source components. In most cases,

ICA methods yield a useful separation, but some mixed

components remain which contain activity from both arti-

factual and neural origin (see, e.g., [9, 10] for a review of

the current state-of-the-art).

While many different BSS/ICA methods are available,

very few studies compared their performance on real EEG

data. This is because, for a quantitative evaluation, the true

presence or absence of artifacts in EEG signals (the

‘ground truth’) needs to be known or assumed on a sound

basis. This is especially difficult for muscle artifacts, whose

activity cannot be obtained from a single measurement

device such as the electrooculogram (EOG) or eye track-

ing. In order to circumvent this problem, most validation

and comparison studies focus on simulated data in which

real or simulated ‘artifact-free’ data and ‘artifactual’ data
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are linearly mixed at some known ratio [11–21]. However,

this approach is limited by the fact that simulated data do

not entirely reflect true EEG characteristics with muscle

contamination. For example, muscle activity does not

always occur independently from the neural signals of

interest, but simulations typically assume they do.

The few available validation studies which quantify

artifact reduction performance on real data mostly focused

on eye artifacts [22–24]. In order to compare BSS/ICA

algorithms in more general settings, Delorme et al. [25]

proposed measures to evaluate the quality of the obtained

source components even when the ‘ground truth’ source

components are unknown. They compared decompositions

of 22 different BSS algorithms by evaluating measures of

independence (based on mutual information) as well as the

‘dipolarity’ of the resulting source components. Here

‘dipolarity’ refers to the number of components whose

scalp maps can be well explained by one equivalent dipole

source. Such components are desirable since single inde-

pendent sources, which the BBS/ICA algorithms aim to

extract, would be represented by components of such

characteristics. They find that mutual information-based

ICA methods such as Infomax result in the highest number

of near-dipolar components.

In this paper, our aim is to evaluate the quality of the

cleaned data (in a sense the end product of the artifact

reduction), which goes beyond the quality of the source

signals (an intermediate product of the artifact reduction).

A validation of the complete artifact reduction pipeline for

muscle artifacts in real EEG data was carried out by

McMenamin et al. [2]. However, different ICA algorithms

were not compared.

To compare the overall muscle artifact reduction per-

formance on real data, we here use a paradigm in which

neural activity and muscle artifacts result in opposite

effects: while muscle artifacts result in a broad increase in

spectral power [1], the experimental paradigm induces

neural activity that decreases spectral activity. More

specifically, we use the well-known phenomenon of event-

related desynchronization (ERD), that is, the decrease in

oscillatory activity stimulus locked to an event. Eigh-

teen participants were instructed to perform self-paced foot

movements, which are known to be preceded by an ERD in

the alpha band (8–13 Hz) and beta band (15–30 Hz) [26].

The recorded EEG signals also contain strong event-locked

muscle artifacts as subjects moved their head rhythmically

along with the foot movement. The average event-locked

spectral activity then allows us to heuristically quantify the

degree of muscle artifact contamination.

We compare the three most common ICA/BSS methods

for EEG data, namely extended Infomax [27, 28], FastICA

[29, 30] and SOBI/TDSEP [31, 32] with two linear

decomposition methods that are not entirely ‘blind’ as they

make use of the fact that the signals of interest are of

oscillatory nature (Fourier-ICA [33] and spatio-spectral

decomposition (SSD) [34]). To select the artifactual com-

ponents, we use a previously validated automatic artifac-

tual component classifier (IC_MARC, [35]).

The rest of the paper is organized as follows. We first

describe the data set in Sect. 2.1, the compared methods in

Sect. 2.2, the component classification in Sect. 2.3 and the

methodology employed to evaluate overall artifact reduc-

tion performance in Sect. 2.4. The resulting ERDs and

artifact contamination quantification are provided in

Sect. 3 and finally discussed in Sect. 4.

2 Methods

2.1 Data

Data stem from a pre-measurement of a simulated driving

experiment described in [36]. The experiment was con-

ducted in accordance with the Declaration of Helsinki, and

written informed consent was obtained from all partici-

pants. The self-paced right foot movements task was to

press a brake pedal about once per second for five minutes.

