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Abstract Medical doctors and researchers in bio-medi-

cine are increasingly confronted with complex patient data,

posing new and difficult analysis challenges. These data are

often comprising high-dimensional descriptions of patient

conditions and measurements on the success of certain

therapies. An important analysis question in such data is to

compare and correlate patient conditions and therapy

results along with combinations of dimensions. As the

number of dimensions is often very large, one needs to map

them to a smaller number of relevant dimensions to be

more amenable for expert analysis. This is because irrele-

vant, redundant, and conflicting dimensions can negatively

affect effectiveness and efficiency of the analytic process

(the so-called curse of dimensionality). However, the pos-

sible mappings from high- to low-dimensional spaces are

ambiguous. For example, the similarity between patients

may change by considering different combinations of rel-

evant dimensions (subspaces). We demonstrate the poten-

tial of subspace analysis for the interpretation of high-

dimensional medical data. Specifically, we present Sub-

VIS, an interactive tool to visually explore subspace clus-

ters from different perspectives, introduce a novel analysis

workflow, and discuss future directions for high-dimen-

sional (medical) data analysis and its visual exploration.

We apply the presented workflow to a real-world dataset

from the medical domain and show its usefulness with a

domain expert evaluation.
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1 Introduction

Today, experts in medicine, biology, and the life sciences

are not only confronted with increasingly large, but also

complex and high-dimensional data. This situation will

become even more pronounced with the ongoing trend

towards personalized medicine [1]. One of the grand future

challenges of biomedical informatics research is to gain

knowledge from complex high-dimensional datasets [2].

Within such data, relevant and interesting structural and/or

temporal patterns (‘‘knowledge’’) are often hidden and not

accessible to domain experts. The concepts of ‘‘relevant’’

and ‘‘interesting,’’ however, are not crisply defined and are

inherently dependent on the context and subjective judg-

ment of investigators.

In this paper, we specifically focus on the challenges

stemming from the high dimensionality often encountered

in biomedical datasets. Examples range from longitudinal

Rheumatology datasets, in which cohorts of patients are

attributed with vectors in R100, up to DNA micro-array or

protein data with a potentially arbitrary number of

dimensions. Viewing, understanding, and effectively using

such datasets pose many challenges to analysts.

Two typical analysis tasks of such data include under-

standing similarities between data records and correlating

records with certain dimensions, some of which may be

class-labeled data. In Data Mining, many tools have been

proposed to support such analytic questions. For example,

clustering algorithms search for groups of similar records,

and classification algorithms find data structures to predict

the class label of a previously unseen data record according

to annotated (classified) training data. While many data

analysis tools are known to date, their effective usage in

practical application poses challenges which need to be

overcome. In this paper, we focus on two such important

challenges. The first relates to the high-dimensional nature

of the data at hand (curse of dimensionality), and the

second relates to the problem of interactively exploring and

understanding the outcome of the automatic data analysis.

The curse of dimensionality [3, 4] describes the fact that

with increasing dimensionality the spanned volume of the

data space increases so fast that the available data become

sparse. This effect makes judging distances and finding

meaningful similarity relationships hard. In fact, the con-

cept of distance becomes less applicable as the number of

dimensions grows, since the distance between any two

points in a given dataset converges (concentration effects).

Hence, traditional global approaches taking all dimensions

into account become increasingly insufficient (full-space

approaches). Instead, interesting patterns such as clusters

might only exist in subspaces and remain hidden with

traditional full-space approaches, disguised by the many

potential irrelevant dimensions. Figure 1 illustrates the

problem. To overcome these problems, subspace analysis

techniques have been proposed which apply dimensionality

reduction as an integral part of the data analysis. Subspace

analysis techniques search for various relevant patterns in

different subspaces of the original data, such as subspace

clustering [5], or subspace nearest neighbor search [6].

While these are useful tools, interpretation of obtained

results may be rather challenging for users, as the outcome

may involve, e.g., large sets of subspace clusters, many of

which contain redundant patterns, or patterns that are not

relevant for a specific analysis goal. Therefore, also appro-

priate visual-interactive presentation and exploration of data

and analysis results is needed. Techniques from Information

Visualization [7] can help to provide effective overviews of

data, to allow the user to change views on the fly, and hence

to support discovery of relevant findings. Also, techniques

from Visual Analytics [8, 9] which aim at involving the user

closely in steering the analysis process and finding appro-

priate analysis parameters can be of help. Our vision is a

‘‘Doctor-in-the-Loop’’ system for biomedical experts that

allows leveraging of state-of-the-art data analysis algorithms

via intuitive visual interfaces, and fosters the communication

of respective findings to interested stakeholders such as

medical experts, patients, and their next-of-kin.

Here, we propose a Visual Analytics tool, SubVIS, to

help explore biomedical patient data by combining Sub-

space analysis algorithms with interactive VISualization.

SubVIS provides an easy-to-use way to interact and ana-

lyze obtained subspaces from different perspectives. Fur-

thermore, it helps to answer questions such as what does it

mean if a dimension occurs never/very often in different

subspaces? Using SubVIS, we present a case study on a

real-world immunization dataset, illustrating the benefits of

Fig. 1 Effects in high-dimensional data: some objects are only

similar in a subset of dimensions (=subspace), e.g., rec1; rec2; rec3 in
the first three and rec3; recn�1; recn in the last three dimensions.

Similar values in specific dimensions are encoded by the same color.

(Color figure online)
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subspace over full-space analysis methods in finding pos-

sible explanations for a positive or negative vaccination

treatment. We also propose an analysis workflow, which

can help understand the relationship of patient clusters in

context of attribute similarities and outcomes of the

immunization treatment. The paper concludes with a dis-

cussion of limitations and possible extensions to subspace

analysis applied in this domain.

