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Abstract In this review paper, we summarized the auto-

mated dementia identification algorithms in the literature from

a pattern classification perspective. Since most of those algo-

rithms consist of both feature extraction and classification, we

provide a survey on three categories of feature extraction

methods, including the voxel-, vertex- and ROI-based ones,

and four categories of classifiers, including the linear dis-

criminant analysis, Bayes classifiers, support vectormachines,

and artificial neural networks. We also compare the reported

performance of many recently published dementia identifica-

tion algorithms. Our comparison shows that many algorithms

can differentiate the Alzheimer’s disease (AD) from elderly

normal with a largely satisfying accuracy, whereas distin-

guishing the mild cognitive impairment from AD or elderly

normal still remains a major challenge.

Keywords Dementia � Computer-aided diagnosis �
Medical imaging � Image processing � Feature extraction �
Pattern classification

1 Introduction

Dementia is a chronic and progressive decline in cognitive

function due to the damage or disease in the brain beyond

what might be expected from normal aging [1]. There exist

many varieties of dementia, among which the Alzheimer’s

disease (AD) and frontotemporal dementia (FTD) are two

of the most common types [2–4]. AD is the most prevalent

dementia type, representing 60–80 % of the cases [5]. FTD

was once considered rare, but it is now thought to account

for up to 4 and 20 % of all dementia and memory disorders

in clinics [6] and may be as common as AD among people

younger than age 65 [7]. Other conditions that can also

cause dementia include Creutzfeldt–Jakob disease (CJD),

Huntington’s disease, Lewy body disease, Parkinson’s

disease, vascular dementia, and Wernicke–Korsakoff

syndrome.

Dementia is now a major global health and social threat.

It was estimated that 35.6 million people worldwide were

suffering from dementia in 2010 and the population was

predicted to be doubled every 20 years as the world pop-

ulation ages [8, 9]. Due to the rapid increase of dementia

cases, this disease has become an increasing death-factor

around the whole world [10]. It is shown that, from 2000 to

2010, the deathrate of heart disease, breast cancer, prostate

cancer, stroke, and HIV has dropped by 16, 2, 8, 23, and

42 %, respectively, whereas the deathrate of AD has

increased by an astonishing 68 % [11]. Even worse,

dementia generally presents a duration of more than

10 years after diagnosis [12], which may bring enormous

impact and financial burden on individuals, families, health

care systems, and societies as a whole [13–15].

The early symptoms of dementia include memory

problems, difficulties in word finding and thinking pro-

cesses, a lack of initiative, changes in personality or
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behavior, in day to day function at home, or at work, and in

taking care of oneself. Some symptoms are reversible,

whereas others are irreversible, depending upon the etiol-

ogy of the disease. If the dementia can be diagnosed at its

early stage, it is still possible to repair some reversible

damages and thus slow down the process of irreversible

damages, since evidences showed that the currently avail-

able medications for dementia, which can help people to

maintain daily function and quality of life as well as sta-

bilize cognitive decline, may be more beneficial if given

early in the disease process. For instance, about 10–30 %

of people with the mild cognitive impairment (MCI), which

is usually thought to be the incubation of AD in clinical

practice, develop to AD every year, whereas the conversion

rate of normal aging group is just 1–3 % [16]. According to

recent research, diagnosing MCI at its early stage and

taking corresponding measures to protect certain neuro-

logical functions of patients will help to slow down the

conversion from MCI to AD.

There exist some brief (5–15 min) tests that have rea-

sonable reliability and can be used in the office or other

settings to screen cognitive status for deficits which are

considered pathological. Examples of such tests include the

abbreviated mental test score (AMTS), mini-mental state

examination (MMSE), modified mini-mental state exami-

nation (3MS) [17], cognitive abilities screening instrument

(CASI) [18], and clock drawing test [19]. Although these

tests can help diagnosing different types of dementia, they

are generally recognized to be inadequate to classify the

types of dementia at an early stage. Some people perform

well on brief screening tests, but their memory and think-

ing impairments may be found with more comprehensive

testing. Moreover, some tests have been shown to have

educational, social, and cultural biases.

