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Abstract Computational neuroscience is a field that traces

its origins to the efforts of Hodgkin and Huxley, who

pioneered quantitative analysis of electrical activity in the

nervous system. While also continuing as an independent

field, computational neuroscience has combined with

computational systems biology, and neural multiscale

modeling arose as one offshoot. This consolidation has

added electrical, graphical, dynamical system, learning

theory, artificial intelligence and neural network view-

points with the microscale of cellular biology (neuronal

and glial), mesoscales of vascular, immunological and

neuronal networks, on up to macroscales of cognition and

behavior. The complexity of linkages that produces

pathophysiology in neurological, neurosurgical and

psychiatric disease will require multiscale modeling to

provide understanding that exceeds what is possible with

statistical analysis or highly simplified models: how to

bring together pharmacotherapeutics with neurostimula-

tion, how to personalize therapies, how to combine novel

therapies with neurorehabilitation, how to interlace peri-

odic diagnostic updates with frequent reevaluation of

therapy, how to understand a physical disease that mani-

fests as a disease of the mind. Multiscale modeling will

also help to extend the usefulness of animal models of

human diseases in neuroscience, where the disconnects

between clinical and animal phenomenology are particu-

larly pronounced. Here we cover areas of particular interest

for clinical application of these new modeling neurotech-

nologies, including epilepsy, traumatic brain injury,
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ischemic disease, neurorehabilitation, drug addiction,

schizophrenia and neurostimulation.

Keywords Multiscale computer modeling � Simulation �
Schizophrenia � Drug addiction � Neurorehabilitation �
Neurostimulation � Stroke � Epilepsy � Traumatic brain

injury

1 Introduction

The brain is the most complex organ in the body. Molec-

ular and cellular-level processes combine into populations

of neurons connected through brain systems and subsys-

tems to generate behaviors that range from simple move-

ments to social interactions. Scales range from the

molecular scale of ion channels and pharmacological

agents to scales of interconnectivity across brain areas and

beyond with interactions that sometimes skip across scales

(Fig. 1). The multiplicity and interconnectivity of these

scales requires a multiscale modeling approach to provide

understanding of brain function and brain disorders.

Multiscale modeling (MSM) of diseases of the nervous

system is particularly challenging due to a number of

factors. First, brain MSM differs from MSM of other organ

systems due both to scale extension and to scale overlap

(Fig. 1). The highest scales of interest for the brain, cog-

nition and behavior are of great interest but are particularly

resistant to study. These can be measured in temporal scale

through reaction times. Cognitive processes can also be

investigated using several indirect measures, particularly

those of information theory. The spatial scales of the brain

basis of behavior are less clear, though one can attach

aspects of behaviors to particular brain areas, as with the

dissection of the language faculty into Wernicke’s and

Broca’s areas. For clinical application, it is valuable to

extend these models still further (‘‘above the skin’’) in

order to connect to models that are developed to look at

social interactions (e.g., in addiction studies) and

epidemiology.

A second unusual modeling challenge comes from the

overlap across scales in the brain. In some modeling areas,

one can perform a series of model encapsulations, pro-

viding a reduced model at each scale that can then be

plugged into a new model at the higher scale. This

approach produces a multiscale modeling via stepwise

embedding. The use of this encapsulating/embedding

approach in brain modeling is limited by the overlap across

scales. For example, an important scale overlap occurs at

cell to network scales: A pyramidal cell apical dendrite (a

subcellular structure) spans 100s of microns, crossing

multiple laminae of cortical network. This dendrite will

integrate signals at both spatial and temporal scales similar

to those being handled by multiple neurons in multiple

interconnected non-encapsulatable networks. In practice,

brain modelers often do encapsulate, for example making

the practical decision to treat the individual neuron in the

network as a point neuron. However, this, and other,

encapsulating approximations, like all approximations,

represent a trade-off of detailed representation versus

conceptual clarity.

Thirdly, multiscale modeling for brain and nervous

system disease has developed out of an older field, com-

putational neuroscience, that is only now adding compu-

tational systems biology techniques to its historical focus

on cellular electrophysiology and abstract networks. Add-

ing the molecular scale, newer models now identify and

investigate chemical signaling cascades, many synaptically

triggered via metabotropic receptors, to the traditional

assessment of electrical signaling via ionotropic receptors.

One particular focus has been on the role of calcium, a

second messenger signal that can be released from endo-

plasmic reticulum stores by calcium-induced calcium

release (CICR), as well as from extracellular stores [1, 2].

Inclusion of chemical modeling is particularly valuable for

improving our understanding of pharmacotherapeutics.

