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Abstract Many neuroscience studies have been devoted

to understand brain neural responses correlating to cogni-

tion using functional magnetic resonance imaging (fMRI).

In contrast to univariate analysis to identify response pat-

terns, it is shown that multi-voxel pattern analysis (MVPA)

of fMRI data becomes a relatively effective approach using

machine learning techniques in the recent literature. MVPA

can be considered as a multi-objective pattern classification

problem with the aim to optimize response patterns, in

which informative voxels interacting with each other are

selected, achieving high classification accuracy associated

with cognitive stimulus conditions. To solve the problem,

we propose a feature interaction detection framework,

integrating hierarchical heterogeneous particle swarm

optimization and support vector machines, for voxel

selection in MVPA. In the proposed approach, we first

select the most informative voxels and then identify a

response pattern based on the connectivity of the selected

voxels. The effectiveness of the proposed approach was

examined for the Haxby’s dataset of object-level repre-

sentations. The computational results demonstrated higher

classification accuracy by the extracted response patterns,

compared to state-of-the-art feature selection algorithms,

such as forward selection and backward selection.

Keywords Brain response pattern � Brain functional

connectivity � Pattern classification � Particle swarm

optimization � Feature selection � Interaction selection

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of

the publicly used neuroimaging techniques to capture brain

neural activity in small volumetric units (called voxels) in

the brain by measuring the change of blood-oxygen-level

dependent (BOLD) signals over time. Broadly speaking, it

has advanced the understanding of brain functional activity

by fMRI in various cognitive and behavioral neuroscience

applications, such as Alzheimer’s disease [1], aging [2],

autism [3], depression [4], schizophrenia [5], and attention-

deficit hyperactivity disorder [6]. The overarching goal of

these research studies with fMRI is to examine and

understand the brain states among different regions of

interest (ROI) associated with specific brain functions or

disorders, so that treatments and interventions can be made

precisely according to stimulus or diagnostic conditions

[7].

Conventionally, univariate analysis of fMRI data was

widely used to identify the ROIs of brain functions (i.e.,

localization) by statistical tests on individual voxels in

most research studies [8, 9]. In more recent years, multi-
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voxel pattern analysis (MVPA) of fMRI data has been

increasingly applied to identify response patterns of voxels

as a whole [3, 10, 11]. The MVPA can be modeled as a

high-dimensional pattern classification problem to train a

classification (or prediction) model based on the fMRI

BOLD signals, in which voxels (as features) are identified

in response to stimulus or diagnostic conditions (as class

labels). In most neuroscience experimental studies, the

number of stimulus samples is relatively much less than the

number of voxels in the brain. This leads to a computa-

tional challenge of high feature-to-sample ratio from the

machine learning viewpoint [12]. Therefore, various

advanced feature selection and sparse optimization tech-

niques were proposed to enhance the computational results

in terms of classification efficacy and informativeness of

selected voxels [13–17]. It leads to two-fold objectives: (1)

it aims to select a minimum number of voxels included in

classification models and (2) the classification accuracy

needs to be maximized.

Technically, a number of computational approaches

have been proposed and employed to solve this multi-ob-

jective high-dimensional problem [18–21]. Computational

intelligence-based approaches, such as genetic algorithms

(GA), simulated annealing (SA), ant colony optimization

(ACO), and particle swarm optimization (PSO), are at the

forefront of this research [22–26]. They are implemented in

conjunction with a classifier to find a set of highly repre-

sentative features for classification tasks. Heuristic feature

selection approaches stand out in terms of theoretical

simplicity, strong global search ability, and less expensive

computational cost. Instead of exhaustively exploring the

solution space, these algorithms adopt effective learning

schemes to optimize the feature selection [27]. In addition,

heuristic approaches pay more attention to find the best

combination of features rather than evaluating the good-

ness of features individually. These benefits of computa-

tional intelligence approaches indicate a great potential in

analyzing brain response patterns of high-dimensional

fMRI data [28].