Medical imaging offers the ability to visualize degener-

ative histological changes, including the amyloid plaques,

hypo-metabolism, and atrophy introduced by neurological

disorders, which occur long before the neurodegenerative

disorder is clinically detectable [20]. Hence, the widespread

applications of medical imaging have led to a revolution in

the early diagnosis of dementia [21–24]. The commonly used

imaging modalities in dementia diagnosis include the mag-

netic resonance imaging (MRI), positron emission tomog-

raphy (PET), and single-photon emission computed

tomography (SPECT). Structural MRI uses a magnetic field

and radio waves to create detailed images of the organs and

tissues within human body and has been shown to be a sur-

rogate for early diagnosis of AD, particularly in subjects

clinically classified as amnestic MCI (aMCI) [25]. This

technique offers several advantages, including greater

availability, better soft tissue contrast, faster data acquisi-

tion, lower cost, and the possibility of automatically deriving

quantitative indices of regional atrophy [26]. Accordingly,

the validation of structure MRI as a marker of AD progres-

sion is the core project of the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI). Functional PET with various

radioactive tracers, e.g., 2-[18F]fluoro-2-deoxy-D-glucose

(FDG) and 18C-Pittsburgh Compound (11C-PiB), can detect

subtle changes in cerebral metabolism or amyloid deposition

prior to anatomical changes are evident or a symptomato-

logical diagnosis of probable dementia can be made with

structure imaging [27–30]. Functional SPECT is similar to

PET in its use of radioactive tracer material and detection of

gamma rays. SPECT scans have low spatial resolution than

PET scans, but are significantly less expensive. However, the

interpretation of PET and SPECT images remains a chal-

lenge because the changes can be subtle in the early course of

the disease and there can be some overlap with normal aging

and other dementia types [31].

Inmedical imaging based dementia diagnosis, the acquired

3D images are still analyzed almost entirely through visual

inspection on a slice-by-slice basis in search of familiar dis-

ease patterns. This requires a high degree of skill and con-

centration, and is time-consuming, expensive, and prone to

operator bias. Thus, there is a strong demand for computer-

aided automated dementia classification, which is expected to

provide a useful ‘‘second opinion’’ and enable doctors to

bypass the aforementioned issues. As a result, a great number

of computer-aided automated dementia identification

approaches have been proposed. The targets of those

approaches are in threefold: (1) differentiating dementia cases

fromnormal controls (NCs); (2) identifying different stages of

dementia, such as separating MCI from AD cases; and (3)

identifying different types of dementia, such as separatingAD

from FTD. There exist several publically available databases,

including the Early Lung Cancer Action Program (ELCAP)

[32], Open Access Series of Imaging Studies (OASIS) [33,

34], andAlzheimer’s diseaseNeuroimaging Initiative (ADNI)

[35]. These databases have been broadly used as the test bed in

many studies, and thus tremendously promoted the research

on automated dementia identification.

In this paper, we provide a survey of automated

dementia identification approaches in the literature from a

pattern classification perspective. Similar to other pattern

classification solutions, various dementia identification

approaches consist of two major steps: feature extraction

and classification. Hence, we review the feature extraction

methods and classifiers used in those approaches, respec-

tively. We also provide a comparison of the reported per-

formance of many available approaches.

2 Methods

Automated identification of dementia using medical

imaging with the aid of computers is essentially an image-
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based pattern recognition problem, which can be solved in

two successive steps: feature extraction and pattern clas-

sification. During the training stage, image features that can

characterize the patterns of various types or stages of

dementia are calculated based on the quantitative analysis

of medical images. Those features are usually selected and/

or combined to reduce their dimensionality before training

a classifier with the supervised learning techniques [36].

The trained classifier may be treated as a ‘‘black box,’’

which encapsulates the knowledge gleaned from the ima-

ges and is capable of producing the expected predictions

[37]. For each testing image, the features extracted,

selected, and combined in the same way are applied to the

trained classifier to generate a predicted class label that

indicates to which type or stage the dementia case belongs.

The diagram of a typical automated dementia identification

system is shown in Fig. 1.

Next, we will review the feature extraction methods and

classification methods used in the state of the art dementia

identification approaches, respectively.