2 Background and related work

This section provides background information and relevant

related work. We first discuss important analytical

approaches, starting with the generic analysis problems of

data clustering and feature selection, and the more specific

tools for subspace analysis. We then briefly introduce in-

teractive and visual analysis techniques for high-dimen-

sional data in general and subspace analysis in particular.

Finally, we discuss visualizations in the bio-medicine

domain and delineate them from our approach.

2.1 Data analysis approaches

2.1.1 Cluster analysis

Cluster analysis is a well-known tool to reduce large

datasets to a smaller number of clusters which can be

compared with each other and in relation to some target

attribute of interest [10]. Parts of the existing methods can

be distinguished into partition-based and density-based

methods. Traditional (full-space) clustering approaches

such as k-means or hierarchical clustering [10] take all

dimensions into account. However, it has been shown that

for many dimensions the so-called curse of dimensionality

may prevent effective cluster analysis, as the similarity

measure may become less discriminant [3, 4]. To this end,

dimension reduction and subspace analysis techniques have

been developed, as discussed next.

2.1.2 Dimension reduction and subspace analysis

There are several approaches to tackle the curse of

dimensionality. Two of the most important techniques are

feature selection and feature extraction. Often, these

techniques are summarized under the umbrella term di-

mension reduction. The main goal of feature selection [11]

is to remove irrelevant and redundant features. The rele-

vance definition of a dimension usually depends either on a

measurable quality criterion of the analysis (e.g., classifi-

cation error) or based on an analysis independent measure

of a single dimension such as the variance. By contrast,

feature extraction or transformation techniques try to

preserve the original structure of the data by transforming it

into a lower-dimensional representation. Both Multidi-

mensional Scaling (MDS) [12] and Principle Component

Analysis (PCA) [13] are two well-known feature extraction

techniques. MDS tries to preserve the pair-wise distance

between all data objects and represent it typically in a 2D

space. Likewise, PCA computes weighted linear combi-

nations by preserving the variance in the data. Dimen-

sionality reduction techniques aim at a single, lower-

dimensional representation of the data, either by changing

the structure of the data to improve the quality of an

analysis or by representing the original structure with fewer

dimensions. However, in many high-dimensional applica-

tions, there is not a single pattern, such as a single clus-

tering result, in one subset of dimensions, but rather

multiple different clusters in multiple different subspaces

of the original data which leads to the aim of subspace

analysis: detection of different patterns in different sub-

spaces, leading to a large result set of patterns each asso-

ciated with a single subspace.

2.1.3 Subspace clustering

The most well-known subspace analysis technique is

subspace clustering which is illustrated in Fig. 2. Sub-

space clustering algorithms search for clusters not in the

whole data space, but within different subsets of

dimensions (called subspaces) in which discriminating

clusters can be found [14]. The goal is to understand data

in terms of (a) groups of similar records (clusters), and

(b) the underlying relationship to the dimensions (sub-

spaces). As an outcome of subspace cluster analysis

applied on a high-dimensional data �, depending on the

parameterization and/or subspace cluster method, clus-

terings in multiple different subspaces may be found,

constituting different notions of similarity, e.g., grouping

according to color � or shape �. Each subspace cluster

may give rise to a different interpretation. Subspace

clustering methods may not only provide more mean-

ingful clustering results for high-dimensional data, but

also the information on the relevant dimension sets per

cluster may provide valuable insight into the data.

Depending on the underlying algorithm, we can state that

all cluster members are similar to each other w.r.t. the

dimensions of the subspace [10].

2.2 Interactive and visual data exploration

Data analysis algorithms typically require parameters to be

set, and often multiple solutions need to be considered

before arriving at a satisfactory result. To this end, methods

of interactive and visual exploration of the data and the

analysis outputs can be very helpful [15].
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2.2.1 Visualizing high-dimensional data

A number of visualization techniques have been developed

for exploration of high-dimensional data and clusterings.

For example, Parallel Coordinate Plots [16] map high-di-

mensional data to Polylines, allowing the user to discern

groups in data and potentially relevant relationships,

effective for moderate numbers of dimensions. Another

standard approach is to reduce data dimensionality and

show relationships of data points by their positions in a

data projection [17]. SEO and SHNEIDERMAN [18] proposed

an approach to visually compare data clusterings with

constituent data dimensions. Other approaches for com-

parative visualization of subspaces are based on induced

similarity hierarchies [19] or on 2D cluster projection [20].

The latter approaches allow to compare how data structures

change across different feature spaces.

2.2.2 Visualizations for subspace clusters

The most challenging aspect of subspace clustering algo-

rithms is the interpretation of the results. On one hand, the

understanding of compact clusters in subsets of dimensions

is challenging itself. A user might ask why a specific

subspace has been chosen by the algorithm and why

specific dimensions are ignored in a specific subspace. On

the other hand, subspace clustering algorithms usually

produce a large set of subspaces, many of which represent

redundant clusters, not mentioning that different parameter

settings may result in different or even more redundant

clusters. Hereby, redundancy can be seen either from a

dimension, or from a cluster member perspective. There-

fore, there is a need for visualizations that support the user

in finding good parameter settings, but also to extract

subspaces and subspace clusters that are relevant for a

specific application.

Some of the first tools for the comparison of subspace

cluster results are VISA [21] and Morpheus [22], which

implement a simple glyph alternative to represent and

compare subspace clusters. CoDA [23] and MCExplorer

[24] are two approaches to identify groups of subspace

clusters that are similar to each other. Both tools use novel

similarity measures to compute the similarity of subspace

clusters based on a combination of its cluster members and

dimensions. Additionally, the tools provide interactive

visualizations to analyze and adapt concepts of subspace

cluster groups.