However, when solving high-dimensional optimization

problems where multiple local optima exist, most classical

heuristic optimization algorithms fail to find (near) global

optimal results. Limited by simple searching behaviors and

communication abilities, classical heuristic optimization

algorithms are easily stuck to local minima and therefore

stop searching for better solutions in the problem space

[29]. This phenomenon is referred to as premature con-

vergence, which either leads to poor classification perfor-

mance or results in the discovery of poor quality feature

subsets [30]. Hierarchical heterogeneous particle swarm

optimization (HHPSO), as a recently developed variation

of PSO, maintains a high level of population diversity

during the search and alleviates premature convergence

problems by performing diverse searching behaviors [31].

As the success of HHPSO has demonstrated its strength in

addressing high-dimensional and complex optimization

problems, in this paper, we combine HHPSO with a linear

support vector machine (HHPSO-SVM) to perform feature

subset selection and classification tasks.

In this paper, extracting discriminating voxel-based

brain response patterns that distinguish different cognitive

states is a major goal. In MVPA of fMRI data, functional

connectivity between individual voxels plays a pivotal role

in distinguishing different cognitive states because they

capture temporal dependency or causality between differ-

ent brain regions [15, 17]. However, in existing fMRI

analysis, functional connectivity patterns are not inten-

sively analyzed as a whole due to an exponential increase

in size of the search space. For this purpose, we develop a

new feature interaction detection framework (FIDF) that

focuses on identifying informative voxels and voxel-based

functional connectivity in two sequential stages. The pro-

posed HHPSO–SVM feature selection approach is imple-

mented in this framework, which is first used to select

informative voxels and then used to select a connectivity

pattern. The well-known Haxby’s dataset [32] is used to

evaluate the effectiveness of the proposed approach.

The rest of this paper is structured as follows. In Sect. 2,

the MVPA concept of fMRI data is presented with an

explanation of the Haxby’s dataset. In Sect. 3, PSO and

HHPSO with their applications are introduced. In Sect. 4,

the FIDF using a HHPSO–SVM feature selection algorithm

is proposed. Experimental results are presented in Sect. 5.

In Sect. 6, this work is concluded with discussions and

future work.

2 Multi-voxel pattern analysis of fMRI data

Most of previous studies on fMRI data analysis are focused

on univariate statistics considering the activity of individ-

ual brain locations. Recently, some studies have revealed

that the cognitive states of the brain arise in a distributed

way over the activity patterns of different regions [32–34].

MVPA can be defined as the general name of the variety of

machine learning and pattern recognition techniques to

understand neural correlates of cognition by using fMRI

data. MVPA has been widely used for decoding the human

cognition besides some other applications such as lie

detection [35] and memory search [36]. Application of

MVPA on resting state fMRI has successfully extracted

enough information to detect individual’s brain maturity

across development [2]. Also whole-brain resting state

functional connectivity patterns of depressed patients are

investigated using MVPA to identify the pathological

mechanism of major depression [37].
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MVPA studies for cognitive state decoding by using

fMRI are implemented in three steps: feature extraction,

feature selection, and classification [13]. fMRI data for

task-based analysis is a plethora of noisy time series

measurements. It is usually important to filter out the noise

and extract the useful information from this bulky data. In

the feature extraction step, voxel responses for each stim-

ulus conditions are mapped onto predefined standard

hemodynamic response functions (HRF) and estimated the

similarity indexes. This is achieved usually with two ways

which are taking the average of the response across time to

each stimulus condition and fitting a general linear model

(GLM) to a standard hemodynamic response function

(HRF) [38]. GLM provides a more representative value

about the response of a voxel to the stimulus condition

[39].

Feature (voxel) selection plays a vital role in MVPA. In

this step, we aim to select a subset of informative voxels

features in order to enhance the classification accuracy and/

or provide to neuroscientists more refined characteristics of

brain functional responses. This task can be done according

the predefined region of interest (ROI) identification based

on the anatomical structure information in the brain [32].