2.1 Feature extraction methods

According to the types of features extracted from brain

images, feature extraction methods can be roughly grouped

into voxel-based, vertex-based, and ROI-based ones [38].

2.1.1 Voxel-based methods

Voxel-based methods can be traced back to the mid-1990s,

when Wright et al. [39] statistically analyzed the gray

matter and white matter voxel values for schizophrenia

diagnosis. Typically, voxel-based features consist of

statistics of voxel distributions on major brain tissues, such

as the gray matter, white matter, and cerebrospinal fluid

(CSF) [37, 40–43]. Magnin et al. [44] counted the voxel

value histogram in major anatomical regions, which could

be obtained by either image segmentation or registering a

brain atlas onto the image [44–46]. However, the

anatomical parcellation of brain is not a trivial task and

may not be adaptive to the pathology. Fan et al. [42] pro-

posed an adaptive parcellation approach, in which the

image space is divided into the most discriminative regions

[40, 41, 47–49]. The voxel-based morphometry (VBM)

method proposed by Ashburner et al. [50] allows investi-

gation of focal differences in brain anatomy using the

statistical parametric mapping (SPM), and hence greatly

facilitates the extraction of voxel-based features. Papa-

kostas et al. [51] successfully applied the VBM analysis to

feature extraction on MRI data. Recently, Liu et al. pro-

posed a simulation method to predict the longitudinal brain

morphological changes in neurodegenerative brains based

on VBM [52].

Fig. 1 Diagram of computer-aided identification of dementia
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Voxel-based features can be either directly used to con-

struct classifiers [43] or further processed to reduce its

dimensionality via feature selection, agglomeration, and

combination [38]. Vemuri et al. [37] used smoothing, voxel-

downsampling, feature selection, and combination to iden-

tify the features with the highest discriminatory power. Zhao

et al. [53] used the trace ratio linear discriminant analysis to

get the optimal feature projection, and thus reduced the

dimensionality of original features. Fan et al. [54] used a

high-dimensional template to wrap original data and

employed a watershed method to get the robust features.

2.1.2 Vertex-based methods

Clinical studies show that not only the volume of

anatomical regions matters in the early diagnose of

dementia, but also the vertex atrophy of the regions can

reflect the difference among AD, NC, and MCI [55–57].

Hence, another category of features is defined at the vertex-

level on the cortical surface. The cortical thickness repre-

sents a direct index of atrophy caused by dementia and can

be used in dementia diagnosis. Querbes et al. [56] devel-

oped a fast, robust, and fully automated method for cortical

thickness measurement. Lerch et al. [58] also proposed a

link between histopathologically confirmed changes and

cortical atrophy assessed through cortical thickness mea-

surement. Desikan et al. [55] parcellated the brain into

neocortical and non-neocortical ROIs by wrapping an

anatomical atlas and used the mean thickness and volume

of each ROI at the right and the left hemispheres as fea-

tures. In this method, the volumes are corrected using the

estimated total intracranial volume [38].

As an alternative to volumetric methods, cortical

thickness measurement has given promising results while

being less operator-dependent than the hippocampal vol-

ume measurements and is suitable for quantification and

localization [59]. The cognitive reserve is recognized as a

confounding factor in hiding early signs of dementia,

especially for subjects with a high education level who

would be more successful at coping with greater brain

damage [60–62]. The studies, which have investigated the

interaction between the cognitive reserve and neuroimag-

ing modes, showed that neuroimaging measurements may

reflect the underlying pathology better than neuropsy-

chometry since they are less affected by cognitive reserve

[61, 63–65]. However, clinical evaluations have shown the

limitations of vertex-based features in predicting the evo-

lution from the MCI stage to the dementia stage [66–69].

2.1.3 ROI-based methods

ROI-based methods define image features in one or more

major brain components, such as the cingulum, corpus

callosum, uncinate fasciculus, superior longitudinal fasci-

culus, and hippocampi. Pathological studies have shown

that neurodegeneration in AD begins in the medial tem-

poral lobe, successively affecting the entorhinal cortex,

hippocampus, and limbic system, and then extends toward

neocortical areas [70, 71]. There is a widespread agreement

that medial temporal atrophy, in particular hippocampal

atrophy, is a sensitive AD biomarker [72–74]. Hence,

hippocampi have been used as a marker of early AD in a

number of studies [38].