A more recent tool called ClustNails [25] proposes to

explore subspace clusters by a combination of a heatmap

for similar values of the dimensions, and a glyph repre-

sentation to explore similarities in the corresponding sub-

spaces. The system is applicable to any subspace clustering

approach, so different approaches can be compared with

each other. In the work by TATU et al. [26], 2D projections

of the data in alternative subspaces were applied to identify

complementary, orthogonal, or redundant subspaces; again,

the approach was applicable to different subspace selection

methods. In another approach [27], visual comparison of

data groups across dimensions using linked views in an

encompassing system was presented.

2.3 Visualization in bio-medicine and health

and distinction of our approach

To date, there are numerous approaches to tackle problems

in bio-medicine and health using visual-interactive

approaches. Several dedicated academic venues address the

topic including, for example, the Symposium on Biological

Data Visualization and the EG Workshop on Visual

Computing for Biomedicine. The proposed solutions sup-

port questions from general analysis of research data and

data exploration, to specific applications like health data

record visualization [28] or the detection of adverse drug

reactions [29]. So far, also several design challenges have

been conducted to arrive at useful results1 [30].

In our own previous work [31], we have discussed a

workflow for analysis of biomedical data based on sub-

space clustering analysis. The workflow was supported by

tabular views to compare clusters and relationships to

dimensions. Here, we substantially extend the visual

analysis by an encompassing interactive system and

extended workflow based on it. Our system builds on

previous work in interactive visual data analysis in general

and visual subspace analysis in particular. Our contribution

is to present a highly interactive analysis system combining

subspace analysis methods with appropriate linked views

Fig. 2 Subspace clustering: algorithms compute multiple, alternative solutions in different subspaces, i.e., clustering by color (subspace 1) or by

shape (subspace n). (Color figure online)

1 http://healthdesignchallenge.com/
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for data exploration and navigation. While we focus on a

specific problem (vaccination analysis), the proposed

workflow is generalizable to many biomedical data analy-

sis questions involving labeled data. Our experimental use

case and derived workflow suggests how subspace analysis

methods can be leveraged, avoiding some of their practical

pitfalls, e.g., generation of an abundant number of similar

or redundant subspaces.

3 SubVIS—interactive tool to visually explore

subspaces

In the following section, we introduce SubVIS, an inter-

active tool which allows the user to visually analyze,

explore, and interactively refine computed subspaces to

gain knowledge about cluster structures in different sub-

spaces. In the following, we are speaking of a subspace

when describing a subset of dimensions; a subspace

cluster or cluster when referring to a single cluster within

a subspace; and subspace clustering or clustering when

describing the structure of multiple subspace clusters as an

outcome of a subspace analysis algorithm (see below).

SubVIS tackles the aforementioned challenges of sub-

space clustering algorithms, namely (1) difficult interpreta-

tion of the results, (2) redundancy of detected subspaces and

clusters, and (3) different clustering results for different

parameter settings. In contrast to tools like VISA [21], which

are focusing on a global comparison of subspace clustering

results (same clustering structure w.r.t. cluster members and

subspaces), SubVIS enables the user to compare individual

clusters that are detected by any subspace clustering algo-

rithm. To this end, SubVIS analyzes every subspace cluster

independent of its association to a specific clustering struc-

ture or algorithm. SubVIS is implemented as a web-based

application using the d3.js2 JavaScript visualization library.

The tool uses the detected subspaces of the OpenSubspace

Framework [32], allowing the use of every subspace clus-

tering algorithm which is provided by the framework. The

OpenSubspace Framework is a Java Plugin for the WEKA

Data Mining Library [33]. So far, we parse the detected

clusters with the associated subspaces, but SubVIS can

easily be extended towards a server–client architecture

which can be directly plugged into OpenSubspace.

The general concept of SubVIS is a three-level explo-

ration strategy based on SHNEIDERMAN’s visual information-

seeking mantra [34] Overview first, zoom and filter, then

details-on-demand. The individual visualization widgets

are combined by linking-and-brushing and can be panned

and resized based on the users’ needs. A screenshot of the

tool can be found in Fig. 3.

The first exploration level of SubVIS enables the user to

get a general overview of all detected subspace clusters and

their properties such as the cluster and subspace size, the

distribution of dimensions within the different subspace

clusters as well as the similarity between them. The

properties are visualized with interactive barcharts and the

overview of the similarities is given by an MDS projection

of the clusters combined with a matrix-based heatmap for

more details. In the second exploration level, the user can

select a subset of relevant clusters in the MDS plot or with

the help of the barcharts and get an aggregated overview of

the cluster members in a so-called aggregation table. For

each cluster, the user is able to inspect the distribution of

the cluster members in each dimension and can compare

the distribution with the global distribution considering all

data records. In the last exploration level, the user is

facilitated with a table lens-like view [35] enabling the user

to explore the actual data records. The table offers inter-

active sorting and coloring of the record and its dimension,

as well as a zooming lens for more details on demand.

In the following, we describe the different visual com-

ponents of the tool in more detail and emphasize on their

interaction techniques. Section 4 shows the concrete usage

of SubVIS with the help of a use case from the medical

domain. On our website,3 we provide supplementary

material to this paper including videos illustrating the

usage of SubVIS and details about the use case described in

the next section.

3.1 General overview: MDS projections

The general overview of the subspace clusters is given as

an MDS Projection as shown in Fig. 3 �. Each dot rep-

resents a single cluster. The distance between the clusters

in the MDS plot represents their pair-wise similarity (c.f.

Sect. 2 for a detailed description). SubVIS contains a

variety of different similarity measures which are applied

on either the dimensions, or the members of a subspace

cluster. Besides an Overlapping and Dice Coefficient,

SubVIS includes the Jaccard Index as a similarity measure.

The Jaccard Index between the dimensions of the sub-

spaces subi and subj is computed as follows:

simðsubi; subjÞ ¼ 1� jdimðsubiÞ \ dimðsubjÞj
jdimðsubiÞ [ dimðsubjÞj

;

where dimðsubiÞ indicates the set of dimensions of the

subspace i. Intuitively speaking, the Jaccard index mea-

sures the number of common dimensions in two subspaces.

