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Abstract Detection of epileptic seizure in electroen-

cephalogram (EEG) signals is a challenging task and

requires highly skilled neurophysiologists. Therefore, com-

puter-aided detection helps neurophysiologist in interpreting

the EEG. In this paper, texture representation of the time–

frequency (t–f) image-based epileptic seizure detection is

proposed. More specifically, we propose texture descriptor-

based features to discriminate normal and epileptic seizure in

t–f domain. To this end, three popular texture descriptors are

employed, namely gray-level co-occurrence matrix

(GLCM), texture feature coding method (TFCM), and local

binary pattern (LBP). The features that are obtained on the

GLCM are contrast, correlation, energy, and homogeneity.

Moreover, in the TFCM method, several statistical features

are calculated. In addition, for the LBP, the histogram is used

as a feature. In the classification stage, a support vector

machine classifier is employed. We evaluate our proposal

with extensive experiments. According to the evaluated

terms, our method produces successful results. 100 %

accuracy is obtained with LIBLINEAR. We also compare

our method with other published methods and the results

show the superiority of our proposed method.

Keywords EEG signal � Time–frequency image � Texture

descriptor � Support vector machines � Epileptic seizure

detection

1 Introduction

Epileptic seizure is a physiopathological disease that is

known as a neurological disorder caused by the transient

and unexpected electrical disturbance of the brain. Elec-

troencephalogram (EEG), which is a common method for

detection of the epileptic seizure, constructs a representa-

tive signal containing information about the brain’s elec-

trical activity. Interpretation of EEG signals for manual

detection of the epileptic seizure is not an easy task and

requires high skills of neurophysiologists. Moreover,

manual interpretation of the long recordings is tedious and

time consuming. Therefore, an automated system to help

neurophysiologists in detecting epileptic seizures is in great

demand. Such an automated system is composed of two

main parts [1–4]: EEG feature extraction and classification.

While EEG feature extraction enables to characterize EEG

signals, classification finds different categories in the input

EEG signals.

Detection of epileptic seizures on EEG signals is a

popular research topic and many methods have been pro-

posed [2–7]. In these methods, the representative EEG

features were extracted either in the time domain [2–4] or

frequency domain [8]. The features from time domain are

generally extracted from the amplitude or rhythmicity of

EEG signals. The frequency domain features are generally

computed on the spectrum of EEG signals. There are also

several methods based on the time–frequency (t–f) repre-

sentation [9–11]. The t–f image-based features are used to

describe the non-stationary nature of the EEG signals.

Instantaneous frequency and sub-band energies are other

important t–f domain features for the EEG characterization.

In addition, multiscale representations of EEG signals

represent rich features. For instance, the statistics of the
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wavelet coefficients and their relative energies are useful

features for EEG classification [6].

Recently, several novel t–f features were proposed based

on t–f image descriptors for the automatic detection of

epileptic seizure in EEG data. In [10], the authors described

visually the normal and epileptic seizure patterns in the t–

f domain. The proposed features are based on Haralick’s

texture features calculated from the t–f representation of

EEG signals. In [11], the authors proposed an approach for

automatic detection of epileptic seizures using combined

Hilbert–Huang transform and support vector machine

(SVM) on the t–f image. Several statistical features such as

mean, variance, skewness, and kurtosis of pixel intensity in

the histogram of segmented gray-scale t–f image are con-

sidered. Other t–f image-based features were used to rep-

resent the EEG signals in [9]. The authors used a smoothed

pseudo Wigner–Ville distribution to obtain the t–f images.

The obtained t–f images were then segmented on the fre-

quency bands of the EEG signals’ rhythms. These features

from the histogram of segmented t–f images were then used

for a multiclass least squares SVM. In [12], the authors

combined signal analysis and image processing for classi-

fying EEG abnormalities. The combination of signal-based

features and t–f image-related features was employed to

merging key instantaneous frequency descriptors. The

proposed method was used to recognize the EEG abnor-

malities in both adults and newborns.

Our main motivation arises due to the following

conclusions:

(1) First of all, we think that the t–f representation of

healthy and epileptic seizure EEG signals contain

different motifs. Especially, when the frequency

bands of the EEG signals’ rhythms are considered,

the justification of our motivation becomes more

convincing. Because, each rhythm region of the t–

f image for healthy and epileptic seizure has

considerably discriminatory texture.

(2) These motifs can successfully be modeled by various

texture descriptors for further analysis. To this end,

texture encoders such as GLCM, TFCM, and LBP

are considered to re-shape the t–f images and a

number of statistical quantities are calculated.

(3) The considered texture encoders are well known in

the image processing and pattern recognition com-

munities with numerous advantageous. These meth-

ods are quite efficient in characterizing various

texture motifs. Their implementations are easy and

complexities are quite low.