Or it aims to choose voxels that are significantly active to

stimuli by using univariate statistical tools such as ANOVA

or t-test [40]. In addition, to score voxels according to their

individual accuracy level in the experimental settings [40],

mutual information [41] and partial least square regression

[13] were also used for feature ranking and selection in the

literature. Other than these univariate measures, recursive

feature elimination is also applied as a multivariate tech-

nique to select voxels [10], but the interactions among

voxels are not clear yet. Searchlight accuracy based on the

neighboring voxels’ contribution to classification for

selecting the voxels is also a multivariate technique that

considers spatial closeness of the voxels [40]. To the best

of our knowledge, the interactions among the voxel

activities have not been fully investigated yet in MVPA.

2.1 Haxby’s experiment of visual function

In this study, we use a benchmark dataset (of six subjects)

experimented by Haxby’s research group for experimental

tests [32]. In Haxby’s block-design experiment, each sub-

ject contains 12 fMRI runs; in each run, eight stimulus

blocks, each displaying image exemplars from a different

conceptual category were displayed to the subject in a

random order, as described in Fig. 1 (upper left). The fMRI

data were collected from a GE 3T scanner. One image of

brain activity in the dataset (consisting of 64 � 64 � 40

voxels) was acquired every repetition time (TR) of 2.5

seconds. Thus, there are a total of 9 TRs (=22.5/2.5) in each

block, yielding 720 data instances for the dataset (12 runs

� 8 blocks � 9 TRs). In our study, we only focused on the

predetermined region (region of interest, ROI) of thresh-

olded voxels with task-related variance in the ventral

temporal cortex, as opposed to the whole-brain space

(around 20,000–40,000 voxels).

To characterize the temporally evolving BOLD signal

change in response to a stimulus, a general linear model

(GLM) is applied, and coefficient parameters b are esti-

mated by fitting a GLM with different predictors for each

stimulus block. In this study, the predictors (i.e.,

si1; si2; . . .; siT for stimulus condition i = 1 to 8, and BOLD

responses at time 1 to T) were modeled with a boxcar

convolved with a canonical HRF [42]. We used a double-

Gamma function provided by SPM [43], with the default

settings, as the HRF. The b weights (parameters) are

extracted for each run of the experiment, each generating a

3-dimensional b weight matrix for each voxel, which can

be in turn transformed to a 2-dimensional feature matrix.

We denote this input feature matrix F, whose size is

M � N, where M is the number of data instances (the total

number of presented stimuli) and N is the number of fea-

tures (voxels). The element fdj of the data matrix F repre-

sents the real-valued coefficient parameter b of the d-th

data instance at the j-th voxel. It is helpful to view fdj as the

d-th sample of the j-th feature random variable Fj, the j-th

column of F. It is more convenient to treat Fj as a random

variable of the real-valued coefficient b in relevant prob-

abilistic measures. We denote class label ci 2 f1; . . .;Kg
(i.e., stimulus category), where K is the total number of

stimulus categories. For each data instance i, ci is known

precisely according to the experiment design. Figure 1

illustrates the framework to extract features from fMRI

signals in the ventral temporal cortex in this case.

3 Hierarchical heterogeneous particle swarm

optimization

3.1 PSO

Particle swarm optimization (PSO) is a population-based

meta-heuristic, originally introduced by Kennedy and

Eberhart [44]. Inspired by collective behaviors of bird

flocks and fish schools, a PSO algorithm is made of a

population of particles. Particles fly through a high-di-

mensional continuous solution space to find a best solution

[45]. During the search, particles iteratively develop their

velocities and positions based on their previous best

experiences and the global best position in the swarm using

Eqs. (1) and (2) as follows:
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Vtþ1
i;j ¼ Vt

i;j � xþ c1r
t
1;i;j ŷtj � xti;j

� �
þ c2r

t
2;i;j yti;j � xti;j

� �

ð1Þ

and

xtþ1
i;j ¼ xti;j þ Vtþ1

i;j ; ð2Þ

where Vt
i;j denotes the velocity of particle i at time t, xti;j is

the particle i’s current position at time t, yti;j is the personal

best solution of particle i at time t, and ŷtj is the global best

solution obtained at time t. Subscript j is the index of the

spatial dimension. x is a parameter called inertia weight

representing how much the particle’s memory can influ-

ence the new position. c1 and c2 are two constant accel-

eration coefficients and rt1;i;j and rt2;i;j are two random

numbers. They are used to balance exploration and

exploitation search behaviors.