Fourth, there are a large number of disorders and dis-

eases of the nervous system, many of which are not purely

brain diseases but instead involve interactions with other

systems that are the primary source of pathology. Impor-

tantly, a stroke damages the nervous system due to vascular

pathology. However, as described below, stroke modeling

has either focused on the brain and excluded consideration

of blood vessels and the heart or looked at the vasculature

but not included neural tissue in any detail. Similarly,

multiple sclerosis is a disease involving interaction of the

immune system and the brain.

Finally, in addition to involving multiple systems and

multiple scales, understanding brain disease requires mul-

tialgorithmic and multiphysics approaches that may be

needed at one particular scale or for one particular prob-

lem. Multialgorithmically, techniques from graph theory

are used at scales from microcircuit up to connectomics

among areas of the brain. Techniques from information

theory are used for analysis of spike trains at relatively fast

temporal scales, but are less useful for slower oscillations

and other types of brain signals. With respect to multi-

physics, finite element (FE) modeling is utilized in two

very different contexts pertaining to different clinical sce-

narios. FE of electrical signals in bulk brain tissue is used

for understanding electrostimulation therapy. FE of spread

of pressure waves through the brain is used in study of

traumatic brain injury.

Due to the broad scope of this field and the preliminary

nature of much of the research, we cover only a few

selected disorders and diseases. For each disease, we
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highlight specific research questions which could be

answered using multiscale modeling. We then focus on the

attempts made at bridging the scales, as well as the many

challenges which must be met to provide clinically useful

models. Our target audience is clinicians in psychiatry,

neurology, neurosurgery and physiatry (rehabilitation

medicine), as well as investigators involved in neural

modeling.

2 Epilepsy

Many years of progress in basic science and modeling of

epilepsy have evaluated this disease as an ‘‘electrical

storm’’ in the brain whose causes involve enhanced

excitability of cells and synapses [3, 4]. However, addi-

tional biological scales also contribute to etiology and

pathogenesis of epilepsy, ranging from individual ion

channels (channelopathies), to individual cells, to net-

works. Mutations in the genes encoding ion channels,

including missense mutations and premature stop codons,

alter the dynamics of the ion channels [5, 6]. Such changes

can result in either inherited or sporadic epilepsy. In the

sporadic epilepsy case, the gene mutation or allelic pre-

disposition is only one of many factors at multiple scales

which produce the acquired disorder. Genomics influences

electrical and chemical dynamics producing local and

global network effects with alterations in behavior.

Mutations affecting ion channels can be used to inves-

tigate the function of the different domains of the ion

channel protein (for example, formation of channel pore or

voltage sensors). Using homology modeling, the 3D

structure of the protein is predicted based on homology of

amino acid sequences of proteins with known 3D struc-

tures. This is then combined with calculations of free-en-

ergy minimization to optimize packing of the polypeptide

sequence [7]. These models can be used to test the influ-

ence of various mutations on the dynamics of the ion

channels. Effects could then be reflected in the mathe-

matical functions representing the behavior of the ion

channels. Inserting such channels into cellular and network

models results in changes in the excitability of the cells

(e.g., the duration of action potential, and the frequency of

spiking) [8, 9].

On the other end of spatial scale are whole brain regions.

Modeling large regions has become increasingly popular in

light of the use of brain stimulation as a treatment

modality. Older, more detailed models have led to some

insights in seizure attractor states and underlying propa-

gation dynamics, but new devices such as vagus nerve

stimulators (VNS) and closed-loop brain stimulation sys-

tems make it important to understand underlying physiol-

ogy as well as gross dynamics [10]. Simulation of brain

stimulation for epilepsy has substantial overlap with work

being done for other disorders (see Sect. 8 below). VNS

study overlaps with stimulation of peripheral nerves [11].

However, in the case of VNS the stimulation is done in

order to produce secondary effects in cortex—these

intracerebral changes remain poorly understood.

3 Traumatic brain injury

Modeling the effects of trauma on the brain requires both

top-down and bottom-up approaches. The top-down

approach describes the distribution of force and energy on

various brain regions, while the bottom-up approach

describes effects of the trauma at the micro- and nanos-

cales. Multiscale models bridge the gap between various

types of injury and the damage seen through neuroimaging.

It has been shown that model-estimated brain regional

responses are more effective in injury prediction than

kinematics-based injury metrics [12–14].

Biomechanical modeling of traumatic brain injury (TBI)

uses finite element (FE) models of the human head to

understand how energy from external head impact is con-

verted into the regional mechanical responses that cause

focal brain injury [15–17]. Finite element modeling is used

in both TBI research and in assessing the spread of elec-

trical signaling in neurostimulation research (see Sect. 8

below). Although the numerical techniques are similar, the

physical parameters involved in these two domains are

vastly different—mechanical versus electrical parameters.