In this paper, texture representation of the t–f image-

based epileptic seizure detection is proposed. More

specifically, we propose texture descriptor-based features to

discriminate normal and epileptic seizure in the t–f domain.

The features that are obtained on the GLCM are contrast,

correlation, energy, and homogeneity. Moreover, in TFCM

method, the calculated features are mean convergence,

code variance, code entropy, uniformity, first-order dif-

ference moment, first-order inverse difference moment,

second-order difference moment, second-order inverse

difference, and four energy distribution values from the co-

occurrence matrix. In addition, for the LBP, the histogram

is used as the feature. In the classification stage, a support

vector machine (SVM) classifier is considered. We evalu-

ate our proposal with extensive experiments. According to

the evaluated terms, our method produces successful

results. 100 % accuracy is obtained with LIBLINEAR. We

also compare our method with other existing methods, and

the results show the superiority of our proposal.

In [10], the authors used Haralick’s texture features to

classify the healthy and epileptic EEG signals. Our work is

different from the previous one such that we search each

frequency rhythms and concatenate the features of each

rhythm for constructing robust descriptors. Moreover, to

the best of our knowledge, TFCM and LBP methods are

firstly considered for EEG signal classification in this work

and achieved better results in our paper. The rest of the

paper is organized as follows: in Sect. 2, the methodology

and the related theories are given. In Sect. 3, the experi-

mental works and the obtained results are presented. We

conclude the paper in Sect. 4.

2 Methodology

In this work, t–f representation, texture descriptors, and

SVM-based methodology are proposed for the classifica-

tion of EEG signals as healthy and epileptic seizures. An

illustration is given in Fig. 1. As it is observed from Fig. 1,

the EEG signals are firstly transformed into t–f domain.

The Spectrogram of Short-Time Fourier Transform (STFT)

is used in order to obtain the t–f images of EEG signals.

The obtained t–f images are then converted into 8-bit gray-

scale images and are divided into five sub-images corre-

sponding to the frequency bands of the rhythms. The

GLCM, TFCM, and LBP texture descriptors are employed

to extract distinctive features for classification purposes.

The standard combination of SVM, LIBLINEAR, and

Homogenous mapping is investigated for obtaining high-

accuracy results in classifying the EEG signals.

2.1 STFT spectrogram

The STFT spectrogram is defined as the normalized,

squared magnitude of the STFT coefficients [13]. According

to a non-mathematical definition, STFT coefficients can be

obtained using a sliding window in time domain in order to
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divide the signal into small parts and then analyze each part

with Fourier transform to determine the frequencies. Thus,

a time-varying spectrum can be obtained. In a mathemat-

ical view, the STFT can be defined as

Xðn;xÞ ¼
X1

m¼�1
x½m�w½n� m�e�jxn;

where x½m�w½n� m� is a short-time part of the input signal

x[m] at time n. In addition, a discrete STFT is defined as

Xðn; kÞ ¼ Xðn;xÞjx¼2p
N
k;

where N shows the number of discrete frequencies. Thus,

the spectrogram in logarithmic scale is defined as

Sðn; kÞ ¼ log jXðn; kÞj2:

2.2 GLCM features

GLCM features are commonly used in various image

processing applications such as texture segmentation and

classification, biomedical image analysis, scene segmen-

tation, etc. [14]. GLCM can be seen as a directional pattern

counter with a specific distance d and angle h between

neighboring image pixel pairs for gray-scale images. This

situation is represented in Fig. 2.

In a numerical view, for h = 0� and d = 1, the GLCM

can be defined as

Md;h¼0ðp; qÞ

¼
XN

n¼1

XK

m¼1

1 if Iðn;mÞ ¼ p and Iðn;mþ dÞ ¼ q

0 otherwise

�
;

where p, q = 0, 1,… L – 1; L is the number of gray scales;

N and K are the sizes of the image. After normalizing the

GLCM, the contrast, correlation, energy, and homogeneity

features are calculated.

2.3 TFCM features

The TFCM translates a gray-scale input image into a tex-

ture feature number image via differencing in the image

domain followed by successive stages of vector classifi-

cation [15]. The algorithm firstly calculates the differences

along horizontal, vertical, and diagonal connectivity sets.

Figure 3 shows the related illustrations.

The resulting two-element difference vectors are thresh-

olded at a tolerance into quantized two-element vectors

whose values are from the set of {-1, 0, 1}, interpreted as

negative, no change, and positive difference, respectively.

The TFCM maps the individual quantized difference vectors

to gray-level class numbers based on the degree of the

variation in each vector [15]. Then a mapping procedure is

employed for further coding gray-level class numbers. The

following mapping is further employed for obtaining final

2-D texture feature number images. After constructing the

co-occurrence matrices of texture feature number images,

12-dimensional feature vector is calculated [15].