3.2 HHPSO

Even though the algorithm design of PSO is simple and

computationally efficient, standard PSO is easily trapped into

local minima, especially when the optimization problem is

complex. In recent years, many variations of PSO have been

proposed to overcome this premature convergence problem.

We have recently proposed HHPSO [31]. Compared to

standard PSO, the swarm is equipped with multiple

equally sized layers. During the search, particles dynam-

ically arrange themselves in a hierarchical structure based

on their current fitness values. The better the fitness is, the

higher the position in the hierarchical structure is. In

HHPSO, particles are not only attracted toward their

personal best and global best positions, but they are also

attracted toward attractors. For particles in the top layer,

their attractors are particles in the same layers with better

fitness. For the rest of particles (not in the top layer), their

attractors are particles in their immediate superior layer.

Herein, a particle’s new velocity is a cumulative effect of

(a) its previous velocity, (b) its personal best position, (c)

the global best position, and (d) positions of its attractor,

as shown in Eq. (3).

Vtþ1
i;j ¼ Vt

i;j � xþ c1r
t
1;i;j ŷtj � xti;j

� �
þ c2r

t
2;i;j yti;j � xti;j

� �

þ
PAt

i

a¼1

c3r
t
3;i;j xðiÞta;j � xti;j

� �
;

ð3Þ

where xðiÞta;j is the position of attractor particle a of particle
i in dimension j at time t. At

i is the total number of attractors

of particle i at time t. c3 is a constant acceleration coeffi-

Fig. 1 An illustration of the proposed approach to response pattern

identification from which a block-design experiment is carried out to

examine visual function of fMRI data. Representative features are

extracted by applying GLM to BOLD time series across all voxels in

ventral temporal cortex in response to eight different stimuli. The

feature interaction detection framework is applied to identify

discriminating connectivity patterns of selected informative voxels
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cient and rt3;i;j is a random number. Other parameters are

exactly the same as those used in Eq. (1).

For the searching behavior, in HHPSO algorithm, parti-

cles are allowed to perform different searching behaviors

based on their ranks in the hierarchy and their current per-

formances. For example, if a signal of premature conver-

gence (i.e., early stagnation or overcrowding) is detected, the

relevant particle will change its previously adopted search-

ing behavior and randomly select a new searching behavior

from the predefined behavior pool to avoid premature con-

vergence [31]. Compared to standard PSO, HHPSO is more

resistant to local minima and superior to sustain the popu-

lation diversity as the dimension of the search space grows.

Recently, PSO as well as its variations has been

implemented as efficient global optimization techniques,

which received considerable attention in machine learning

(ML), data mining, and pattern recognition [46–48]. These

algorithms have shown to perform very well on algorithm

development and parameter optimization tasks [49–52].

4 HHPSO–SVM for voxel selection in MVPA

4.1 Problem definition

HHPSO–SVM feature selection algorithm (HHPSO–SVM)

aims to maximize classification accuracy (Max-Accuracy)

and to minimize the size of selected features (Min-Size)

simultaneously. The objective function in Eq. (5), which is

utilized to quantify searched solutions, is defined by

dividing the classification error by the number of elimi-

nated features. The penalization term (i.e., Min-Size) is

used for the purpose of constructing a compact set of

features and controlling overfitting. The approach iterates

until a best solution (a subset of features) is found.

f ¼ max
�
AccuracyðSiÞ

�
min

�
SizeðSiÞ

�
ð4Þ

fi ¼
ErrorðSiÞ

N � SizeðSiÞ
ð5Þ

In Eqs. (4) and (5), Si represents the feature subset selected

by particle i. AccuracyðSiÞ and ErrorðSiÞ represent the

classification accuracy and error calculated by using fea-

ture subset i. N is the entire number of features. SizeðSiÞ
represents the number of features in subset i.