Fig. 1 Temporal and spatial scales of organization in the nervous

system. The proper spatial scale of ‘‘Cognition and Behavior’’

depends on how it is being viewed and modeled. Scale overlap can be

seen by noting that dendrite, cell and column share scale in both time

and space, reflecting the fact that the same neural signals are being

processed at these different levels
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However, structural neuroimaging can be used to suggest

pathways both for mechanical stress and for electrical

conductivity.

Numerous head mechanical models have been devel-

oped in the past several decades that vary significantly in

model features and parameters [17, 18] . Along with the

evolution of model development, significant efforts have

been made to better characterize brain material properties

to improve these models by considering inter-regional

heterogeneity across gray and white matter and white

matter material anisotropy [19–21]. However, different

head models produce significantly different results in terms

of strain and stress, even under identical impact conditions

[18]. This model dependency must be considered when

interpreting and comparing results from different research

groups.

Damage to white matter pathways is particularly impor-

tant in determining clinical symptoms of TBI due to diffuse

axonal injury. Standard isotropic response analyses (maxi-

mum principal strain) do not account for white matter

structural anisotropy and are not able to characterize

shearing and elongation. Recent studies have begun to

incorporate axonal strain directly, improving injury predic-

tion [12, 22–27]. However, greater resolution is needed to

estimate fiber strains at subvoxel resolution and to assess

fiber strains along their entire length [28]. This is important,

as assessing fiber strains along the entire length of fibers

enables assessing the injury risks to white matter neural

pathways or tracts, which is not possible with element/

voxel-based studies. Incorporating whole-brain tractography

into multiscale models permits graph theoretic prediction at

the level of the structural connectome [29]. By incorporating

axonal cell death models [30], damage to functional brain

networks can be computed. This potentially offers a physics-

based insight into the biomechanical and neurophysiological

mechanisms of TBI symptomatology.

The top-down modeling described above does not

incorporate structures of the brain at cellular and tissue

scales. Bottom-up approaches have been used to simulate

tissue responses at the micro- and nanoscale and to incor-

porate models of axonal cell death from in vitro studies

[27, 30–32]. Local tissue- and cell-scale damage due to

TBI is similar to that of ischemia, with involvement of

apoptosis and necrosis (see next section). Top down and

bottom up could be combined by using a whole-brain

model of impact at the macroscale with microscale simu-

lation targeted at the brain regions maximally affected,

using the boundary conditions derived from the macro-

model [12], a model encapsulation technique.

Most head models in TBI impact simulations are based

on a 50th percentile adult head [25]. These are effective for

population-based studies but do not incorporate individual

anatomy and individualized axonal structural anisotropy.

Multiscale, personalized head impact simulations, incor-

porating individualized imaging, will become important for

precision or personalized brain injury treatment and

prognostication.

4 Ischemia in stroke and neurodegenerative disease

A stroke is a neurological event of sudden onset due to

primary problems in the vasculature. Hemorrhagic stroke,

bleeding from failure of a blood vessel wall, makes up

about 20% percent stroke cases. The other 80% of strokes

are ischemic: tissue death due to vessel blockage, failure of

blood flow and lack of metabolites. Multiscale modeling of

strokes might begin with modeling of blood, blood vessels

and the heart, along with the brain. Such extensive multi-

physics modeling has been limited to highly idealized

models. Instead, most computer modeling of stroke has

assessed cellular and brain tissue effects of ischemia.

The brain has little energy reserve, so cannot tolerate

loss of blood flow for long. At cellular and subcellular

scales, a key focus of modeling is to determine the relative

rates of signals and processes that determine whether a cell

will undergo apoptosis (programmed cell death) or necrosis

(rapid uncontrolled cell death). In general, cells subject to

more gradual ischemia will undergo apoptosis. Apoptosis

is a slower process than necrosis and does not involve

release of direct cellular toxins into the intracellular space.

The process of triggering apoptosis involves a long cascade

involving molecules known as caspases. Modeling the

caspase cascade would suggest molecular locations where

one might alter the necrosis/apoptosis balance and reducing

ischemic damage [33]. Another set of molecular factors

with pathological implications are reactive oxygen species

(ROS) [34]. The intracellular spread of these highly reac-

tive free radicals is modeled to determine the degree of

local damage that is then reflected as overall cell damage

through a process referred to as oxidative stress or cell

stress [35].

One goal of neural modeling for stroke is to develop

neuroprotective therapies—strategies to reduce the damage

immediately after a stroke occurs. For example, the role of

oxygen in creating ROS helps explain why simply restoring

oxygen to tissue is not generally protective. Nonetheless, it

might be the case that oxygen combined with other agents

could create a drug cocktail that would have neuroprotec-

tive properties. Modeling could also assess various agents

that might reduce the rate of apoptosis to preserve brain

tissue or alternatively enhance apoptosis to prevent the

greater damage associated with necrosis.

