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Abstract Feature selection plays a key role in multi-

voxel pattern analysis because functional magnetic reso-

nance imaging data are typically noisy, sparse, and high-

dimensional. Although the conventional evaluation crite-

rion is the classification accuracy, selecting a stable feature

set that is not sensitive to the variance in dataset may

provide more scientific insights. In this study, we aim to

investigate the stability of feature selection methods and

test the stability-based feature selection scheme on two

benchmark datasets. Top-k feature selection with a ranking

score of mutual information and correlation, recursive

feature elimination integrated with support vector machine,

and L1 and L2-norm regularizations were adapted to a

bootstrapped stability selection framework, and the selec-

ted algorithms were compared based on both accuracy and

stability scores. The results indicate that regularization-

based methods are generally more stable in StarPlus data-

set, but in Haxby dataset they failed to perform as well as

others.

Keywords Feature selection � Stability � Functional
MRI � Multi-voxel pattern analysis

1 Introduction

Exploring the mysteries of brain function is one of the most

challenging and fascinating tasks in the domain of science.

In recent years, with the advent of machine learning

techniques, the interdisciplinary field of machine learning

and neuroscience has drawn growing attention to both

communities. With the aid of modern neuroimaging tech-

niques, the capability of machine learning algorithms to

identify distributed patterns of voxels in response to stimuli

allows for decoding brain activities using data-driven

models. A comprehensive review of previous studies has

been provided in [1–3]. In this study, we would like to

focus on multi-voxel pattern analysis (MVPA) [4], which is

a commonly used methodological framework for analyzing

functional magnetic resonance imaging (fMRI) data with

machine learning algorithms (see Fig. 1). fMRI is a pop-

ular, non-invasive neuroimaging technique to measure

brain activity via blood-oxygen-level dependent (BOLD)

signals, recorded as time series in a three-dimensional (3D)

brain space. The precise spatial localization of brain acti-

vation, therefore, is an essential advantage of fMRI com-

pared to other non-invasive neuroimaging techniques.

Unlike conventional univariate approaches, MVPA con-

structs a pattern classification problem to decode neural

information processing by characterizing multivariate brain

activity patterns [5].

However, fMRI-based data analysis using machine

learning approaches has a challenging small-n large-

p problem, i.e., there are many thousands of voxels in the

brain, but the sample size is relatively small because of the

expensive cost of fMRI data collection. Moreover, only a

portion of the brain will be activated with respect to

specific stimulus or mental states. Hence, selecting the
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active voxels associated with particular stimuli or states is

an important and challenging task before training classi-

fiers in MVPA, which is called feature selection or feature

reduction. In current studies, a common criterion of eval-

uating the subset selection is classification accuracy. This

evaluation criterion may suffer from the variance in

training data with a limited sample size and result in

unstable generalization error when the trained model is

applied to an unknown dataset. Selecting stable features

across various datasets, on the other hand, has not been

completely investigated. Therefore, the objective of our

study is to explore for an integrated stability-based feature

selection approach.

The remainder of this paper is organized as follows:

Section 2 provides a brief review of existing studies,

including stability selection algorithms and their applications

to neuroimaging data. Section 3 illustrates the methodology,

including experimental settings, data description, feature

extraction and selection methods, classification algorithms,

and methodological framework. Results are reported and

discussed in Sect. 4, followed by the conclusion and possible

directions for future work in Sect. 5.

2 Literature review

A major challenge in MVPA, as stated previously, comes

from the high dimensionality and sparsity in fMRI data.

Hence, the regularized logistic regression (LR) such as

least absolute shrinkage and selection operator (LASSO)

and elastic net (or ENet for short) are found to be partic-

ularly useful in addressing sparsity. Another general

objective of feature selection is to build inter-

pretable models which are able to support or reject

hypothesis with domain knowledge. To this end, selecting

a stable subset that is robust to the variance in samples is of

great importance. Numerous studies have discussed the

stability issue using various types of feature selection

methods from statistician’s perspective [6–9]. Numerous

metrics to quantify the stability in feature selection were

proposed, but no standard guideline for comparing various

feature selection methods has been acknowledged up to

date [6, 7, 10, 11]. In this section, a brief review of existing

studies of stability selection is provided in terms of

methodology and applications to neuroimaging data.