2.4 LBP features

Ojala et al. developed an operator called LBP for

describing the local textural patterns [16]. This simple but

effective operator has been then used as a texture descriptor

in many image processing-based applications. The LBP

works in a 3 9 3 pixel block and the pixels in this block

Fig. 1 The proposed method

3 24

1 0°

45°90°135°

Fig. 2 Angular nearest neighbors
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are thresholded by its center pixel value, multiplied by

powers of two and then summed to obtain a label for the

center pixel. Figure 4 shows the basic idea of the LBP

operator. The center pixel’s gray-scale value becomes 19

after applying the LBP procedure. The mathematical

illustration of the procedure is as follows:

LBPðxÞ ¼
X8

i¼1

f ðGðxiÞ � GðxÞÞ2i�1

f ðtÞ ¼ 1; t� 0

0; t\0

�
;

where x shows the location of the center pixel, xi shows the

ith neighboring pixel as shown in Fig. 4, and G(.) is the

gray-scale value of a pixel.

3 Experimental work

The experiments are conducted on an open source EEG

dataset that was recorded in Bonn University [17]. The

recorded dataset has five sets denoted as A to E. Each

contains 100 single-channel EEG signals, and each one

having 4097 samples. In other words, each recorded EEG

signal has 23.6 s duration. The datasets A and E are con-

sidered. While set A was taken from surface EEG record-

ings of five healthy volunteers with eyes open and closed,

respectively, set E only contains epileptic seizure. Figure 5

shows a typical EEG illustration of both healthy and

epileptic seizure. As shown in Fig. 5, the amplitudes of the

epileptic EEG signals are higher than those of the normal

EEG signals.

Moreover, Fig. 6 shows the spectrogram of EEG signals

for healthy and epileptic seizure, respectively. By visual

inspection, a qualitative discrimination of healthy and

epileptic seizure can be seen in Fig. 6. For further pro-

cessing the t–f images, we convert them into 8-bit gray-

scale images. The 8-bit gray-scale t–f images are then

divided into five sub-images corresponding to the fre-

quency bands of the rhythms to localize significant struc-

tures. The main EEG rhythm on frequency ranges is as

follows [9]:

• Delta: 0–4 Hz.

• Theta: 4–8 Hz.

• Alpha: 8–12 Hz.

• Beta: 12–30 Hz.

• Gamma: 30–50 Hz.

In Fig. 7, we show the divided sub-images correspond-

ing to frequency bands of the rhythms.

After gray-scale sub-images (Fig. 7) for healthy and

epileptic seizure EEG signal are constructed, the texture

descriptors are computed. For computing the GLCM, the

distance parameter is set to 1 and the angle parameter value

ranges from 0o to 135o with a 45o increment. Thus, 4

GLCMs are obtained and by calculating the contrast, cor-

relation, energy, and homogeneity features, a 16-dimen-

sional feature vector is constructed for each sub-image.

Moreover, for obtaining the TFCM features, once each sub-

image is converted to a texture feature number, a 12-ele-

ment feature vector is generated based on these co-occur-

rence matrices and texture feature number histograms. The

tolerance parameter of the TFCM is set to 80. In addition,

for LBP, the histogram is computed for each sub-images.
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Fig. 3 Horizontal, vertical, and

diagonal connectivity sets
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Fig. 4 LBP procedure after the LBP image is constructed; the

histogram of the LBP image is used as the feature
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Thus, a 256-dimensional feature vector is obtained. Finally,

feature vectors that are extracted from each sub-image are

concatenated. In this case, three of 80-, 60-, and 1280-di-

mensional feature vectors are constructed for the GLCM,

TFCM, and LBP, respectively.

The linear SVM is employed in the classification stage

of our proposal [18]. Moreover, the homogeneous mapping

is considered to increase the efficiency of the SVM [20,

21]. This mapping procedure enables a compact linear

representation of the input dataset. Thus, a very fast linear

SVM classifier can be obtained. The VLFeat tool is used

for both homogeneous mapping and FV encoding [19]. The

VLFeat open source library implements various computer

vision algorithms such as Fisher Vector, VLAD, SIFT,

MSER, SLIC superpixels, large-scale SVM training, and

many others specializing in image understanding and local

feature extraction and matching. We also use the LIB-

LINEAR for further increasing the efficiency of the SVM

[20, 21]. LIBLINEAR was developed as an open source

library for large-scale linear classification.

To evaluate the performance of the proposed scheme,

we employ classification accuracy, sensitivity, and

specificity.