The electromyogram (EMG) was recorded with a bipolar

montage at the knee of the right leg and the tibialis anterior

muscle. Additionally, EEG was recorded from 64 approx-

imately equidistant Ag/AgCl electrodes at 1000 Hz. For

the presented offline analysis, EEG data were decimated to

200 Hz and broadband-filtered between 2 and 45 Hz (fifth-

order Butterworth filter). Overly noisy electrodes were

rejected using the variance criterion implemented in the

function reject_varEventsAndChannels.m of the BBCI

toolbox [37].

2.2 Compared methods

We compare the ability of five linear decomposition

methods to separate artifactual from neural activity. All

five methods aim at solving the blind source separation

(BSS) problem, in which the given EEG measurements

X 2 RM�T are modeled as being generated from the linear

model X ¼ AS. Here, T denotes the number of recorded

data points, S 2 RM�T denotes the time courses of M

unknown sources, A 2 RM�M denotes the unknown mixing

process, and the number of electrodes is assumed to be

equal to the number of source signals for simplicity. The

goal is to recover the source signals S using very little

information about the sources or the mixing process.

Because this is an underdetermined problem, some

assumptions have to be placed about the source signals to

be recovered. A demixing matrix Ŵ 2 RM�M is estimated
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such that the estimated sources Ŝ ¼ ŴX best fulfill these

pre-defined assumptions.

The overall aim of solving the BSS problem for artifact

reduction is that artifactual and neural activities are sepa-

rated into different source components. If this is the case,

cleaner EEG signals can be reconstructed by discarding the

artifactual source components.

2.2.1 ICA

Independent component analysis (ICA) solves the BSS

problem using the assumption of mutually statistically

independent sources. Several algorithms are available to

solve this task, and we focus here on three of the most

commonly used methods: extended Infomax [27, 28] as

implemented in EEGLab [38], FastICA [29, 30] and SOBI/

TDSEP [31, 32].

Extended Infomax and FastICA are classical ICA

methods which use higher-order statistics to define inde-

pendence. Infomax was derived from a neural network

viewpoint, while FastICA maximizes the negentropy of the

component distributions. Second-order methods make use

of the temporal structure of the time series and require the

recovered sources to be decorrelated over time. Here we

use TDSEP (temporal decorrelation source separation)

[32], which is equivalent to SOBI (second-order blind

identification) [31]. TDSEP/SOBI aims to minimize the

cross-covariances over several time lags between the esti-

mated sources.

Running ICA We used extended Infomax, which finds

both sub- and super-Gaussian sources, with the default

settings in EEGLab for our analyses. We ran FastICA with

the symmetric approach and all other options at default

EEGLab values. We used code from A. Ziehe in the esti-

mation of the TDSEP model, setting the number of time

lags, s, to 99.

2.2.2 Fourier-ICA

Hyvärinen et al. [33] recently proposed to apply ICA on

short-time Fourier transforms of EEG signals, in order to

find more ‘interesting’ oscillatory sources than with time-

domain ICA. The procedure optimizes the sparseness of the

Fourier coefficients, which yields a separation of oscilla-

tory signals at different frequencies.

Fourier-ICA has not been specifically designed to

extract artifacts. In fact, the authors point out that time-

domain ICA can be interpreted as maximizing non-Gaus-

sianity. ICA may therefore be very well suited to find

artifacts, which often are very non-Gaussian due to outliers

in their time courses. Rather, the hope is that Fourier-ICA

is better able to extract relevant oscillatory sources. In our

setting, we aim to obtain clean oscillatory activity. Fourier-

ICA might therefore be a promising method.

Running Fourier-ICA We used the implementation

described in [33] to run Fourier-ICA with the default

parameters. The minimum and maximum frequencies to be

analyzed by Fourier-ICA were 15 and 30 Hz. We extracted

as many components as there were channels.

2.2.3 SSD

Another recently proposed method for the extraction of

oscillations is spatio-spectral decomposition (SSD) [34].

SSD aims to extract oscillations in a frequency band of

interest at maximal signal-to-noise ratio (SNR). The goal is

to maximize the signal power in the frequency band of

interest while simultaneously minimizing it at the neigh-

boring frequency bins. SSD extracts spatial filters w 2 RM

which maximize

SNRðwÞ ¼ w>Rsigw

w>Rnoisew
ð1Þ

where Rsig is the covariance of the data filtered in the fre-

quency band of interest and Rnoise is the covariance of the

data filtered in the sidebands. This problem reduces to a

generalized eigenvalue problem and can be solved within a

few seconds [34, 39]. SSD is a suitable preprocessing method

for the analysis of neuronal oscillation [39–41]. Preliminary

results for SSD on our data set were described in [42].