Before Meinshausen and Buhlmann [8] proposed their

methodological framework of stability selection, some

early studies have implied the usefulness of re-sampling

strategy such as bootstrap of improving the stability of

feature selection [7, 12]. In Meinshausen and Buhl-

mann’s work, the subset selection is performed via

repeatedly running LASSO on re-sampled subsets, while

each subset is half the size of original samples. A feature

is able to enter the model only if the frequency of being

selected is greater than a user-defined threshold (denoted

as H below). This method was later improved in [9] by

changing the re-sampling mechanism such that if one

half of the dataset was sampled, the other complimentary

half should also be used. This Complimentary Pairs

Stability Selection (CPSS) method has been mathemati-

cally proved to provide an improved bound for the

estimation error control. An interesting aspect of stability

selection is that although original stability selection

approach was claimed not to be sensitive to the selection

of H in a range of [0.6, 0.9], it was reported in the CPSS

article [9] that the choice of H may have an impact. In

general, stability selection is a topic that has not been

fully discovered.

Stability-based data analysis approaches based on neu-

roimaging data have drawn growing interest from neuro-

scientists in recent years, and have been widely adopted as

a methodological framework in existing studies. The great

potential of stability selection lies in its adaptability, which

allows users to develop their own approaches with various

focuses as well as domain knowledge in order to construct

more powerful knowledge discovery systems. The existing

applications are limited in quantity, but rich in diversity

from the following aspects. First of all, in current studies,

stability selection has been used to satisfy a variety of

research purposes such as exploring the brain functionality

in visual pathways [11], functional networks [13, 14],

resting-state networks [15], or the localization (or identi-

fication) of significant biomarkers relevant to specific

mental states [16] or diagnose brain-related disorders [17].

Fig. 1 A demonstration of MVPA of fMRI data in cognitive experiments. Visual stimuli are presented to subjects during experiment tests and

fMRI data are collected over time. Informative voxels are identified as a pattern used for classification among visual stimuli
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Second, in terms of methodology, numerous variations

were made utilizing the concept of stability selection. For

example, the possible features for stability selection can be

extracted from the functional network; in addition to voxels

(or nodes in network science), selecting discriminative

connectivity (edges) is also helpful to understand the

mechanism underlying functional networks [13, 14, 18,

19]. Moreover, some studies integrated other machine

learning algorithms such as clustering [15, 20, 21],

graphical lasso [18], and support vector machine (SVM)

[14]. A novel variation of LASSO was proposed to search

for similar but not identical voxels in feature selection

across multiple human subjects [22]. Finally, although the

original stability selection was proposed as a data-driven

model, some novel methods also utilized anatomical

information, topological structure, or other structural

information underlying features to enhance its stability and

predictive power [16, 23].

3 Methodology

3.1 Data description

Two benchmark datasets in cognitive science were used in

our study: (1) StarPlus dataset [24] and (2) Haxby dataset

[4].

3.1.1 StarPlus dataset

This dataset is named StarPlus because of the visual stimuli

presented to subjects during the experiments. Subjects were

instructed to focus on the visual stimulus on the screen

when fMRI data was recorded. In one half of all experi-

ment trials, a sentence (semantic stimulus) was presented

first for 4 s (e.g., ‘‘It is true that the star is above the plus.’’),

followed by an image (symbolic stimulus) showing similar

information for another 4 s (see Fig. 1a). The subjects need

to press a button to indicate whether if the sentence and

image matches each other. In remaining trials, the sequence

of presenting sentences and images switches. 40 trials were

conducted during this experiment, each of which contains 2

samples labeled by the type of stimulus (semantic = ‘0,’

symbolic = ‘1’).