4.2 Algorithm design

In the HHPSO–SVM feature selection algorithm, HHPSO

provides multiple candidate solutions to feature selection

and SVM is employed to evaluate the classification per-

formance using these candidate solutions. Particles

cooperate to locate a best solution in an N dimensional

problem space, where N is the cardinality of the original

feature set. Positions of particles are represented as

numeric strings of length N. Each value in the string is

within zero and one, which can be seen as the contribution

of the corresponding feature to the classification task. The

higher the value, the more important it is. Each particle

selects a set of important features based on its position

string.

Each iteration involves two steps (see Algorithm 1). In the

first step, we identify the selected features and evaluate the

fitness value for each particle (lines 1–10). Taking particle i

for an example, a predefined threshold h is applied to its

current position xi. The j-th featurewill be selected, if the j-th

value in the position string is greater than h.With the selected

features, classification error as well as the number of elimi-

nated features is calculated by SVM to evaluate the fitness

value for particle i (see Eq. 5). After all particles finish

updating their fitness values and their personal best solutions,

the global best solution is defined by the best of the personal

best solutions in the swarm.

In the second step, particles are ranked by their fitness

values in an ascending order and directed to the right layer

in the hierarchical structure (lines 11–15). Based on the

rank, particles occupy layers from top to bottom. Particles

in the higher layers always have better fitness values than

particles in the lower layers.

In the third step, particles update their velocities and

positions based on their searching performances as well as

their positions in the hierarchical structure (lines 16–25).

This step ensures that the swarm continuously explores the

problem space and optimizes solutions iteration by iteration.

The algorithm terminates when it converges to a sta-

tionary solution, which is defined by a condition that the

global best position stops to evolve for more than 50 iter-

ations. As the algorithm converges, the final solution to

feature selection is obtained by applying the threshold (h)
to the global best position (line 26).

In HHPSO–SVM (Algorithm 1), P represents the swarm

population, and Pi represents particle i. n is the number of

particles in the swarm. N is the dimension of the problem

space. xi;j is particle i’s current position in dimension j. Si
denotes the subset of features selected by Pi. Fj represents

the j-th feature in the original feature space. yi represents

the personal best position of particle i at time t. ŷ represents

the global best position. f represents the fitness function. Ri

represents the i-th particle in the swarm, after sorting all

particles by their fitness values in an ascending order. Lo
represents the first layer and Lj represents the ðjþ 1Þ-th
layer. l and k are the number of layers and the number of

particles in a layer, respectively. Ai denotes the set of

attractors of Pi.
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4.3 Feature interaction detection framework

In order to extract discriminating multi-voxel patterns from

fMRI data, scalable, robust, and efficient dimension

reduction tools are desired to identify influential voxels and

voxel-based connectivity. In this paper, FIDF is developed

as a MVPA approach that undergoes a two-stage

procedure. Voxel selection (feature selection) and voxel

connectivity selection (feature interaction selection) are

performed in Stage I and Stage II, separately. The proposed

HHPSO–SVM is adopted as the feature selection method

under this framework.

In the first stage, the feature selection algorithm is

implemented to select the best subset of voxels. This

procedure is repeated 15 times to obtain the average

number of selected voxels (Navg) and frequencies of

voxels being selected. Voxels are ranked according to

their selection frequencies in a descending order. The top

N1 (N1 ¼ 1:05Navg) voxels are selected in Stage I. In the

second stage, we first establish all connectivity that con-

nects voxels selected in Stage I, which is equivalent to

constructing a fully connected network. In this stage, we

aim at extracting discriminating connectivity patterns

from a fully connected structure. The rationale is as fol-

lows: HHPSO–SVM selects a best combination of voxels

in the first stage, which means the selected voxels are

interactive and informative as a combination. Identifying

consistent connectivity patterns from the pre-selected

voxel combination may achieve similar or even better

classification performances than only considering indi-

vidual voxels.