Running SSD We use 15–30 Hz as the frequency band

of interest and 2 Hz long neighboring frequency bins. We

extracted as many components as there were channels and

ordered them according to their SNR.

2.2.4 High-pass filtering

It is well known that high-pass filtering EEG signals before

applying ICA may improve the quality of the artifact

separation [43, 44]. In fact, it is a fairly standard procedure

to remove drifts prior to ICA-based artifact removal, and

the benefit has been demonstrated in several studies

[45–47]. Our data were already subjected to standard EEG

processing, and on our band-pass-filtered data drifts are not

a problem (cf. Sect. 2.1).

However, filtering at higher frequencies might also be

beneficial when oscillatory processes are of interest. For

example, trial-by-trial fluctuations of the blood-oxygen-

level dependent (BOLD) signal were found to be positively

correlated with high EEG gamma power when ICA

demixing was obtained on gamma band-pass-filtered EEG

data, but not when 30 Hz low-pass-filtered data were fed

into ICA [48]. We might therefore benefit from a high

cutoff frequency also in our study. Furthermore, we use

information on the frequency band of interest for both
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Fourier-ICA and SSD. In order to obtain a fairer compar-

ison to SSD and Fourier-ICA, we compute the demixing

matrix for the three ICA methods both on the broadband-

filtered data and on the data after a high-pass filter with a

high cutoff frequency at 14 Hz (second-order Butterworth

filter) had been applied.

To allow for a fair comparison of the broadband with the

14 Hz filtering condition, we proceed as proposed, e.g., in

[47, 49]: for both filtering conditions, we apply the

obtained demixing coefficients to the broadband-filtered

data. In this way, we only consider the effect of filtering on

the ICA decomposition, but not on the subsequent analysis.

2.3 Automatic classification of estimated sources

Successful artifact removal relies on the correct identifi-

cation of artifactual and non-artifactual components. This

identification of artifactual component is a non-trivial task

and requires time and expert knowledge. For a description

of typical artifact components, we refer the reader to [50].

Here we use a previously validated automatic classifier of

artifactual components, IC_MARC, to classify the sources

estimated by each method [35]. IC_MARC was developed

for sources derived by ICA, but may also be used to

classify sources obtained from other methods.

IC_MARC assigns probabilities to independent com-

ponents of belonging to each of six classes (blinks, lateral

eye movements, electrical heart beat artifact, muscle arti-

fact, neural or mixed artifact) and relies on multinomial

regression to predict class probabilities for each compo-

nent. We use these probabilities in two ways in this paper:

(1) by classifying all components to the class for which the

highest probability was predicted, we clean the data by

removing all components not classified as neural and (2)

we use the probabilities of the components being neural to

determine the order of component removal. We use a

version of IC_MARC which is based on a feature set

containing only spatial features that we have seen to work

well previously. IC_MARC tends to have a high specificity

and sensitivity for the neural class with a balanced accu-

racy of 88% for 8023 independent components when

training on one study and testing on another [35].

2.4 Evaluation 1: event-related
desynchronization (ERD)

We applied each method independently to the continuous

EEG data and computed grand-average event-related

(de-)synchronization (ERD/ERS) in the beta band (15–30 Hz),

aligned to EMG peak activity.

ERD/ERS is calculated as the increase/decrease in sig-

nal power in a given frequency band relative to a reference

period [51, 52]:

ERDðtÞ :¼ PowerðtÞ � Reference power

Reference power
ð2Þ

where PowerðtÞ denotes the average power over all trials at

time point t. Here, we computed the time-resolved power

by first band-pass filtering the signal in the beta band

(15–30 Hz, fifth-order Butterworth filter), followed by

computing its envelope using the Hilbert transform, and

applying a moving-average over 100 ms. Epochs were

aligned to EMG peak activity. These peaks were extracted

from the rectified EMG as the maximum values within

sliding windows of length [� 750 750 ms] which exceeded

a subject-specific threshold set by visual inspection. Our

reference period was set to [� 1200 � 800 ms] before

EMG peak activity.