The fMRI data was collected at 500 ms sampling rate in

a 3D space of 64� 64� 8 voxels, and the pre-processed

data of 6 subjects is available to public. The scanned area

contains 25–30 anatomical regions of interest (ROIs),

which have approximately 4000 voxels. Particularly, 7

ROIs are highlighted by the proposer as they are most

relevant to this task. Thus, the number of voxels to be

analyzed in our study is reduced to around 2000, varying

from subject to subject.

3.1.2 Haxby dataset

Haxby dataset contains the fMRI scans of 6 subjects. The

experiment has 12 trials, each of which lasts for about 24 s,

separated by rest periods (see Fig. 1b). In each trial, 8 images

presenting 8 types of objects including houses, human faces,

cats, and so on. Images were shown on the screen for 500 ms

of each; the inter-stimulus interval is 1500 ms. The entire

experiment was then partitioned into 12� 8 ¼ 96 samples

from each individual with only one trial removed from

subject 5whowas corrupted during this trial. The fMRI scans

were collected in a space of 40� 64� 64 voxels, corre-

sponding to a voxel size of 3:5� 3:75� 3:75 mm3, and a

volume repetition time of 2.5 s [4]. Similarly, instead of

examining thewhole brain, our study is focused on the visual

cortex area which consists of up to 675 voxels based on the

anatomical information of our subjects.

3.2 Feature extraction

General linear model (GLM) approach as introduced in [25]

was applied to the time series data for feature extraction.

The basic concept is to characterize BOLD signals by fitting

GLM to a haemodynamic response function (HRF) that

describes blood-oxygen-level responses to the given stimu-

lus as a function of time. The estimates of the coefficients

b̂ ¼ fb1; :::bmgT in GLM model: Y ¼ Xb represent the

time-related response of each individual voxel to the stim-

ulus of interest. Using b̂ as features results in an m-dimen-

sional feature space, where each voxel is represented by its

beta value b̂j; j 2 f1; :::;mg. In our study, pre-processing

and feature extraction were implemented in Matlab 8.3 [26]

using a toolbox [27]. Figure 2 illustrates extracting beta

values as features for subject 1 in the Haxby dataset, where

the samples (stimuli) are ordered in the same sequence as

presented in the experiment.

3.3 Feature selection

Current feature selection methods are categorized into three

classes based on how the subset-search algorithm is com-

bined with the classification procedure: filter, wrapper, and

embedded [28, 29]. In this subsection, the selected feature

selection methods are reviewed under this framework.

3.3.1 Filter approach

Filter methods are relatively independent of classification

comparing to other types of methods, and the interactions

among features are completely ignored. With a pre-defined

metric of relevance between individual features and class

labels, all features are ranked and the top-n features
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comprise the subset selection. In this study, Pearson cor-

relation (referred to as Corr) and mutual information (MI)

were employed as they are commonly used metrics.

Moreover, the size of subset to be selected is not arbitrarily

determined, but optimized using a cross-validation scheme.

Since the classifier used in combination with these filter

methods is SVM, these approaches will be referred to as

SVM-MI, SVM-Corr in the following sections.

3.3.2 Wrapper approach

Instead of evaluating the similarity between individual fea-

tures and class labels, wrapper methods seek for a best subset

of features by evaluating the subset as a whole based on

classification performance. The recursive feature elimina-

tion (RFE) integrated with SVM, referred to as SVM-RFE,

was chosen as an example of wrapper approach in our study.

It is a backward feature selection approach which starts

with the entire feature set and iteratively removes a propor-

tion of features after evaluation using SVM, which was

implemented using a toolbox inMatlab 8.3 [30]. However, a

significant disadvantage of wrapper methods is the compu-

tational cost: the classification algorithm need to be per-

formed repeatedly for every subset in the candidate pool,

which will largely increase the computational time espe-

cially with high-dimensional data. In order to be consistent

with filter methods, the size of subset in feature selection was

also optimized using a cross-validation scheme.