More advanced distance measures as introduced in [21]

which are based on the combination of dimensions and

2 http://d3js.org/

3 Website: http://files.dbvis.de/brin2016 Video: http://files.dbvis.de/

brin2016#video
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cluster members can be added to the tool easily. The user

can interactively change the distance measure. To do that,

small multiples as shown in Fig. 3 � are provided, which

helps compare the different projections.

The coloring of the clusters in the MDS projection can

be changed by the user according to the number of

dimensions or cluster members, the compactness of the

cluster member, or according to the distribution of a

specific dimension which the user is interested in. An

application for this coloring option is given in Sect. 4

where the user is interested in subspaces that contain

clusters of patients for which a vaccination has been con-

sidered successful or not.

The user can enhance the dot representation of the clusters

by a more advanced glyph representation which shows the

underlying dimensions of the subspace. This representation is

shown in Fig. 4 and is based on the idea of ClustNails [25].

Each dimension is represented by a small line around the

border of the dot. The length of the dimension spikes can be

mapped to different measures such as the importance of a

specific dimension for the respective subspace. Lines are

positioned according to the ordering of dimensions in the

input dataset. In addition to the position, the dimensions are

colored by different colors, each 10th dimension having the

same color. This coloring option improves the visual dis-

tinctiveness of the dimension glyph and helps the user in

finding commonalities in different clusters.

Finally, the user is able to select a single or multiple

clusters by mouse to gain more insight into the cluster

members and their subspaces as described below.

3.2 Subspace filtering and recomputation

On the very top of SubVIS, the user can investigate dif-

ferent properties of the (selected) subspace clusters by

means of interactive barcharts (c.f. Fig. 3 �). These charts

show the distribution of the subspace and cluster sizes of

the selected clusters in the MDS projection. The chart on

the very right side shows the occurrence and distribution of

the dimensions across all selected subspaces. The user is

able to filter clusters by selecting or un-selecting specific

Fig. 3 A screenshot of our visual analytics tool SubVIS. It enables

the user to interactively explore a large number of subspace clusters.

A general overview of the similarities between the subspaces is given

by an MDS projection (a). Small multiples (b) allow to preview

projections of different distance functions and a quick change of the

MDS plot. On the very top (c), the user is provided with some

distribution properties of the subspaces such as the #dimensions. A

heatmap (d) provides more details on the relationships between the

pair-wise distances. An aggregation table (e) shows the values of the

aggregated cluster members and the table lens (f) provides details on
demand. (Color figure online)

Fig. 4 Detailed view of the subspace clusters within the MDS Plot.

Each glyph represents a subspace cluster, where the involved

dimensions are shown by spikes as in ClustNails [25]. In our system,

we also use coloring to visually distinguish the dimensions. (Color

figure online)
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dimensions, or by changing the ranges for the #dimensions

or #cluster members per cluster using a brushing technique.

The different filters are linked with each other and the

MDS projection, meaning that changing one filter updates

the distribution in the other filters (and the MDS projec-

tion) according to the current filter set. It can also be fil-

tered multiple times. Subspace clusters, which are not in

the filter, can be marked in very light gray or could also be

removed entirely from the visualization. Both AND and OR

operations can be used to link different filters and different

filter settings for one filter. Moreover, further filters can be

added easily.

Finally, the user is able to select a subset of dimensions

and re-run the subspace clustering algorithm. This allows

an analysis of more local subspace patterns which are

further discussed by our workflow in Sect. 4.4.

3.3 Heatmap

The heatmap, as shown in Fig. 3 �, is one possibility to

show more details of a selection of subspace clusters in the

MDS projection. Each row and each column represent one

of the selected clusters. Each cell, as a combination of two

clusters, represents the similarity or dissimilarity between

two clusters by means of color. Darker colors indicate

dissimilarity, and brighter colors similarity. Moreover, the

heatmap can be sorted to ease the perception of patterns.

The advantage of the heatmap compared to the MDS rep-

resentation is that a user can perceive all pair-wise simi-

larities between all selected clusters. The MDS projection,

however, can distort the perception of similarities as in

many scenarios there is no optimal 2D representation of all

pair-wise similarities which results in perceivable patterns

which are not given in the underlying data.

3.4 Aggregation table

The aggregation table, as shown in Fig. 3 �, supports the

user in getting an overview of the subspaces and the dis-

tribution of the attribute values of all cluster members of a

small set of selected clusters. Each row in the table repre-

sents a subspace cluster, and each column a dimension. The

dimensions are ordered according to their number of

occurrences in the selected subspace clusters within the

MDS projection. The dimensions of the subspace clusters

are highlighted in green. Each cell of the table illustrates

the aggregated data records within each cluster. Categori-

cal dimensions are visualized by a histogram, while

numerical dimensions are visualized by a ‘‘bar-code’’

whereby a dark color indicates a high occurrence and a

bright color indicating a low occurrence.

The user is able to move the mouse over a specific cell

and compare the distribution of the cluster members within

this dimension with the global distribution considering all

records of the dataset. As part of future work, we want to

highlight the dimensions within a subspace for which the

distribution significantly differs compared to the global

distribution.

3.5 Table lens

The user is able to investigate the data records of a single

subspace cluster by means of a table lens [35] which is

shown in Fig. 3 �. Hereby, each row in the table represents

a single data record, with each column, again, a dimension,

and the cells contain the actual data values. The user is able

to sort the table according to the different dimensions and

color the cells of individual dimensions according to its

values. For example, every category of a dimension is

represented by a specific color, or the upper and lower

quartiles or outliers of a dimension are highlighted. This

highlighting gives the user a means to quickly understand

the structure of the data. Typically, the zoom of the table is

selected rather small, so that the user can concentrate on

the coloring of the table. Additionally, the user is equipped

with a lens to dynamically zoom into specific data records

without changing the zoom of the whole table.