Voluntary movements are well known to elicit ERD in

both the alpha and beta bands, most prominently over

central sensorimotor areas and starting prior to movement

onset (cf. [26]). The data additionally contain event-locked

contamination in the form of a swift, strong peak at

movement onset in the ERD of the beta band (cf. Fig. 2),

which is probably due to subjects moving their heads along

with the fairly rhythmical foot movement once per second.

Contamination is strongest in the interval [� 100 100 ms]

around EMG peak activity. As shown in Fig. 1, it is

characterized by a comparatively high power in higher

frequencies, as expected for muscle artifacts.

The goal of artifact removal is to remove these muscle

artifacts while retaining the neural activity. Here we can

evaluate this goal because muscle and neural activities

affect spectral activity in opposing direction: while muscle

artifacts result in an increase in spectral power [1], the

well-established neural signature of the task is a decrease in

spectral power, i.e., ERD [26]. A signal which exhibits low

ERD throughout the foot movement thus indicates, at the
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Fig. 1 Grand-average power spectral density for uncleaned data

during the artifact contamination [� 100 100 ms] compared to the

reference period [� 1200 � 800 ms]
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same time, the presence of the neural activity and a

diminished influence of muscle artifacts.

Hence we aim to obtain a cleaner signal which exhibits

low ERD. To quantify how well each method obtains this

goal, we define the following heuristic ERD contamination

measure as the peak ERD value during movement

Peak ðERDÞ :¼ max
t2½�100; 100�

fERDðtÞg ; ð3Þ

which we compute separately for each subject and pre-

processing method. Here maxfERDðtÞg is computed as the

maximum value of ERD on the cleaned data between

� 100 and 100 ms relative to EMG peak activity.

In the presented data, the peak ERD score is positive

when no artifact removal is carried out, as the muscle

artifacts dominate. A preprocessing method which removes

both artifacts and neural activity would result in a score of

0. An effective artifact removal method will reduce the

artifacts, but keep the neural activity, and thus reduce the

ERD to be highly negative throughout the foot movement.

Therefore, the lower the peak ERD score, the better the

artifact reduction method.

We use the ERD peak score to assess statistical signif-

icance when the cleaned data consist of only neural com-

ponents. Furthermore, we evaluate the methods’

dependence on the number of source components retained.

For each method, except SSD, we rank the obtained

components by the probability of being an artifact as

determined by IC_MARC. For SSD, we rank the compo-

nents according to SNR. Retaining a smaller or larger

number of sources corresponds to either a strict or soft

policy for the removal of potential artifactual sources.

Therefore, we vary the number of retained components

from 1 to the number of channels, and we report the

average ERD peak score over subjects.

2.5 Evaluation 2: dipolarity

For comparison, we also compute a measure that does not

depend on the classification of artifactual components or

subsequent EEG analysis: the dipolarity measure proposed

by Delorme et al. [25]. It is defined as the percentage of

components whose scalp maps can be explained by one

equivalent dipole source with less than a certain error

variance. We use the EEGLAB implementation provided

by Delorme et al. [25] and an error variance of 10%.

This dipolarity score is a simplistic, but very informative

measure of physiological plausibility of the obtained ICA

sources (see Delorme et al. [25] for a detailed discussion).

In contrast, the ERD peak score measures the quality of the

cleaned EEG signals in the beta band, which is, in a sense,

the end product of the artifact reduction.

3 Results

Figure 2 shows the grand-average ERD data with no

cleaning and the same data cleaned by removing all non-

neural sources for each method, except SSD for which we

retained the five components with highest SNR. Results

from applying the ICA methods with high-pass filtering are

referred to with the prefix ‘HP’ (i.e., ‘HP-Infomax,’ ‘HP-

FastICA’ and ‘HP-TDSEP’). The top of each figure con-

tains the ERD time course at channel Cz, while the scalp

maps corresponding to the intervals marked in light and

dark gray are depicted for some of the best performing

methods in the bottom part. As expected, we see a char-

acteristical foot ERD over central sensorimotor areas

before the foot movement. During the movement, we see

the contamination of a time-locked muscle artifact across

the whole scalp. The compared methods are able to reduce

this artifact to varying degrees.