3.3.3 Embedded approach

The embedded methods utilize regression models with

regularization. In such models, the feature selection is

embedded in the training process of classification algo-

rithm by optimizing a penalty parameter k. With an

appropriate k selected using a cross-validation scheme, all

redundant features are removed from the model by forcing

their coefficients to be zero. In this study, we employ both

LASSO and ENet as embedded approaches. More details

about these algorithms are to be discussed later in Sect. 3.4.

3.4 Classification algorithms

Consider that in a binary classification problem, the input

data are a set of data points X ¼ fx1; :::; xng in an m-di-

mensional feature space, i.e., xi 2 Rm 8 i 2 f1; :::; ng,
where n is the number of data points and m is the number of

features. The corresponding target values T ¼ ft1; :::; tng
are the class labels. The predictions of class labels are

denoted by Y ¼ fy1; :::; yng. The objective of classification
algorithms is to estimate the optimal parameters w and b,

such that the mapping f : X ! Y best captures the rela-

tionship between inputs and targets.

3.4.1 Support vector machine

SVM is a classifier that optimizes the decision boundary

with a maximum geometrical margin, i.e., the distance

between decision boundary and the closest data points in

each class. The soft-margin SVM with a linear kernel is

formulated as follows:

arg min
w;b

1

2
kwk2 þ C

Xn

i¼1

ðniÞ; ð1Þ

s:t: tiðwTxi þ bÞ� 1� ni 8i 2 f1; :::; ng; ð2Þ
ni � 0 8 i 2 f1; :::; ng; ð3Þ

where slack variables ni are introduced to give tolerance to

the misclassified data points lying in between support

vectors, parameter C controls the tolerance level, and the

target values ti 2 f�1; 1g. The decision boundary of a

linear classifier is a hyperplane described by the function:

f ðxÞ ¼ wTxþ b, therefore for any data point i if

f ðxiÞ[ 0; yi ¼ 1; otherwise yi ¼ �1.

3.4.2 Regularized logistic regression

LASSO is a shrinkage method proposed by Tibshirani [31],

which is applicable to both linear and logistic regression

models; ENet is a widely used variation of LASSO pro-

posed by Zou and Hastie [32]. In linear regression, the

Fig. 2 The feature (beta values) matrix is extracted by applying a general linear model to fMRI BOLD signals. Subject 1 in Haxby dataset is

used as an illustrative example
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objective of LASSO is to find optimal solution for the

following problem:

arg min
w;b

X
jf ðxiÞ � tij2; ð4Þ

s:t:
X

jwj � k; ð5Þ

where k is a tuning parameter which controls the shrinkage.

This formulation can be generalized to logistic regression

models by replacing Eq. (4) with the cost function in LR

model. Similarly, the formulation of ENet shares the same

objective function as in Eq. (4) but the constraint is as

follows:

s:t:ð1� aÞ
X

jwj þ a
X

jwj2 � k; ð6Þ

where a controls the trade-off between ridge regression and

LASSO. In our study, a ¼ 0:8 is used as a common

selection.

3.5 Methodological framework

Although the concepts of stability selection were utilized in

this study, the setup of experiment differs in two datasets.

Table 1 presents the cross-validation settings of both

datasets. Let DT , DG; and DV denote training, test and

validation set, respectively. The general framework is

demonstrated as follows:

– Step 1: Randomly take a subset DS out of training set

DT ;

– Step 2: Run the feature selection method on set DS

while using DV to control the tuning parameters in

selected algorithm;

– Step 3: Repeat step 1 and 2 n times;

– Step 4: Use a set of most frequently selected features

S as the future feature set;

– Step 5: Train the model with selected features on DT

and DV ;

– Step 6: Evaluate the performance on DG;

– Step 7: Repeatedly perform Step 1 to 6 according to

selected cross-validation scheme.