At the next scale up, modeling places these cellular

effects into the context of the surrounding tissue. Whereas

most brain tissue modeling is done with reference to
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neuronal networks, where neurons are connected synapti-

cally, ischemic modeling considers brain tissue in bulk

with effects that are local and not synaptic. When a stroke

occurs, the central area of severe ischemia is referred to as

the ischemic core, and the surrounding area as the

penumbra. The penumbra is of particular interest because

cells there may be salvageable through timely intervention

[36, 37]. Here again, modeling can make predictions as to

whether necrosis or apoptosis will predominate at a par-

ticular location. Necrotic cells will release toxic contents

which will spread into surrounding tissue and accelerate

damage [38, 39]. This suggests how factors that influence

diffusion by, for example, reducing edema could be

protective.

Sudden, severe ischemia causes stroke. By contrast,

prolonged low-grade metabolic insufficiency contributes to

neurodegenerative disease, including Alzheimer’s disease.

Hemodynamic modeling has suggested impaired vasomo-

tor reactivity to CO2 in early-stage Alzheimer’s patients

when compared with age-matched controls [40]. These

input–output hemodynamic models were estimated from

beat-to-beat data of arterial blood pressure, end-tidal CO2

and cerebral blood flow velocity measured at the middle

cerebral arteries via transcranial Doppler. Pressure and

CO2 time-series data are viewed as the inputs to the model

and the flow velocity data as the output. These data-based

models allow the computation of indices quantifying the

dynamic processes of cerebral autoregulation and CO2

vasomotor reactivity in the individual subject. Key struc-

tural components of these models are termed ‘‘Principal

Dynamic Modes’’ that suggest how impaired vasomotor

reactivity can be related to dysregulation of potassium

channels in the astrocytic membrane under conditions of

elevated calcium in the astrocytic endfeet [41–43]. Sub-

sequent modeling studies of a larger cohort of patients

diagnosed with amnestic mild cognitive impairment (often

a forerunner of Alzheimer’s disease) have in fact confirmed

the presence of impaired CO2 vasomotor reactivity in these

patients [44].

Alzheimer’s disease not only lacks effective treatment,

but also lacks reliable diagnosis. Early detection of

ischemic aspects of the disease may improve diagnostic

reliability and permit early treatment to reduce subsequent

ischemic degeneration. As indicated above, data-based

input–output hemodynamic modeling has suggested that

neurodegenerative disease may be associated with impair-

ment of vasomotor reactivity in the cerebral vasculature,

likely due to dysfunction of the neurovascular unit caused

by elevated calcium in the astrocytic endfeet causing

dysregulation of calcium-dependent potassium channels in

astrocytic membrane [45, 46]. The neurovascular unit is

considered the building block of the blood brain barrier. It

consists of the blood capillary endothelium, surrounding

pericytes (contractile cells surrounding capillary endothe-

lium), astrocytic endfeet, neurons and extracellular matrix.

The neurovascular unit is thought to be responsible for

detecting the metabolic demands of neurons and respond-

ing accordingly by vasoconstriction or vasodilatation [47].

Further study of this hypothesis about the role of the dys-

function of the neurovascular unit in neurodegenerative

diseases will utilize physics-based multiscale models of the

neurovascular unit to elucidate the physiological mecha-

nisms of its responsiveness to reduced O2 and increased

CO2 [48].

5 Neurorehabilitation

Neurorehabilitation can be conceptualized as a set of

techniques to facilitate the brain’s natural mechanisms for

recovery from injury. The mechanisms of recovery are

often limited due to the interaction between neural recov-

ery mechanisms and the tasks the patient is performing. For

example, in an unassisted recovery, the patient may restrict

their environment and tasks to those that can be readily

performed despite the neural deficits. But this restricted set

of tasks may not challenge the brain and can be suboptimal

for promoting recovery. Rehabilitation defines and

encourages practice of an expanded set of tasks in order to

promote more effective recovery.

In practice, neurorehabilitation becomes the focus of

treatment after the acute period of injury has passed. Ide-

ally, neurorehabilitation considerations would also inform

acute treatment of stroke and traumatic brain injury. There

is a need to both protect the remaining neurons from injury,

as discussed above in the prior section on Ischemia, as well

as to prevent early unwanted plasticity from occurring

during the acute period of brain damage.

The restricted set of tasks which patients continue to

make is an example of failure of motor learning, in which

continued task practice does not lead to improvement.

Multiscale computational modeling of motor learning

based on plasticity mechanisms within populations of cells

has shown two conditions where motor learning fails: (1)

lack of the sensory information (or attention to the sensory

information) needed for error correction; (2) large perfor-

mance errors so that incorrect movements are being prac-

ticed [49]. In both cases, learning does not occur even in

the presence of normal plasticity mechanisms, because

either errors cannot be detected and corrected, or practice

does not provide useful examples of the correct behavior.