For fMRI data, the connectivity between two voxels is

generated via finding products of all pairs of voxels. This

type of connectivity definition is similar to using correla-

tion coefficients, mutual information, or consistency mea-

sures to quantify the connectivity between two voxels. By

doing this, the dimension of feature space becomes

N1ðN1 � 1Þ=2. HHPSO–SVM is implemented again to

select the best subset of connectivity that distinguishes

multiple classes. Similarly, this algorithm is repeated 15

times to identify robust connectivity patterns.

Fig. 2 A conceptual

flowchart of the proposed

feature interaction detection

framework. FS Algorithm

stands for feature selection

algorithm
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In the present study, we utilize a 12-fold cross-valida-

tion to assess the performance of different feature selection

algorithms. We first divide the whole data into 12 portions

of equal size. The optimization procedure is performed on

the 11 portions of data, and the remaining 1 fold is held out

to evaluate the algorithm’s performance. During opti-

mization, the training set is further randomly split, in which

6 portions are used to train the model and the other 5

portions are used to test the results. The random splitting is

repeated 20 times, and the average classification error rate

and the average number of selected feature subsets are used

to estimate the fitness function.

The final decision of feature selection is determined by

the global best solution obtained at the end of optimization.

The same threshold (h) and mechanism are applied to

select a robust set of connectivity features. The classifica-

tion performance is examined on the holdout dataset.

Means and standard deviations are computed using this

12-fold cross-validation approach.

5 Experimental analysis

5.1 Experimental setting

Comparative experiments were carried out for the Haxby’s

dataset [32]. For a comparison purpose, the same data

preprocessing techniques, including using z-score to stan-

dardize the data and randomly shuffling the original data

matrix, were applied to attenuate noise and improve spatial

alignment of time series data [53].

The performance of the proposed HHPSO–SVM selec-

tion algorithm was evaluated by comparing it with

(a) without feature selection (WFS), (b) sequential forward

feature selection (SFS), (c) sequential backward feature

selection (SBS), and (d) standard PSO feature selection

algorithm (PSO–SVM). SFS and SBS are deterministic

greedy algorithms and can only produce a single solution

for each dataset. PSO–SVM combines standard PSO and

linear SVM, and it adopts the same objective function to

explore the best solution to feature selection. The mecha-

nism of PSO–SVM is similar to HHPSO–SVM. All five

algorithms were applied to FIDF to select voxels in the first

stage and select voxel-based connectivity in the second

stage.

In this study, both HHPSO–SVM and PSO–SVM

employed a swarm containing 50 particles. The accelera-

tion coefficients, c1 and c2, are linearly changed over time.

c1 linearly decreased from 2.5 to 0.5, and c2 linearly

increased from 0.5 to 2.5 using the formula shown in

Eqs. (6) and (7), where nt is the overall iteration time, and t

is the current iteration, as follows:

c1ðtÞ ¼ ðc1;min � c1;maxÞ
t

nt
þ c1;max ð6Þ

and

Table 1 Classification results of Stage I of FIDF

Stage I WFS SFS SBS PSO–SVM HHPSO–SVM

Mean SD Mean SD Mean SD Mean SD Mean SD

Sbj 1 0.875 0.191 0.693 0.153 0.875 0.190 0.819 0.130 0.885 0.099

Sbj 2 0.708 0.106 0.517 0.140 0.708 0.106 0.623 0.141 0.696 0.143

Sbj 3 0.864 0.148 0.686 0.161 0.865 0.148 0.792 0.140 0.874 0.118

Sbj 4 0.677 0.148 0.560 0.150 0.677 0.148 0.676 0.155 0.708 0.186

Sbj 5 0.705 0.312 0.568 0.202 0.685 0.323 0.562 0.270 0.614 0.270

Sbj 6 0.875 0.125 0.684 0.180 0.875 0.125 0.805 0.122 0.852 0.104

The classification accuracy and standard deviations of WFS without feature selection, SFS sequential forward feature selection, SBS sequential

backward feature selection, PSO–SVM and HHPSO–SVM were calculated for subject 1 to subject 6