In Step 2, after specifying the DT , DG; and DV , the re-

sampling was performed 50 times on DT for feature

selection with simultaneous validation on DV . Provided

that stability selection method proposed a re-sampling

scheme with embedded feature selection methods [8, 9],

our approach was designed to utilize the filter and wrapper

methods in the same manner such that the results can be

compared apples to apples. Further, ten replications were

conducted based on different settings of DT , DG; , and DV

for StarPlus dataset, while twelve replications were per-

formed for Haxby dataset such that each trial was used

exactly once as test set.

The stability measure in our study is Jaccard Index [33],

a measure of similarity between two sets. Suppose there are

two subsets Sa and Sb, then the Jaccard Index for (Sa; Sb) is

defined as

JCðSa; SbÞ ¼
j Sa \ Sb j
j Sa [ Sb j

; ð7Þ

where j S j is the number of elements in set S.

When there are k subsets, the overall similarity is

computed by averaging the pairwise Jaccard Index for all

possible pairs. The formulation is given as follows:

JCk
¼ 2

kðk � 1Þ
X

a

X

b6¼a

JCðSa; SbÞ: ð8Þ

4 Results and discussions

In this section, the results are presented and discussed from

the following aspects. First, a comparison among selected

feature selection methods is provided based on accuracy

and stability. Second, the selection of H is further exam-

ined to provide some suggestions for future studies.

Finally, the localization of voxels selected by each method

is discussed to provide some insights.

4.1 Feature selection methods

As shown in Tables 2–13, the classification performance has

a large variance across algorithms and subjects. In this sec-

tion, some discussions are separately given to two datasets

since algorithms performed differently in our experiment.

4.1.1 Filter and wrapper methods

In StarPlus dataset, SVM-MI, SVM-RFE, and SVM-Corr

performed at a comparable level as embedded algorithms

in terms of accuracy, but embedded algorithms yielded a

better overall stability. Moreover, it is not desirable that

SVM-Corr sometimes selected a large subset although it is

always highly stable. It may imply that SVM-Corr

approach, according to the current experiment settings,

tends to overfit in some cases. In Haxby data, however,

SVM-MI, SVM-RFE, and SVM-Corr algorithms are more

accurate than embedded algorithms in general. In terms of

Table 1 The cross-validation settings of datasets

Dataset Training Test Validation Replication

StarPlus 60 10 10 10

Haxby 6 5 1 12

Note that StarPlus dataset is measured in samples, while the Haxby

dataset is measured in trials
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computational cost, SVM-MI and SVM-Corr are much

faster than SVM-RFE. Among these three algorithms,

SVM-MI is suggested based on overall accuracy, stability,

and computational time, which is interestingly consistent

with a previous study using same dataset without utilizing

stability selection [34].