All three ICA methods improve if data are high-pass-

filtered at a high cutoff frequency of 14 Hz before being

decomposed. The lowest band power during the movement

artifact is achieved by high-pass-filtered Infomax, followed

by Fourier-ICA, SSD, high-pass-filtered FastICA and high-

pass-filtered TDSEP. The ICA methods without the high-

pass filtering perform the worst, but are nonetheless able to

considerably reduce the artifacts. High-pass-filtered Info-

max almost completely removed the artifact while main-

taining the ERD.

The average ERD peak scores and dipolarity scores per

method are shown in Table 1. For statistical testing on the

ERD peak score, we specified two linear mixed models

with the ERD peak score as dependent variable. The

models were estimated using restricted maximum likeli-

hood (REML) as implemented in the MATLAB Statistics

Toolbox. As random effects, both models had intercepts for

subjects and by-subjects slopes for each fixed factor in the

model. First, to confirm the positive effect of high-pass

filtering for ICA methods, we ran one model with the fixed

factors ‘method’ (extended Infomax, TDSEP and FastICA)

and ‘high-pass’ (yes or no) and their interaction. As

expected, we found a significant positive effect of high-

pass filtering (Fð1; 102Þ ¼ 9:2; p\0:01). In the second

model, we included all five linear decomposition methods

in their best variants (i.e., the high-pass versions if appli-

cable) as well as the nothing condition. The method had a

significant effect (Fð5; 102Þ ¼ 4:5; p\0:01). Post hoc

pairwise comparisons between the methods showed that all

five decomposition methods significantly improved over no

artifact reduction (all p\0:01), and HP-Infomax improved

significantly over HP-TDSEP (p\0:05).

For statistical testing on the dipolarity score, we speci-

fied the same two linear mixed models, but with the
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dipolarity score as dependent variable. In contrast to the

average ERD peak score, high-pass filtering had a signifi-

cant negative effect on the dipolarity score

(Fð1; 102Þ ¼ 9:1; p\0:01). The second model compared

the five decomposition methods HP-TDSEP, HP-Infomax,

HP-FastICA, SSD and Fourier-ICA and found a significant

effect of the method (Fð4; 85Þ ¼ 13:1; p\0:001). Post hoc

pairwise comparisons between the methods found almost

Time [ms]
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E
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%
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FastICA
HP-TDSEP
HP-Infomax
HP-FastICA
SSD
FourierICA
Nothing

Fig. 2 Grand-average event-related desynchronization (ERD) in the

beta band (15–30 Hz), using EMG as a trigger. (Top) time courses of

data reconstructed from neural ICs (and for SSD with the five

components with highest SNR) at electrode Cz. (Bottom) ERD maps

in the marked intervals ([� 600 � 300], [� 300 � 100], [� 100

100], [100 300]) for selected methods
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all compared methods to be significantly different from

each other, with SSD being significantly worse, and HP-

Infomax being significantly better than the other four

methods (p\0:05).

Let us note that all investigated artifact removal meth-

ods remove variance from the signals and thus reduce the

power in all frequencies. They do so with varying degrees.

The average reference power entering ERD computation in

Eq. (2) was reduced strongest by SSD, followed by HP-

Infomax, HP-FastICA, HP-TDSEP, Fourier-ICA, FastICA,

Infomax and TDSEP.

The retained variance per method can be influenced by

changing the number of components that is removed.

Figure 3 shows the ERD peak score as a function of the

number of components retained. Components were

removed in order of decreasing probability of being neural

as determined by IC_MARC, except for SSD, where

components were removed in order of decreasing SNR.1

The results are in line with the general picture presented in

Fig. 2 and Table 1, which show the case of retaining all

ICs whose highest probability was for the neural class.

High-pass filtering the data at a high cutoff frequency of

14 Hz tends to improve the ERD peak for the ICA meth-

ods. High-pass-filtered extended Infomax obtains the best

(lowest) ERD peak score over all numbers of components

retained and retains its leading position over a wide range

of number of components retained (10–25 components).

4 Discussion

In this paper, we analyzed and compared the artifact

reduction capabilities of the three most common time-do-

main ICA methods (extended Infomax, FastICA and

TDSEP) with two other linear decomposition methods

which are tailored to extract oscillatory signals (Fourier-

ICA and SSD). As ICA and other linear decomposition

methods are the most widely used tool to reduce muscle

artifacts in EEG signals, many researchers wonder which

one to choose in practice. However, it remains difficult to

compare different artifact reduction algorithms on real data

as the ‘ground truth’ artifact-free signals are unknown.