Neurorehabilitation can address both types of error at the

behavioral level. For sensory errors, this can be done by

focusing attention on the most important aspects of task

performance. For motor difficulties, one can guide practice

in an assisted environment, or practice simpler subtasks.

Multiscale modeling in the clinic: diseases of the brain and nervous system 223

123



Brain injury is mediated by death or dysfunction at the

cellular level. Recovery is thought to be mainly mediated

by synaptic plasticity mechanisms. Rehabilitation therefore

seeks to provide tasks to enhance plasticity that will

improve function [50], using the ability of brain regions to

remap and reallocate resources in response to sensory data

and motor behavior [51, 52]. In addition to this role for

adaptation of brain to task, there is also a role for plasticity

to produce learning of strategies to perform tasks in new

ways [53].

One goal of rehabilitation where multiscale modeling

can help is to guide reallocation of remaining neural

resources to reflect the long-term goals of the patient. This

is a multiscale problem because the behavioral goals occur

at the scale of body and limb movement, motor function

and real-world tasks, whereas the neural remapping hap-

pens at the level of populations of neurons that are

responsible for the internal representation and computation

of movement. The relationship between allocation of

neural resources and large-scale behavioral performance is

a fundamental multiscale problem that can benefit strongly

from theories that link individual and group neuron

behavior to normal and abnormal body movement and skill

performance. Remapping is not the only plasticity mech-

anism. Another, equally important, element of rehabilita-

tion is learning new behavioral techniques to accomplish

important tasks. Here, it is important to realize that fun-

damental synaptic plasticity mechanisms are responsible

for adaptation and learning [53].

Improved understanding of how to harness plasticity for

rehabilitation requires models that range from the subcel-

lular scale of synaptic plasticity to the behavioral scale of

interaction with the environment using models of adaptive

and optimal control theory. Such models may segment

elements of behavior into classical computational elements

of control, such as optimal control, adaptive control,

internal system models, Bayesian sensory observers and

feedback control. This segmentation then allows a potential

link to different brain regions, so that, for instance, the

optimization and selection of movement may occur within

one brain region (perhaps the basal ganglia) while adap-

tation, feedback and internal models might occur elsewhere

(perhaps in the cerebellum). Once the neural systems scale

has been identified, the particular behavior of groups of

neurons can be measured, and predictions can be made

using mathematical models of the neural effects, or by

direct simulation of populations of neurons, interconnected

simulated neural systems or injured neural systems. Such

models can be extended even further to the microscopic

scale by considering the effect on population behavior of

abnormalities in membrane depolarization, perhaps due to

genetic defects in ion channels or the effect of toxins on

channel behavior. Thus, multiscale modeling proceeds both

top-down (using theories of motor control to describe and

predict high-level behavior) and bottom-up (using theories

of neural computation to predict the effect of neural and

neural population activity on high-level behavior). Pre-

dictions can be made across scales, so that the neural

response to behavioral interventions can be predicted, and

the behavioral response to neural injury can be predicted.

Most important for neurorehabilitation, the neural and

behavioral response to rehabilitation can be predicted, and

the combined effect of therapy and medication can be

predicted and tested.

Both experimental and theoretical components of the

multiscale model must address the effect of the choice of

sensory-motor environment and task on motor behavior

and plasticity [54]. The goal is an understanding that

includes both the principles of science (the ability to pre-

dict specific effects of well-controlled interventions) and

engineering (the ability to build a model whose behavior

emulates human rehabilitation and whose structure reflects

the known neuroanatomy and neurophysiology). Iteration

between multiscale modeling and experimental testing will

permit the development of new therapies based on a fun-

damental understanding of the computational mechanisms

responsible for recovery from brain injury.

6 Drug addiction

Addiction is a complex psychological and neurophysio-

logical manifestation, defined in terms of drug-using

behaviors. Because of the importance of behavior in

defining the syndrome, and because the syndrome depends

on the availability and accessibility of the drug of abuse,

which in turn depends on social interactions, it is useful to

extend the concept of multiscale upwards to the levels of

these social interactions [55]. Underlying mechanisms

drive an individual to uncontrolled use and create feelings

of craving as well as a physiological state of withdrawal.

These mechanisms can be defined spatially at the level of

genome to neural circuitry and temporally at multiple

scales ranging from milliseconds to years, influencing each

other through systems of feedback loops [56]. For example,

genetics will determine the functioning of certain receptors

in the brain, their response and adaptation to repeated drug

intake. This adaptation in turn can gradually change cog-

nitive pathways and lead to the intrinsic demand for more

drugs, which can translate into drug-seeking behavior

involving other individuals. Success in drug-seeking

behavior results in drug use and reinforces across these

multiscale cycles.