Sensitivity ¼ TP

TP þ FN

Specificity ¼ TN

TN þ FP

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
;

Sample Number
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Fig. 5 Illustration of EEG

signals, Set E and Set A

Fig. 6 Spectrogram of EEG signal: a healthy and b epileptic seizure
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where TP represents the total number of correctly detected

true-positive samples and TN represents the number of

correctly detected true-negative samples; FP and FN rep-

resent the total number of false-positive and false-negative

samples, respectively.

The setup parameters of the classifiers are adjusted for

obtaining the best performance. For the SVM, we experi-

ment with all kernels and the best result is obtained with a

linear kernel. The C parameter is set to 100. L2-regularized

L2-loss solver is chosen for LIBLINEAR. In addition, the

C parameter for LIBLINEAR is set to 0.07. Chi2 kernel is

used for homogeneous mapping. It is worth mentioning

that the experimental results are recorded using fivefold

cross-validation. The overall performance of the proposed

method is tabulated in Table 1.

The results suggest that the best accuracy is obtained with

Homogenous Mapping ? LIBLINEAR. The classification

accuracy is 100 %. In addition, the sensitivity and specificity

values are 100 and 100 %, respectively. The SVM yields the

worst classification results. 92.5 % accuracy is recorded. Sen-

sitivity and specificity values are 95 and 90 %, respectively.

Thus, it is obvious that LIBLINEAR structure greatly improves

the performance. LIBLINEAR structure is 7 % better than that

of SVM. In addition, homogeneous mapping also improves

performance. 0.5 % more accurate result is obtained with

homogenous mapping than LIBLINEAR structure.

Similar experiments are carried out for TFCM features.

The related classifier parameters are set as the follows: the

SVM kernel is chosen as a polynomial and C is set to 1.

L1-regularized L2-loss solver is chosen for LIBLINEAR.

In addition, the C parameter for LIBLINEAR is set to 15.

The performance results of TFCM features are shown in

Table 2. The best accuracy is obtained using Homogenous

Mapping ? LIBLINEAR. The obtained accuracy is 87 %.

The LIBLINEAR and SVM obtain the same classification

accuracy. 82 % is tabulated. The other sensitivity and

specificity values can be seen in Table 2. The best sensi-

tivity value is obtained with Homogenous Mapping ?

LIBLINEAR. The worst specificity value is recorded for

SVM (79 %).

We conclude our experiments with the LBP features. We

adjust the related parameters of the classifiers for obtaining

high-performance results. Similar to previous experiments, the

intersection kernel is chosen for the SVM. We also experiment

with other kernels such as linear, radial basis function, poly-

nomial, and sigmoid. The intersection kernel achieves the

highest accuracy. The C parameter is selected as 0.32. L1-

regularized L2-loss solver is chosen for LIBLINEAR. In

addition, the C parameter for LIBLINEAR is set to 100.

The performance results of LBP features are shown in

Table 3. The best accuracy is obtained using SVM and

LIBLINEAR. The obtained accuracy is 100 % for both

Fig. 7 Gray-scale sub-images: a healthy and b epileptic seizure EEG signal. A gamma, B beta, C alpha, D theta, E delta

Table 1 Obtained results of

GLCM features
Classifier structure Accuracy (%) Sensitivity (%) Specificity (%)

SVM 92.5 95 90

LIBLINEAR 99.5 100 99

Homogenous Mapping ? LIBLINEAR 100 100 100
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classification methods. Actually, this is a surprising result

because in the previous two experiments, the Homogenous

Mapping ? LIBLINEAR structure yields better results

than SVM and LIBLINEAR. Homogenous Map-

ping ? LIBLINEAR yields the worst results for LBP

features.

We also compare our results with other published

methods handling the classification problem in the same

dataset A and E. The results are shown in Table 4. From

Table 4, we can see that accuracy of our proposed method

is higher compared with other methods.

4 Conclusions

In this work, t–f representation of EEG signals, texture

descriptors, and SVM approach has been used to detect the

epileptic seizure. The STFT spectrogram has been con-

sidered for discrimination of the epileptic seizure and

healthy EEG signals. The obtained t–f images are then

divided on the frequency bands of the rhythms. The fea-

tures are obtained by calculating the histogram of LBP and

various statistical features of the GLCM and TFCM for

each t–f sub-image. The features are then fed into the

classifier. The extensive experiments indicate that the LBP

features obtained the best results. The second best results

are recorded with GLCM features, and finally TFCM-based

features exhibit the worst performance. This situation may

be caused because of the dimensionality of the feature

vectors. In other words, LBP-based feature vector has the

higher dimensionality and TFCM-based feature vector has

the lowest. In addition, LBP may better characterize the

EEG t–f images than the GLCM and TFCM methods.
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