Here we resorted to a self-paced movement paradigm

which induces a decrease in rhythmic activity, as opposed

to muscle artifacts which typically increase spectral power.

While our study is also limited by the lack of a firm ground

truth of the underlying neural activity, it allowed us to

heuristically evaluate the ability of the compared methods

to remove a strong event-locked muscle artifact while

maintaining neural activity in the form of event-related

desynchronization. Our findings indicate that all five

methods were able to remove much of the movement

artifact, with extended Infomax—after adequate high-pass

filtering—performing best.

We also evaluated the methods’ dependence on the

number of source components retained. It is reassuring that

the performances of the methods, relative to each other,

remain at a similar level for a wide range of numbers of

components retained. This indicates that there are indeed

true differences between the methods that do not strongly

depend on whether a strict or mild cleaning policy is used.

High-pass-filtered Infomax yielded the best ERD peak

score over a range of retained components.

Table 1 Average ERD peak score (lower is better) and dipolarity

score (higher is better) with within subject error bars (cf. [53])

ERD peak Dipolarity

Nothing 5:70 � 2:13

TDSEP � 0:50 � 1:57 5:50 � 0:44

Infomax � 0:28 � 1:42 7:00� 0:49

FastICA � 1:44 � 1:14 5:00 � 0:37

HP-TDSEP � 1:64 � 1:34 3:17 � 0:34

HP-Infomax � 5:46� 1:07 6:44 � 0:56

HP-FastICA � 4:02 � 1:23 4:50 � 0:37

SSD � 3:98 � 2:28 1:56 � 0:48

Fourier-ICA � 4:47 � 1:11 4:89 � 0:33

The best-performing method is highlighted in bold

Components retained
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Fig. 3 ERD peak score measure in dependence of the number of

components retained. Lower is better. A method which removes all

neural and muscle activity would be at 0 (dashed black line)

1 We also looked at the results for SSD with components chosen

according to IC_MARC, as for the other methods. However, the

performance resulting from this component selection was lower than

that using the SNR. For SSD, we therefore only present the results

using SNR.
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Consistent with Delorme et al. [25], we find that

extended Infomax performs best, both in terms of the

dipolarity score proposed in Delorme et al. [25] and in

terms of our ERD peak score. However, the ERD peak

score, which heuristically quantifies an oscillatory phe-

nomenon in the cleaned data, is not as sensitive as the

dipolarity measure, which is computed on the source sig-

nals. This is to be expected, since the source signals are an

intermediate step within the artifact reduction, and differ-

ences on this intermediate level may not necessarily

translate into strong differences in the cleaned data. Indeed,

observed ERD differences between the methods are rather

small, which suggests that the choice of the decomposition

method may often not result in strong differences in data

quality.

Our results indicate that adequate high-pass filtering

may be more important than the choice of the ICA method:

all three ICA methods achieved a better ERD peak score

when the data had been high-pass-filtered at the cutoff

frequency just below the frequency band of interest before

decomposition. The effect was most prominent for Infomax

and FastICA. However, high-pass filtering at the cutoff

frequency had a negative impact on the dipolarity score.

The effect of high-pass filtering thus strongly depends on

the intended subsequent analysis and is not always bene-

ficial. Filtering might guide the decomposition toward

extracting the components that explain the activity we are

interested in. That is, if (and only if) we are not interested

in low frequencies in further analysis, we may benefit from

removing them before ICA decomposition. This effect

seems to be relevant, probably because the low-frequency

parts of an EEG signal contain a large portion of its

variance.

Compared with high-pass-filtered Infomax, both SSD

and Fourier-ICA achieve only slightly inferior, still

impressive performance in terms of the ERD peak scores.

SSD yields the lowest number of interpretable dipolar

components, but seems particularly suited to determine

only a few number of neural components. Because SSD is

faster to evaluate, it may be a good compromise between

the time it takes to decompose the data and the quality of

artifact separation.

Our results indicate that ICA and other decomposition

methods were suitable tools to remove muscle artifacts

from our EEG data. This is especially interesting since the

observed muscle artifacts do not occur independently from

motor planning neural activity—which clearly violates

ICA’s assumptions. A co-activation of artifacts and neural

activity is quite common in practice. Our results comple-

ment the findings from McMenamin et. al [2], which

suggest that ICA is still a sensible choice even in those

settings.
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