Addiction is addressed through several research disci-

plines: neurobiology, genetics, behavioral economics, epi-

demiology and public policy. Although mathematical
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modeling is applied within each of these areas, not enough

modeling has attempted to cross these boundaries. Devel-

opment of new strategies for treatment and prevention will

require that we connect these scales, for example from

rodent experiment up to epidemiology [57–59]. Approa-

ches to plasticity to treat addiction are related to similar

approaches in neurorehabilitation, in that they also attempt

to take damaged internal wiring and modify it through

alterations of the interactions of these circuits with the

external environment.

Initial multiscale models provide a framework to

describe components, processes and feedback loops span-

ning below the skin and above the skin [55, 60–63]. As

with most of neurobiological work, animal models pave the

way to theory development [57–59]. How well these the-

ories translate to human brain is not always clear. One way

is to apply rodent-based theory to a human model. Such

models consider a dynamic where the neurobiology serves

as a driver for behaviors, while the environment provides

inputs that shape the behaviors [64]. In these models,

neurobiology is much simplified because the main focus is

on individual’s long-term behavior. Nevertheless, it is

critical because it emphasizes the biological nature of

addictive behaviors. Recent modeling proposed how drug-

induced alterations of the addict’s internal physiological

state may lead to a transition from drug use to addiction

[65]. As more is known about individual scales—single

neuron, circuitry, behavior—more challenges arise as to

how to connect the pieces, because of the increasing

multiplicity of pathways. These complex models run the

risk of being intractable at first, but can then be simplified

piecewise to derive novel hypotheses about system

relationships.

7 Schizophrenia

Schizophrenia plays out over the course of a lifetime. The

underlying etiology is a combination of genetic/proteomic

predisposition with viral or other insults during early

development. This combination triggers anomalies in brain

development which are only fully expressed much later,

generally during the period of late adolescence. The sudden

onset of psychosis at this time is known as a psychotic

break, a sudden and dramatic alteration in thought patterns

and behavior. The psychotic break is typically precipitated

by a stressful event in the life of a predisposed individual.

In many cases, this is the first episode with recurrence of

further episodes of psychosis.

Using the multiscale modeling perspective, Lisman and

colleagues considered that the psychotic break might

reflect a bistable system with a state switch triggered by the

stressful event [66]. They described this switch as being

manifested in dynamic changes that would be influenced

by a number of local measures, including imbalance of

excitation mediated by glutamate receptors and inhibition

mediated by GABA receptors (an inhibitory receptor type),

abnormal gamma frequency (25–100 Hz) oscillations and

hyperactive ventral tegmental area (VTA)—thalamic-hip-

pocampal loop. One of their computer models included the

CA1 region of the hippocampus, the thalamus and the

VTA. CA1 was modeled as firing of principal cells which

are stimulated by the bursting of thalamic neurons and

inhibited by local inhibition. Bursting of thalamic cells was

driven by membrane hyperpolarization, which in turn was

calculated based on NMDAR (NMDA type of gluta-

matergic receptor) blockage and level of dopaminergic

activity in the VTA. Dopaminergic activity within the VTA

was dependent on input from CA1 region as well as stress.

In the model, baseline reduced NMDAR activation (the

predisposition) resulted in hyperpolarization of the thala-

mic cells, paradoxically increasing their bursting (post-

anodal exaltation). In the presence of stress, activity

increased in VTA and thalamus, providing positive feed-

back with hyperactivity. The hyperactivity persisted after

the stress had been removed—a jump to an alternative

attractor in this bistable system [67]. The system can

subsequently make further jumps back and forth. Exposed

to the same stress, a person without the NMDAR blockage

predisposition would not show the switch to the alternate

attractor and would maintain normal dynamics.

Another related modeling approach has focused on the

role of similar NMDAR effects by looking at pharmaco-

logical NMDAR blockers that produce cognitive abnor-

malities similar to psychosis in normal people (some of

these psychotomimetic drugs, such as ketamine and

phencyclidine, are also drugs of abuse). A recent viewpoint

posits abnormal cognitive coordination to be the primary

underlying dysfunction in psychosis and in schizophrenia

[68]. Abnormal cognitive coordination points the way to a

neural substrate for thought disorder based on a proposed

causal relation from neural discoordination to cognitive

discoordination [69]. Evidence for anomalies in elec-

troencephalographic (EEG) responses to cognitive tasks in

schizophrenia has reinforced this notion. EEG anomalies

provide the further context of brain oscillation anomalies,

particularly in the gamma frequency range (30–80 Hz), as

evidence of neural discoordination. Neural discoordination

is based on theories of encoding through neural ensembles

and neural ensemble formation through synchrony and

phase locking [70]. In vivo physiology in cats suggests how

synchrony between different brain regions in this gamma

frequency range might allow activity in different regions to

be integrated. This mechanism of coherent activation

across different regions of the brain has been proposed as a

possible solution to the binding problem [71], the problem
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of how to provide coherent object representations despite

parts being widely distributed in the brain.