4 Use case: explanations for vaccination outcomes

based on subspace similarities

We study the potential of a subspace clustering-based

analysis using SubVIS on a real-world medical analysis

problem. We introduce a relevant dataset from clinical

research, describe our analysis goals, present results of

initial experiments, and interpret them from the domain

perspective. The domain knowledge-based interpretation of

our results is done by our co-author MAJNARIC who is a

medical physician and researcher. Furthermore, we show

the potential of the human-in-the-loop with the help of

SubVIS and introduce a novel workflow for interactive

subspace computation.

4.1 Considered dataset and analysis goals

4.1.1 Dataset: vaccination_outcome

The examined dataset is based on a real-world patient

dataset which describes volunteers vaccinated against

influenza. The vaccination took place in a family practice

located in Osijek, Croatia, during 2003/2004. Patients were

selected to represent a high-risk population for influenza

complications. All subjects were suffering of multiple (age-

related) chronic medical conditions which interfere with

the immune system. The investigated group of patients
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consists of 35 male and 58 female persons aged between 50

and 89 years. The dataset contains 61 dimensions

describing clinical parameters such as sex, age, anthropo-

metric measures, and hematological and biochemical tests.

In addition to that, dimensions containing diagnosis results

of common chronic diseases are included.

The used influenza vaccination was a trivalent inacti-

vated split vaccine produced by Solway. It contained three

seasonal virus strains: A/H1N1/New Caledonia/ 20/99-like,

A/H3H2/Moscow/10/99-like, and B/Hong Kong-330/2001-

like. For each strain, the vaccination was considered suc-

cessful, when the amount of antibody titers was four times

higher afterwards. For validation, blood samples had been

taken three times prior and once four weeks after the

vaccination [36]. For our analysis, we concentrated on a

single target attribute representing the outcome of the

vaccination for the strain A/H1N1/New Caledonia/20/99-

like. From the dataset, 36 patients with a positive and 57

with a negative outcome can be identified. Further details

about the dataset and the underlying influenza vaccination

can be found in [37]. A list with the attributes of the dataset

is available in the supplementary material of this paper.

4.1.2 Analysis perspectives

The goal of our analysis is to find reasons for a positive or

negative vaccination outcome. According to our domain

expert (see above), who also collected the data, the reasons

for a particular outcome can be described neither by a

single dimension, nor by a fixed combination of dimen-

sions. Instead, a variety of different reasons may cause the

positive or negative outcome. Therefore, global patterns

such as derived by full-space clustering may not be

appropriate for this kind of analysis (c.f. experiments in

Sect. 4.2). As a consequence, we rather search for local

clusters in a subset of patients and, more importantly, in a

subset of dimensions. This procedure enables the analyst to

find multiple, independent explanations for a possible

vaccination outcome. The considered dimensions of a

subspace cluster, together with its values within the cluster,

can be interpreted as possible explanations for an outcome.

As mentioned before, the major challenge of a subspace

cluster analysis is the interpretation of the results in con-

junction with respective domain knowledge of the analyst

(medical doctor in our case). Therefore, SubVIS is used to

support the analyst during the exploration of the subspaces.

4.1.3 Data preprocessing

As shown above, the considered dataset is heterogeneous

as it contains both numerical and categorical dimensions.

Existing subspace clustering algorithms typically work on

numerical data only. Furthermore, for existing subspace

clustering implementations, we typically did not find rec-

ommendation as to how missing values should be treated.

Taking a pragmatic approach, we preprocessed the dataset

in the following way: (1) We removed all patient records

that have a missing value in any of its dimensions. After-

wards, the resulting dataset contains 29 patients with a

positive and 42 patients with a negative outcome. (2) We

transformed all nominal dimensions such as sex, hypert, or

statins into a numerical representation. Due to the fact that

all nominal dimensions (except for diabetes mellitus (DM))

consist of only two different values (mainly yes and no), we

converted the values to either 0 or 1. Finally, we normal-

ized all dimensions linearly in the range [0,1] according to

the following formula:

normalized valuedimi

j ¼
valuedimi

j �minðdimiÞ
maxðdimiÞ �minðdimiÞ

:

After this, all dimensions are numerical in the range of

[0,1], enabling further analysis with equally weighted

dimensions.

4.2 Experiments in full-space analysis

In our initial experiments on the dataset, we first confirmed

that a full-space analysis is not useful. We used data mining

tools such as KNIME [38] and WEKA [33] to cluster

patients into different groups, or applied different classifi-

cation algorithms to correctly predict the vaccination out-

come of a patient. The details are discussed in the following.

4.2.1 Full-space Experiment 1: clustering

A hierarchical full-space clustering was applied. The results

are illustrated as a dendrogram in Fig. 5. The x-axis is

mapped to the individual data records (patients) and the

y-axis represents the similarity between two patients or

clusters of patients. A low y-value indicates a high simi-

larity, while a large y-value corresponds to a high dissimi-

larity between the underlying patients. From Fig. 5, we see

that none of the patients are considered similar as all ‘‘splits’’

are high up in the diagram. As a consequence, no useful

grouping of patients can be identified. We assume the fol-

lowing reasons: (1) patients are typically similar to each

other only in a subset of dimensions; (2) a similarity in one

dimension can be countered by a dissimilarity in another

dimension; and (3) the concentration effect [3] affects the

similarity computation in high-dimensional spaces.