4.1.2 Embedded methods

In general, ENet has higher stability and standard devia-

tion compared to LASSO; also, it selects a larger and

more stable subset. It indicates that throughout all repli-

cations the ENet has more stable subsets in feature

Table 2 Summary of results—

subject 04799 in StarPlus

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 50.00 17.00 56 0.32

SVM-Corr 46.00 16.47 51 0.32

SVM-RFE 55.00 17.16 70 0.40

LASSO (H = 0.6) 41.00 12.87 6 0.16

LASSO (H = 0.7) 48.00 11.35 4 0.23

LASSO (H = 0.8) 48.00 11.35 7 0.36

LASSO (H = 0.9) 49.00 3.16 6 0.06

ENet (H = 0.6) 43.00 13.37 10 0.20

ENet (H = 0.7) 45.00 15.81 6 0.21

ENet (H = 0.8) 48.00 13.17 8 0.41

ENet (H = 0.9) 47.00 10.59 5 0.10

Table 3 Summary of results—

subject 04820 in StarPlus

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 90.00 10.54 164 0.40

SVM-Corr 83.00 15.67 1845 0.98

SVM-RFE 91.00 11.01 127 0.34

LASSO (H = 0.6) 85.00 8.50 8 0.78

LASSO (H = 0.7) 85.00 8.50 8 0.71

LASSO (H = 0.8) 84.00 8.43 10 0.49

LASSO (H = 0.9) 73.00 14.94 6 0.24

ENet (H = 0.6) 85.00 10.80 14 0.64

ENet (H = 0.7) 85.00 10.80 12 0.71

ENet (H = 0.8) 85.00 10.80 15 0.92

ENet (H = 0.9) 86.00 8.43 14 0.89

Table 4 Summary of results—

subject 04847 in StarPlus

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 80.00 4.71 64 0.59

SVM-Corr 82.00 10.33 1660 0.97

SVM-RFE 83.00 9.49 50 0.39

LASSO (H = 0.6) 77.00 8.23 4 0.60

LASSO (H = 0.7) 76.00 8.43 7 0.69

LASSO (H = 0.8) 79.00 9.94 5 0.82

LASSO (H = 0.9) 79.00 9.94 5 0.90

ENet (H = 0.6) 77.00 11.60 7 0.46

ENet (H = 0.7) 78.00 10.33 13 0.53

ENet (H = 0.8) 77.00 8.23 9 0.56

ENet (H = 0.9) 80.00 9.43 13 0.69
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selection, but these subsets yielded an unstable predictive

power compared to LASSO. Comparison based on the

best performing model, ENet yields better accuracy than

LASSO in general, which is also supported by previous

study using the same dataset [35]. This phenomenon may

relate to the balance between variance and bias of gen-

eralization error in statistics. The stability selection

scheme provides a control to help avoid the situation of

having an unstable feature subset in the model. On the

other side, however, by reducing the total number of

Table 5 Summary of results—

subject 05675 in StarPlus

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 87.00 6.75 70 0.47

SVM-Corr 78.00 11.35 2059 0.88

SVM-RFE 90.00 8.16 50 0.39

LASSO (H = 0.6) 89.00 7.38 11 0.60

LASSO (H = 0.7) 87.00 10.59 11 0.54

LASSO (H = 0.8) 86.00 9.66 11 0.54

LASSO (H = 0.9) 82.00 9.19 18 0.61

ENet (H = 0.6) 90.00 6.67 25 0.75

ENet (H = 0.7) 88.00 10.33 19 0.73

ENet (H = 0.8) 85.00 8.50 25 0.61

ENet (H = 0.9) 82.00 10.33 23 0.60

Table 6 Summary of results—

subject 05680 in StarPlus

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 74.00 8.43 85 0.52

SVM-Corr 73.00 14.18 2211 0.99

SVM-RFE 75.00 15.81 298 0.19

LASSO (H = 0.6) 80.00 8.16 4 1.00

LASSO (H = 0.7) 80.00 8.16 4 1.00

LASSO (H = 0.8) 80.00 8.16 4 1.00

LASSO (H = 0.9) 80.00 8.16 4 1.00

ENet (H = 0.6) 79.00 7.38 6 0.82

ENet (H = 0.7) 78.00 7.89 9 0.84

ENet (H = 0.8) 80.00 8.16 8 0.76

ENet (H = 0.9) 80.00 8.16 8 0.72

Table 7 Summary of results—

subject 05710 in StarPlus

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 83.00 9.49 52 0.54

SVM-Corr 70.00 6.67 1861 0.99

SVM-RFE 76.00 10.75 93 0.27

LASSO (H = 0.6) 88.00 13.17 10 0.76

LASSO (H = 0.7) 86.00 12.65 8 0.64

LASSO (H = 0.8) 84.00 12.65 9 0.68

LASSO (H = 0.9) 79.00 11.01 8 0.71

ENet (H = 0.6) 91.00 8.76 12 0.78

ENet (H = 0.7) 90.00 9.43 13 0.87

ENet (H = 0.8) 86.00 12.65 11 0.78

ENet (H = 0.9) 86.00 12.65 12 0.66
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available samples for training purposes, it seems to scarify

accuracy to some extent. This raises questions that, if it is

possible to design a systematic approach to achieve or

control the balance between stability and accuracy.