The presence of gamma wave anomalies after exposure

to psychotomimetic drugs provides another multiscale

linkage upward from the pharmacological scale. Multiscale

models have assessed the effects of NMDAR blockers on

cellular and network dynamics [72, 73]. In these models,

the receptor changes produce oscillatory changes (network

scale) in the brain with alterations in both gamma and theta

(4–8 Hz) bands. The changes in gamma oscillations can be

connected upwards to yet another scale by assessing the

impact on information flow (functional/cognitive scale), as

measured by information theory algorithms such as nor-

malized transfer entropy. In this way, the models can help

us understand the consequences of these drugs, and of

schizophrenia, for altering both brain waves and thought

processes.

In one of the multiscale models connecting NMDAR

level to oscillations [72], a network model of the CA3

region of the hippocampus was used to examine the cel-

lular location where NMDAR blockade would produce

augmentation in gamma activity, along with reduced theta

activity. The model consisted of pyramidal cells and two

interneurons populations, basket cells and oriens-lacuno-

sum moleculare (OLM) cells. The cells were Hodgkin–

Huxley like conductance-based neurons, and they con-

tained AMPAR (another type of excitatory glutamatergic

receptor), NMDAR and GABAA receptors. The pattern of

firing of the cells within the network allowed for generation

of both theta and gamma oscillations. The model predicted

that blocking NMDARs on OLM interneurons alone results

in increased gamma and decreased theta power.

In another multiscale model, reducing NMDAR activity

was associated with changes in information processing in

neocortex [73]. The model contained two populations of

excitatory cells (regular spiking and intrinsically bursting)

and two populations of inhibitory cells (fast-spiking and

low-threshold spiking), organized across the multiple lay-

ers of neocortex. These were conductance-based cellular

models with three compartments—one somatic and two

dendritic. NMDAR and AMPAR were located on the

dendrites, while GABAA receptors were located on the

soma. Increasing the gamma activity generated by the

model permitted less information to propagate from outside

into the network. This effect can be understood by noting

that information in the Shannon sense is related to entropy,

or degree of unpredictability, where lower predictability

means higher information content. Greater stereotypy

(higher predictability) in the dynamical pattern (higher

gamma) meant reduced variability, leading to reduced

entropy and reduced information-carrying capacity. This

compares with clinical observation, where the thought

pattern of patients suffering from schizophrenia shows

greater stereotypical phenomena (e.g., echolalia and per-

severation), associated with a reduction in global (gestalt)

perceptual responsivity.

8 Neurostimulation

The field of neuromodulation has been steadily growing in

its breadth of treatment. A partial list of diseases treated

includes chronic pain, Parkinson’s disease (PD), essential

tremor, dystonia, epilepsy, depression, anxiety disorders,

post-traumatic stress disorder, obsessive compulsive dis-

ease, Alzheimer’s disease, addictive substance abuse dis-

orders and eating disorders. Neurostimulation is also used

to complement the plasticity alterations produced with

various physical neurorehabilitative strategies. This long

list of applications suggests how the use of neurostimula-

tion is expected to impact treatment of many of the dis-

eases and disorders discussed above.

Over the past 15 years, advances in electrode design

have allowed the development of stimulators with multiple

independently driven contacts, directional contact designs,

rechargeable pulse generators, wireless interfaces,

enhancements in programming patterns and waveform

variations, as well as simple closed-loop systems [74].

Multiscale modeling now gives us the ability to examine

neural circuits on the scale of these therapies and begin to

understand underlying mechanisms for the success of these

currently entirely empirical treatments. Multiscale model-

ing allows us to examine parameter constraints, targets,

waveform variations and temporal patterning, trying dif-

ferent ideas before moving to the animal or human

platform.

Stimulation in basal ganglia is used to treat PD,

depression, tremor and several other diseases. Models have

extended down to the nanoscale of the electrode–tissue

interface, providing understanding of the volume of tissue

activated based on finite element (FE) models [75]. This

has been connected to the higher scale of diffusion-tensor

imaging MRI data to yield appropriate tissue electrical

parameters. Knowing the volume of tissue activated in

typical clinical use and combining it with connectivity

revealed by DTI can allow circuitry dynamics to be mod-

eled, since part of the imparted activation from the stim-

ulation is now known. Further modeling has evaluated

larger, neural circuitry models (column and local circuit

scales) made up of thousands of biophysically detailed

multicompartmental neurons (ion channel, dendrite and

cell scales) with synaptic dynamics.