4.2.2 Full-space experiment 2: classification

For the classification task, we did not remove missing

values but rather replace them by the average value of the
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dimension. We applied several classification algorithms to

find useful predictors for the vaccination outcomes. Our

experiments comprised, for example, Decision-Trees,

Bayes Classification, and Random Forest. We split the

dataset into a training set (80 % of the records) and a

validation set (20 % of the records). For the validation, we

measured the percentage of correctly classified patients

after the model training. While the accuracy of the classi-

fication of the training dataset is very well (approx. 84 %

for decision tree), the accuracy for the validation dataset

dropped below 50 % for some algorithms, which is worse

than that for random classification. We assume that the

poor classification performance is caused by (1) the size of

the training dataset which is too small, and (2) there are no

global aspects allowing a classification into the two out-

come classes. Instead, different combinations of features

may be of relevance to predict the outcome properly.

4.3 Subspace analysis: initial experiments and results

To search for local explanations of the vaccination out-

come, subspace analysis techniques are beneficial. In the

following, we describe three different experiments that we

conducted using SubVIS. The experiments apply the sub-

space clustering algorithm Proclus to different subsets of

the data. The discovered subspaces are then used as a

means to describe the similarity between subsets of patients

with either a positive or negative outcome. The dimensions

of the subspace cluster describe in which way the patients

of a cluster are similar to each other which may also

indicate as a reason for a possible vaccination outcome. For

a better understanding of the different experiments, we

provide a video4 with a detailed description of our analysis.

4.3.1 Background: Proclus

For our experiments, we rely on a subspace clustering

approach called Proclus (Projected Clustering) [39].

Proclus is similar to k-means [10] as it generates, by an

iterative process, a partition of the data. Each data point

can belong to one cluster, and each cluster is represented

by a prototype point (medoid). Proclus needs two param-

eters: number of clusters C and average dimensionality per

subspace D. The subspace computation starts by a random

initialization of medoids. In a refinement step, for each of

the C medoids a well-fitting subspace of average dimen-

sionality D is found. This is achieved by finding dimen-

sions that show a low variance of the distances between the

respective medoid and its cluster members. The resulting

subspace contains dimensions in which the values of the

cluster members are similar. While other subspace clus-

tering methods are available [14], we chose Proclus for its

simplicity, efficiency, and robustness to noise, using the

OpenSubspace Framework [32] implementation.

4.3.2 Subspace experiment 1: combined outcome

In the first experiment, we apply Proclus to the prepro-

cessed dataset and aim for subspace clusters that contain

mainly patients of a single outcome. If not mentioned

otherwise, we vary Proclus’ parameters #clusters: 2–8 and

avg. #dimensions: 3–14 for all of our experiments. We

combine the detected subspace clusters from all runs of the

Proclus algorithm into SubVIS. This combined analysis

allows us to explore a large number of subspace clusters

computed by different parameter settings of the underlying

algorithm (instead of analyzing each run separately).

Afterwards, we evaluate each detected cluster with the

Entropy score [32] which measures the purity of a cluster

w.r.t. a specified class label, i.e., the vaccination outcome.

Figure 6 illustrates the distribution of the score. We can see

that almost none of the detected clusters contain patients of

only one specific class, but rather a mixture of both classes

without a significant majority of a positive or negative

outcome. This is also confirmed by SubVIS which can be

seen in Fig. 7. The color in the corresponding MDS pro-

jection represents again the purity of a cluster w.r.t. to one

outcome class. Cluster containing mainly patients with a

Fig. 5 Dendrogram illustrating the hierarchical (full-space) cluster-

ing of our vaccination dataset (Euclidean distance and average

linkage type). The x-axis represents the individual patients, while the

y-axis indicates the (dis-)similarity between two patients or a cluster

of patients. A large y-value corresponds to a large dissimilarity

4 http://files.dbvis.de/brin2016#video_experiments
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positive outcome are represented as blue, clusters with

patients of a negative vaccination outcome are represented

as brown, and clusters with a mixture of both outcomes are

illustrated with a very bright color. Using this color

scheme, the user can concentrate on the clusters with an

intensive color, i.e., homogeneous patients. We believe that

the result is caused by (1) the computation strategy of

Proclus which aims for large clusters, and (2) the dataset

contains dimensions in which many patients are similar to

each other—independent of their class label. These

dimensions dominate the detected clusters and prevent

Proclus from finding clusters relevant for the description of

the vaccination outcome (c.f. experiment 2).

4.3.3 Subspace experiment 2: separate outcome

To find descriptive clusters for each vaccination outcome,

we split the dataset into subsets according to the outcome

class. Afterwards, Proclus is applied to each subset sepa-

rately. The resulting subspace clusters of both subsets are

combined into SubVIS for a visual exploration. The

detailed steps of this exploration can be found in the above-

referenced video.

In the first part of the experiment, we configure Proclus

to detect subspaces containing a single cluster. For each

subset, the average number of dimensions again varies

between 3 and 14. The results can be found in Fig. 8. The

different dimensions are indicated as columns, while each

row represents a subspace cluster with a different dimen-

sionality. The cells of a row are marked with a green

background, if the subspace contains the dimension, e.g.,

the first subspace for a positive outcome contains the

dimensions: HbA1c, COPB, and RF.

Proclus determines the dimensions of a subspace cluster

by ordering all dimensions by the variance of its cluster

members, and selecting the dimensions with a minimum

variance (c.f. description of Proclus above). Therefore,

subspaces with a larger dimensionality may include

dimensions in which its cluster members are less similar.