Table 2 The number of selected voxels in Stage I of FIDF

Stage I SFS SBS PSO–SVM HHPSO–SVM

Mean SD Mean SD Mean SD Mean SD

1 39 5 577 0 84 24 116 22

2 30 5 464 0 60 15 84 15

3 32 5 306 1 55 17 88 16

4 31 5 675 0 68 21 100 20

5 30 5 420 0 38 13 54 13

6 34 4 348 1 55 16 82 14

Average number and standard deviation of selected voxels are cal-

culated for WFS without feature selection, SFS sequential forward

feature selection, SBS sequential backward feature selection, PSO–

SVM and HHPSO–SVM
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c2ðtÞ ¼ ðc2;max � c2;minÞ
t

nt
þ c2;min: ð7Þ

We implemented the linear support vector machine (SVM)

from the scikit-learn in Python, with the parameter c set to

1 in all experiments [54]. For both PSO and HHPSO, the

value of threshold (h) is 0.95. For HHPSO, the hierarchical
population structure consisted of five layers as shown in

Fig. 2.

5.2 Experimental results

The comparative classification results of the five different

algorithms are summarized in Tables 1 (Stage I) and 3

(Stage II). The statistics of the number of selected features

are presented in Tables 2 and 4 for Stage I and Stage II,

respectively. For PSO–SVM and HHPSO–SVM, the dis-

tributions of their obtained solutions from Stage I and

Stage II are visualized in Figs. 3 and 4. Finally, we com-

pared our results using FIDF and HHPSO–SVM with the

results published in [53], the comparison results are shown

in Table 5.

In Stage I, HHPSO–SVM feature selection algorithm

exhibited the highest classification accuracy for subjects 1,

3, and 4. WFS achieved the best classification accuracy for

subjects 2, 5, and 6. Compared to the results obtained by

WFS, HHPSO–SVM and PSO–SVM yielded comparably

good classification results for subjects 2 and 6. However,

for subject 5, the classification results produced by

HHPSO–SVM and PSO–SVM were not as good as the

results produced by WFS or SBS.

The average number of features selected by each algo-

rithm has been presented in Table 2. HHPSO–SVM

selected 20–30 % of features, while PSO–SVM selected

10–20 % percent of features in Stage I. Both of them

reduced the dimension of feature space considerably.

However, SFS and SBF failed to add/eliminate features

after few iterations, which means that SFS only included

few features, and SBF almost included all features as

shown in Tables 3, 4 and 5.

In Stage I, HHPSO–SVM and PSO–SVM successfully

reduced the number of selected features, therefore the

computational complexity of Stage II was significantly

reduced. Implementing WFS and SBF in Stage II was

computationally expensive. Compared to results of Stage I,

PSO–SVM and HHPSO–SVM improved their classifica-

tion accuracy remarkably in Stage II. For subjects 1, 2, 4,

and 5, the average classification accuracy increased around

10 %. However, SFS and SBS performed the classification

Fig. 3 Cross-validated solutions of PSO–SVM (in blue) and

HHPSO–SVM (in red) from Stage I, where x-axis represents the

number of selected voxels and y-axis represents the classification

error. Lighter color means that the solution is obtained in earlier

optimization iterations, while darker color denotes the solution is

obtained in later optimization iterations. (Color figure online)
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task with significant degradation in accuracy. One possible

reason is that greedy iterative optimization algorithms

consider features one-by-one for addition/removal, so that

the algorithms may easily get stuck into local minima when

the dimension of data is high.

In Stage II, HHPSO–SVM outperformed all other

algorithms for all subjects in terms of classification accu-

racy. Regarding the number of selected connectivity,

HHPSO–SVM selected less than 20 % of connectivity.

Even though PSO–SVM selected less connectivity than

that of HHPSO, the algorithm yielded significantly lower

classification accuracy. Both SFS and SBS failed to find

discriminating connectivity among their pre-selected

informative voxels.