One model of PD consisted of basal ganglia nuclei

(putamen, globus pallidus externus, subthalamic nucleus,

globus pallidus internus, substantia nigra pars reticulata),

substantia nigra pars compacta, thalamus and cortex [76].
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PD was modeled as a reduction in activity from substantia

nigra pars compacta to striatum by 80%. Increased rhyth-

mic activity found in the thalamus, as well as in the globus

pallidus internus and subthalamic nucleus, appeared similar

to activity measured clinically that has been associated

with the debilitating tremor of this disease. Deep brain

stimulation (DBS) to the subthalamic nucleus was then

simulated using a range of current amplitudes (0–3 nA)

and frequencies (0–185 Hz). Certain stimulation parame-

ters could reduce the pathological rhythmicity of these

‘‘tremor’’ cells. The pathological rhythms were optimally

disrupted at frequency of stimulation above 135 Hz, sim-

ilar to what is seen clinically.

Other scales have also been modeled. Electrode–tissue

interface nanoscale models have led to better understand-

ing of what signal or field is seen by the individual neurons.

This leads to development of more efficient stimuli. Vol-

ume of tissue activated models has informed the develop-

ment of multicontact steerable or directional electrodes

used in DBS to reduce side effects and improve efficacy

[77]. Other large-scale network models of DBS have pro-

vided understanding of the mechanisms of DBS in treating

movement disorders, suggesting a role for both inhibition

and excitation with changes in firing regularity in particular

cell groups.

Electrodes are generally used superficially, above the

dura mater, for stimulation in spinal cord and cortex.

Understanding the mechanisms of spinal cord stimulation

for pain hinges on understanding how the epidural field

reaches the dorsal (sensory) column and its effects on cord

circuitry. This multiscale problem spans ion channel sub-

component scale, up through circuitry dynamics, up to pain

perception. A neural model of human spinal cord and FE

models of the cord and electrodes demonstrated mecha-

nisms of proposed stimulation paradigms prior to using

them in patients [78]. This model lent support to the idea

that retrograde stimulation leads to inhibition of wide-dy-

namic range neurons that carry pain information to the

brain.

Stimulation of cortex is used to treat chronic central pain

and other disorders. Currently, stimulation programming is

inconsistent, particularly since benefits are not immediate

but accrue over days to weeks. Multiscale modeling has

been used to examine the circuit level in order to evaluate

how the level of pain perception may be modulated based

on alterations in network dynamics [79].

9 Future directions

Scientific medicine begins to permit the development of

precision and personalized medicine through opening the

‘‘black box’’ of disease by beginning to explain the many

differences seen in patients’ responses to a particular dis-

ease or to a particular therapy. Multiscale modeling is

needed because inside the black box is a complex network

of interscale causal interactions. MSM thus has the

potential to provide understanding of some of the problems

described above. It will permit us to understand how a

pharmacological intervention at the molecular level of ion

channels would alter neural dynamics so as to prevent a

seizure or to alter the aberrant thought process of

schizophrenia. Neurostimulation is growing in importance

as an empirical treatment modality with effects and con-

sequences that remain little understood. MSM permits the

linkage of these alterations in electric fields to the conse-

quences not only on cell membranes and cell dynamics but

on neural and synaptic plasticity that will produce long-

term effects. Coupled with novel neurorehabilitation

strategies, these techniques could then provide novel

approaches for repurposing remaining brain after a patient

has suffered brain damage.

Unfortunately, there remains substantial doubt about the

adequacy of most models, a concern that can be traced in

large part to the complexity of brain multiscale interactions

described in Introduction. Most validation to date is at the

level of numerical validation of the accuracy of simulation

rather than experimental validation of the overall model

[80]. As models increase in sophistication, they will also

begin to deviate further from the basis in animal experi-

mentation on which most model parameters are based, in

order to more closely match the human condition.

Although desirable to obtain these parameters directly from

people, or in some cases from the individual patient, clin-

ical measurements are severely restricted compared to what

can be done in animals. Clinical experimentation is typi-

cally limited to the testing of new medications or diag-

nostic tests on large populations. Direct experimentation on

the individual patient is also possible in very limited cir-

cumstances. For example, an epileptic patient will often be

empirically treated with one drug after another, with each

being titrated up to a maximum dose or till not tolerated, to

find a medication that will prevent seizures in that partic-

ular patient. Ideally, multiscale modeling using individu-

alized testing of genomic and pathologic variants will be

able to reduce this kind of patient experimentation.

Two major elements of the clinical process are diagnosis

and treatment. As we move toward precision and person-

alized medicine, these elements will be more closely allied

in the individual patient. Diagnostic imaging coupled with

genomic and proteomic information can be used to inform

modeling in order to design the proper combination of

strategies combining drugs at the chemical scale, locally or

systemically, with electrical stimulation at various scales,

with learning and training at the behavioral scale. As noted

above, the highest scale also feeds back to the lowest:
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Rehabilitative training affects neuroplasticity, plasticity

that will be affected by drugs and neurostimulation. Fol-

lowing these causal dynamical chains up and down, and

back again, is the future of multiscale modeling in the

brain.
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