As all records belong to the same cluster, dimensions in

lower-dimensional subspaces are more descriptive for an

outcome class (w.r.t. global outcome similarity). Conse-

quently, the height of the green bars in Fig. 8 illustrates the

Fig. 6 Measuring the purity of subspace clusters w.r.t. the vaccina-

tion outcome. Overplotting occurred due to identical combination of

the #clusters and entropy score

Fig. 7 MDS projection of the subspace clusters which are detected by

Proclus. The Jaccard distance between the cluster members has been

selected. Both intense blue and brown colors represent clusters

containing mainly patients of one outcome class, while a bright color

indicates that a cluster contains patients of both classes. (Color

figure online)

Fig. 8 Subspaces detected by experiment 2: subspace clustering

(Proclus) applied separately to patients with a positive or negative

outcome. The columns represent the different dimensions (green

indicates that the dimension belongs to subspace). Each row

represents a clustering result of different dimensionality. (Color

figure online)
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importance of a dimension for an outcome class. Except for

HPA and PRL, the globally descriptive dimension is

identical for both outcomes. We can also see in Fig. 9 of

SubVIS that the detected subspaces for both outcome

classes are quite similar and there are no subspaces which

are specific of one outcome class. This result is in line with

the detected subspaces of the first experiment, i.e., the

following set of dimensions is discriminative for all

patients from a global perspective: HbA1c, COPB, aller d,

HPA, CRP, RF, INS, PRL, TSH, ANA, and IGE.

Most patients in our dataset are similar in these dimen-

sions; however, we do not gain much knowledge about the

patients w.r.t. the vaccination outcome. This observation is

confirmed by the second part of experiment 2. In addition to

the first part, we also varied the #clusters between 2 and 4.

The complete result can be found in the supplementary

material. In summary, we can see that even for results with 4

clusters, the majority of dimensions are from the given set

above. From the second experiment, we can conclude that

subspace clustering helps find dimensions in which patients

of a specific class are similar to each other, and hence these

dimensions may be an indicator for the reason of classifi-

cation. However, experiment 2 shows that dimensions in

which most patients are similar to each other highly influ-

ence the clustering results. As a consequence, the subspaces

for both outcome classes are similar to each other.

4.3.4 Subspace experiment 3: dimension refinement

In our last experiment, we concentrate on more local pat-

terns. From the previous experiments, we know that all

patients, and in particular all patients of one outcome class,

are similar to each other in the dimensions described

above. To find more local patterns, we remove these

dimensions from both subsets and re-apply Proclus.

Afterwards, we used SubVIS to seek for subspace clusters

which are similar to each other and descriptive for one

specific outcome class. We provided the subspaces to our

domain expert and let her analyze the clusters. For the

positive vaccination outcome, the user selected a group of

clusters as shown in Fig. 10. To analyze negative vacci-

nation outcomes, the domain expert focused mainly on

clusters which contains the dimension hypertension.

Therefore, we filtered for these subspaces and selected

again a group of similar subspaces (as shown in the video).

The domain expert analyzed the resulting subspace

clusters with the help of the aggregation table to get

quickly an overview of the data distribution within the

clusters and with the table lense to analyze details of the

individual patients. She found patterns in the detected

clusters which explain—at least to some extent—the rea-

sons for a positive or negative vaccination outcome. In the

following, we shortly describe two of her findings:

Positive vaccination outcome The selected subspace

clusters contain mainly patients with homogeneous values

in its dimensions which indicates that the patients are rather

healthy. The patients do not have hypertension (Hyper),

cardiovascular diseases (CVD), psychiatric disorders (Psy),

and adverse reaction to drugs (dr aller). Furthermore, the

patients do not use any of the following medications: sta-

tins (Statins), anticoagulants (Anticoag), or analgesics

(analg) which results in preserved renal function (CLEAR).

Negative vaccination outcome A couple of subspace

clusters show a clear reason for a negative vaccination

outcome. A key discriminator, which has already been

identified in earlier studies, is vitamin B12 (VITB12) and

folic acid deficiency (FOLNA). The values in these

dimensions can be a marker of impaired methylation

Fig. 9 Heatmap representing the similarities of the detected

subspaces of the second experiment based on the overlapping

coefficient. All combinations of subspaces share a very light gray

color, meaning that these subspaces are similar to each other

Fig. 10 Selecting a relevant subset of subspaces which contain only

patients of a positive vaccination outcome. Subspace clusters with

less than 5 patients or less than 4 records are filtered out beforehand

(marked as gray). (Color figure online)
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reaction, indicating impaired epigenetics and DNA insta-

bility. This condition can be associated with impaired

proliferation and division of lymphocytes, which is a key

element for the development of the immune reaction.

These aspects can be seen as a possible link between

vitamin B12 and folic acid deficiency and the low antibody

response after an influenza vaccination, i.e., a negative

vaccination outcome.

4.4 Proposed subspace analysis workflow

In general, the appropriate application of a subspace clus-

tering algorithm (e.g., Proclus) is often found to be more

complex than applying a comparable full-dimension clus-

tering algorithm (e.g., k-means). This is due to the

increased number of parameters and complexity of the

resulting output of subspace clustering. The detected

clusters are bound to an underlying subspace and often

many redundant clusters are found. SubVIS helps leverage

the added complexity by interpreting the results and give

the user the possibility to explore the detected subspaces

from different perspectives. Furthermore, the domain

expert can inject his/her domain knowledge by filtering for

specific subspaces. Based on our findings in the experi-

ments described above, we propose a subspace clustering-

based workflow (c.f. Fig. 11) to find relations between data

records, dimensions, and associated class labels. The

workflow consists of the main steps � and � as well as an

optional step � improving local similarity aspects as

shown in the third experiment. The workflow described

below is fully supported by SubVIS.

For class-labeled data, the first step of the workflow is to

separate all data records based on their class label �. For

non-class-labeled data, the first step can be discarded. The

subsequent steps are applied to each record subset indi-

vidually. The optional step � is in line with the findings of

the second experiment. In many datasets, there are

dimensions that highly influence the detection of subspace

clusters. On the one hand, these dimensions are interesting

as they show the global similarity between data records. On

the other hand, such dimensions can distort the results, e.g.,

a dataset with non-relevant dimensions in which all records

are similar. Subspace clustering considers these dimensions

as relevant and adds them to most clusters. In such a case,

step � can be applied to remove such dimensions. In �, a

subspace clustering is applied to the remaining dimensions

to finally determine the similarities between records,

dimensions, and class labels. In extension to our previous

findings in [31], we extended the workflow to enable it with

user feedback and injection of domain knowledge. We

illustrated this extended workflow with the usage of Sub-

VIS for the descriptive use case above.