Depending on the objective of their studies, some

researchers may favor an interpretable model to explore or

support a hypothesis, while others may prefer a predictive

one for practical use.

Table 8 Summary of results—

subject 1 in Haxby dataset
Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 90.63 12.07 122 0.70

SVM-Corr 84.38 16.96 338 0.58

SVM-RFE 84.38 16.96 219 0.49

LASSO (H = 0.6) 79.17 14.43 88 0.68

LASSO (H = 0.7) 77.08 13.93 75 0.67

LASSO (H = 0.8) 76.04 11.25 87 0.71

LASSO (H = 0.9) 71.88 16.10 95 0.61

ENet (H = 0.6) 38.54 26.36 255 0.71

ENet (H = 0.7) 59.38 20.03 235 0.70

ENet (H = 0.8) 62.50 21.98 255 0.67

ENet (H = 0.9) 80.21 11.25 232 0.67

Table 9 Summary of results—

subject 2 in Haxby dataset
Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 70.83 13.41 123 0.57

SVM-Corr 71.88 12.07 357 0.86

SVM-RFE 78.13 14.23 195 0.67

LASSO (H = 0.6) 55.21 6.44 94 0.57

LASSO (H = 0.7) 48.96 17.24 90 0.52

LASSO (H = 0.8) 48.96 17.24 97 0.46

LASSO (H = 0.9) 43.75 12.50 104 0.46

ENet (H = 0.6) 32.29 16.39 269 0.64

ENet (H = 0.7) 50.00 18.46 264 0.62

ENet (H = 0.8) 53.13 22.06 214 0.58

ENet (H = 0.9) 47.92 12.87 252 0.55

Table 10 Summary of

results—subject 3 in Haxby

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 82.29 18.04 195 0.78

SVM-Corr 80.21 22.27 260 0.87

SVM-RFE 85.42 13.93 157 0.66

LASSO (H = 0.6) 68.75 14.60 75 0.60

LASSO (H = 0.7) 71.88 19.31 80 0.57

LASSO (H = 0.8) 64.58 18.34 79 0.58

LASSO (H = 0.9) 60.42 19.09 70 0.57

ENet (H = 0.6) 40.63 17.78 242 0.71

ENet (H = 0.7) 61.46 18.04 276 0.67

ENet (H = 0.8) 62.50 15.08 263 0.64

ENet (H = 0.9) 62.50 10.66 231 0.62
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4.2 Threshold selection