We visualized historical solutions obtained by PSO–

SVM and HHPSO–SVM in Stage I (Fig. 3) and Stage II

(Fig. 4) over time. The results provided an estimate of how

well the two algorithms balance the trade-offs between

accuracy and feature simplicity during the optimization

process. In these figures, color is used to represent how

Fig. 4 Cross-validated solutions of PSO–SVM (in blue) and

HHPSO–SVM (in red) from Stage II, where x-axis represents the

number of selected voxels and y-axis represents the classification

error. Lighter colormeans that the solution is obtained in earlier

optimization iterations, while darker colordenotes the solution is

obtained in later optimization iterations. (Color figure online)

Table 3 Classification results of Stage II of FIDF

Stage II WFS SFS SBS PSO–SVM HHPSO–SVM

Mean SD Mean SD Mean SD Mean SD Mean SD

1 0.792 0.191 0.389 0.149 0.802 0.194 0.922 0.107 0.948 0.081

2 0.625 0.135 0.274 0.125 0.615 0.126 0.694 0.132 0.796 0.126

3 0.813 0.207 0.333 0.171 0.823 0.119 0.846 0.143 0.874 0.119

4 0.604 0.100 0.363 0.134 0.552 0.101 0.803 0.116 0.847 0.101

5 0.647 0.270 0.297 0.170 0.545 0.284 0.600 0.253 0.714 0.284

6 0.760 0.139 0.451 0.171 0.730 0.122 0.819 0.133 0.840 0.122

The classification accuracy and standard deviations of WFS without feature selection, SFS sequential forward feature selection, SBS sequential

backward feature selection, PSO–SVM and HHPSO–SVM were calculated for subject 1 to subject 6
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many iterations an algorithm takes to obtain that solution.

Darker color means longer iterations. The distribution of

historical solution illustrates HHPSO–SVM offered sig-

nificantly better trade-offs between accuracy and feature

simplicity. Compared to PSO–SVM, HHPSO–SVM

obtained higher classification accuracy using a smaller

subset of features.

Finally, we compared our final classification results to

results published in [53], which combines mutual infor-

mation (MI) and partial least square regression (PLS) to

select features. The comparison results showed that our

approach produced better classification results for subjects

1, 2, 3, and 4. However, for subjects 5 and 6, our results

were slightly worse than their best results.

6 Conclusions and discussion

In this paper, we addressed and solved the challenging,

high-dimensional voxel selection problem in MVPA in

neuroscience by combining HHPSO and SVM. Compared

to the classification results obtained by four other algo-

rithms, including WFS, SFF, SBF, and PSO–SVM, our

proposed HHPSO–SMV led to two advantages: (1) it

quickly removed the irrelevant and redundant features, and

(2) HHPSO–SVM feature selection algorithm outper-

formed other algorithms in terms of classification accuracy.

Compared to PSO–SVM, feature selection results obtained

by HHPSO–SVM achieved better trade-offs between

accuracy and feature simplicity, which indicated the

importance of maintaining a high level of population

diversity and performing appropriate searching behaviors

to heuristic optimization. Processing these properties,

HHPSO–SVM feature selection algorithm is robust in

tackling high-dimensional feature selection tasks.

The proposed FIDF successfully extracted discriminat-

ing voxel-based connectivity patterns from high-dimen-

sional fMRI datasets. This framework, which focused on

finding a subset of interacted features (or voxels) in the first

stage and further eliminated interaction (or connectivity)

redundancy in the second stage, yielded improved classi-

fication results. Identifying the functional connectivity

patterns from a set of pre-selected voxels provided valuable

insights for brain response pattern identification. Imple-

menting this framework, the classification performances

were further improved for most subjects. Its simplicity and

ease of implementation have been demonstrated.

However, the proposed approach is still faceed with

some challenging issues. For example, the proposed

HHPSO–SVM feature selection algorithm requires prop-

erly tuning parameters, e.g., the number of layers and the

value of threshold h. A hierarchical structure with five

layers is designed for a swarm that contains fifty particles,

and the selected threshold (h = 0.95) is determined based

on the previous experiments. There is no proof that the

selected values are the best choices. A systematic study

regarding the sensitivity and effectiveness of different

parameter settings needs to be undertaken. Future work

will emphasize on analysis and interpretation of identified

brain response patterns. In addition, a thorough comparison

of the proposed algorithm with other brain response pattern

identification tools will be conducted.
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