5 Discussion

The explorative analysis of patient treatment data is a

challenging task. As our experiments show, subspace

clustering can be a valuable tool to discover relevant

groups of patients w.r.t. different medical subspaces and

their relationship to the treatment (here vaccination out-

come). As a key finding of our experiments, an analysis in

the full attribute space may not be the best choice, but

subspace methods can be an interesting tool, especially if

used in an appropriate analysis workflow. We proposed one

workflow, considered as a promising starting point.

We also identify a number of extension possibilities to

our approach. For one, we may need heuristic criteria

which could select from a large number of parameters (e.g.,

input dimensions, number of clusters, distance thresholds,

etc.) a small number of results which are not redundant but

can be meaningfully interpreted. To this end, we need a

formalization of how to measure what alternative or com-

plementary means in terms of dimensions, cluster size, and

attribute subsets. We need to include additional medical

background into such a specification. Visual interfaces may

be particularly beneficial to this end. A key issue in visu-

alization is how to effectively map patient records, cluster,

and attribute properties to visual displays. Regarding data

size, scalability of the cluster analysis may become an

Fig. 11 Our proposed workflow to discover relations between patients, relevant dimensions, and different class labels (here vaccination

outcomes). (Color figure online)
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issue, which could be addressed by efficient

implementations.

We employed Proclus which considers all dimensions of

a subspace as equally important for the subspace. However,

there may also exist non-linear relationships between

attributes which might be relevant. Alternative analysis

tools like non-linear multivariate regression could be con-

sidered to optimize attribute selection. Also on the pre-

processing side, how to appropriately treat categorical and

binary attributes in the analysis is a problem. We here

choose standard approaches, but the expert may need to

specify how to treat such attributes.

While analysis is often handled by ad hoc approaches, it

would be desirable to have a software framework to allow a

flexible, interactive specification of analysis workflows, to

easily apply and re-use proven workflows. We envision a

workflow editor which could support the analysis process

in a scalable way and, at the same time, enable experts to

document which and why analysis steps were taken.

6 Conclusion and future outlook

The life sciences, bio-medicine, and health care are

turning into a data-intensive science, where we face not

only increased volumes and a diversity of highly complex,

multidimensional, and often weakly structured and noisy

data, but also the growing need for integrative analysis

and modeling [1]. Considering that analysis in the full

attribute (feature) space may not be effective, we here

explored subspace cluster analysis to study the relation-

ship between patient data and immunization treatment

outcome on a specific research dataset. We found that a

segmentation of the patients for treatment outcome fol-

lowed by subspace clustering allowed the identification of

relevant patient groups and respective medical attributes,

which can be a basis to generalize medical knowledge.

Our proposed workflow is only a first step, and we iden-

tified a number of interesting challenges and extensions

for future work in the area. The grand vision for the future

is to effectively support human learning with machine

learning—visualization is close to the end-user, hence

indispensable within this approach [40]. Discovering

knowledge in such complex, high-dimensional datasets

needs a concerted effort of various topics, ranging from

data preprocessing, data fusion, data integration, and data

mapping to interactive visualization within a low-di-

mensional space [41]. Visual exploration methods, e.g.,

visual data mining [42], play a particularly important role

and the adequate selection of visualization techniques

finally decides about the overall success of applications

for the biomedical domain [43].
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36. Majnarić-Trtica L, Vitale B (2011) Systems biology as a con-

ceptual framework for research in family medicine; use in pre-

dicting response to influenza vaccination. Primary Health Care

Res Dev 12(04):310–321

37. Trtica-Majnaric L, Zekic-Susac M, Sarlija N, Vitale B (2010)

Prediction of influenza vaccination outcome by neural networks

and logistic regression. J Biomed Inform 43(5):774–781

38. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T,

Ohl P, Sieb C,Thiel K, Wiswedel B (2007) KNIME: The Kon-

stanz information miner. In: Studies in classification, data anal-

ysis, and knowledge organization (GfKL 2007)

39. Aggarwal CC, Wolf JL, Yu PS, Procopiuc C, Park JS (1999) Fast

algorithms for projected clustering. In: Proceedings of ACM

international conference on management of data, pp 61–72

40. Holzinger A (2013) Human–computer interaction and knowledge

discovery (hci-kdd): what is the benefit of bringing those two

fields to work together? In: Multidisciplinary research and prac-

tice for information systems (LNCS 8127), pp 319–328

41. Holzinger A (2014) Extravaganza tutorial on hot ideas for

interactive knowledge discovery and data mining in biomedical

informatics. In: Brain informatics and health (BIH) (LNAI 8609),

pp 502–515

42. Otasek D, Pastrello C, Holzinger A, Jurisica I (2014) Visual data

mining: effective exploration of the biological universe. In:

Interactive knowledge discovery and data mining in biomedical

informatics: state-of-the-art and future challenges. (LNCS 8401),

pp 19–34

43. Turkay C, Jeanquartier F, Holzinger A, Hauser H (2014) On

computationally-enhanced visual analysis of heterogeneous data

and its application in biomedical informatics. In: Interactive

knowledge discovery and data mining: state-of-the-art and future

challenges in biomedical informatics (LNCS 8401), pp 117–140

Michael Hund is a Research Associate with the Data Analysis and

Visualization Group at the University of Konstanz, Germany. He

received his M.Sc. degree in information engineering/computer

science from the University of Konstanz in 2015. His research

interests are data visualization, high-dimensional data analysis, and

visual analytics for subspace analysis.
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