According to the our experimental results, the selection of

H within [0.6, 0.9] has a significant influence on

classification accuracy. This finding is consistent with the

comments in [9]. More interestingly, a rough trend seems

to imply that LASSO favors a smaller H while ENet pre-

fers a larger one. As no previous studies have reported this

Table 13 Summary of

results—subject 6 in Haxby

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 87.50 10.66 176 0.73

SVM-Corr 79.17 17.94 179 0.73

SVM-RFE 86.46 12.45 279 0.89

LASSO (H = 0.6) 69.79 17.24 42 0.60

LASSO (H = 0.7) 62.50 17.68 43 0.59

LASSO (H = 0.8) 63.54 15.50 39 0.52

LASSO (H = 0.9) 52.08 14.92 47 0.47

ENet (H = 0.6) 57.29 18.04 160 0.71

ENet (H = 0.7) 65.63 17.78 151 0.70

ENet (H = 0.8) 67.71 15.50 161 0.67

ENet (H = 0.9) 72.92 12.87 152 0.61

Table 11 Summary of

results—subject 4 in Haxby

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 68.75 12.50 58 0.58

SVM-Corr 71.88 17.78 141 0.77

SVM-RFE 71.88 14.23 188 0.56

LASSO (H = 0.6) 56.25 22.30 30 0.52

LASSO (H = 0.7) 45.83 21.54 31 0.51

LASSO (H = 0.8) 42.71 22.90 28 0.36

LASSO (H = 0.9) 27.08 12.87 34 0.29

ENet (H = 0.6) 51.04 17.24 136 0.56

ENet (H = 0.7) 60.42 17.54 132 0.55

ENet (H = 0.8) 62.50 19.94 149 0.54

ENet (H = 0.9) 55.21 17.24 124 0.50

Table 12 Summary of

results—subject 5 in Haxby

dataset

Method Mean accuracy (%) STD (%) Average number of

selected features

Stability

SVM-MI 64.77 30.53 142 0.62

SVM-Corr 68.18 29.24 255 0.77

SVM-RFE 65.91 29.63 237 0.72

LASSO (H = 0.6) 51.14 24.01 24 0.58

LASSO (H = 0.7) 46.59 21.72 23 0.57

LASSO (H = 0.8) 39.77 22.23 21 0.43

LASSO (H = 0.9) 15.91 9.83 22 0.12

ENet (H = 0.6) 45.45 21.12 66 0.54

ENet (H = 0.7) 39.77 27.28 67 0.52

ENet (H = 0.8) 46.59 23.78 65 0.53

ENet (H = 0.9) 48.86 27.07 76 0.59
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behavior in stability selection based on our knowledge, we

can only make intuitive inference for the possible reason.

Since group effect is encouraged in ENet, it tends to

introduce more features into the model than LASSO, and

thus a higher H is preferred to avoid introducing too many

redundant features. Another interesting observation is the

correlation to stability scores. For most subjects, the sta-

bility scores seem to be negatively correlated with H in

LASSO and ENet, which indicates setting up a high

threshold may have a negative impact on model stability.

The size of subset to be selected after re-sampling and

replications, however, does not show any correlations with

H in stability selection. Moreover, the size of subset

remains stable in general for the same subject with a

varying H. These findings encourage further exploration

for standard guidelines for the selection of H with empir-

ical or theoretical supports.

4.3 Voxel selection and visualization

Figure 3 presents a visualization of selected voxels for

subject 1 in Haxby dataset and subject 04820 in StarPlus

dataset. Subset selection is determined by picking up the

most stable voxels, namely, the voxels with highest

selection frequency throughout all replications. In general,

the algorithms with higher stability scores: SVM-Corr,

LASSO, and ENet selected a cluster of voxels located in

visual cortex area, which is consistent with the domain-

specific knowledge, while SVM-MI and SVM-RFE had a

sparse voxel distribution. This indicates that stability-based

feature selection framework provides a more stable, inter-

pretable subset selection, which is difficult to achieve by

evaluating models using accuracy.

5 Conclusion

In this study, we conducted a comprehensive analysis for a

selection of filter, wrapper, and embedded feature selection

approaches on the two benchmark fMRI datasets, adopting a

stability-based methodological framework. It is found that

the stability of feature selection is a potential alternative

criterion for model selection in addition to classification

accuracy, especially for those studies whose objective is to

find a model with good interpretation rather than excellent

predictive power. Having noticed that it is the case for the

majority of neuroimaging data-based studies, developing

stability-based feature selection may be helpful for identi-

fying important voxels to decode mental states.

The future studies may explore a reliable metric to

quantify the stability of feature selection methods because

it has not been clearly defined. A standard guideline for

selecting a suitable feature selection approach to achieve

higher stability can be developed on the basis of a reliable

metric. Also, a methodological framework which enables

control of the balance between accuracy and stability is

another issue to be further explored. Furthermore, it would

be an interesting topic to examine the stability in voxel

selection across different subjects, which will also be a

challenging task because the activity patterns in brain are

known to have large individual variations even in the same

cognitive tasks.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Fig. 3 An illustration of the distribution of voxels selected by each method in the visual cortex area for (a) subject 1 in Haxby dataset and

(b) subject 04820 in StarPlus dataset
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7. Křižek P, Kittler J, Hlavac V (2007) Improving stability of fea-

ture selection methods. Computer analysis of images and pat-

terns. Springer, Berlin, pp 929–936
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