The widely used features include the volume or shape of

hippocampi or a weighted combination. Chupin et al. [75–

77] adopted the volume of the hippocampi as features, which

were normalized by the total intracranial volume (TIV)

summing up cortical parcellation maps of GM, WM, and

CSF inside a bounding box in a standard space. Westman

et al. [78] also used the hippocampal volume extracted on

MRI data as features and the orthogonal partial least squares

to latent structures (OPLS) analysis as the classifier to dif-

ferentiate AD and MCI from elderly normal subjects. When

it comes to the shape features, each segmented hippocampus

is described by a series of spherical harmonics (SPHARM),

whose coefficients were computed with the SPHARM-PDM

software developed by the University of North Carolina and

the National Alliance for Medical Imaging Computing [79].

Gerardin et al. [80] adopted two sets, one for each hip-

pocampus, of 3D SPHARM coefficients as features and used

an univariate feature selection method combined with a

bagging strategy to get the most discriminative features.

Atrophy in early stages of AD is not confined to the hip-

pocampus or the entorhinal cortex. Other areas are affected

in AD patients and MCI patients as well [4]. Therefore,

multi-ROI-based feature extraction has attracted a lot of

research attentions. Xia et al. [81] used the AAL cortical

parcellation map to separate 116 anatomical regions for

feature extraction. Liu et al. [82] proposed a multi-channel

pattern analysis approach to analyze the hypo-metabolism

patterns of AD andMCI on FDG-PET data and identified 21

brain regions as the most discriminative biomarkers.

In ROI-based methods, ROI segmentation is usually

performed before feature extraction. Since manual seg-

mentation is time-consuming and prone to operator-related

bias, automated segmentation of ROIs is badly needed.

Beside using probabilistic and anatomical priors for hip-

pocampus segmentation [75], Chupin et al. [76, 77] also

developed a fully automatic method called SACHA, which

uses the prior knowledge on the location of the hip-

pocampus and amygdala derived from a probabilistic atlas

and on the relative positions of these structures with respect

to the automatically identified landmarks [38]. The

SACHA algorithm segments both the hippocampus and

amygdala simultaneously based on competitive region-

growing between these two structures. It has shown that
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this approach is competitive with manual tracing for the

discrimination of patients with AD and MCI [75, 83].

2.2 Classification methods

With the features estimated on training cases, a classifier

can be trained and applied to predict the diagnosis of a

testing case, whose features are extracted in the same way.

The commonly used classifiers in dementia identification

include the linear discriminant analysis (LDA), Bayes

classifier, support vector machine (SVM), artificial neural

network (ANN), and other supervised ones [84, 85].

2.2.1 Linear discriminant analysis (LDA)

Since the number of brain voxels is huge, the features cal-

culated via voxel combination are of high dimension. LDA,

also known as the Fisher linear discriminant (FLD), is one of

the most popular dimensionality reduction methods [86].

LDA looks for low-dimensional linear combinations of

variables, which best explain the data, by maximizing the

between-class scatter matrix while minimizing the within-

class scatter matrix and form a linear discriminant function

resulting in least misjudgments [87–89]. Zhao et al. [53]

proposed an improved iterative trace ratio (iITR) algorithm

to solve the trace ratio linear discriminant analysis (TR-

LDA) problem for dementia diagnosis and achieved better

performance than the principal component analysis (PCA),

locality preserving projections (LPP), and maximummargin

criterion (MMC). Horn et al. [90] applied the image features

compressed by the partial least squares (PLS) to LDA for

differentiating AD from FTD and achieved an accuracy of

84 %, a sensitivity of 83 %, and a specificity of 86 % on

perfusion SPECT images.

LDA is closely related to analysis of variance and

regression analysis, which also attempt to express one

dependent variable as a linear combination of other fea-

tures or measurements [91]. LDA works well when the

features own the characteristic of clear classification, which

however is not possessed by most features extracted clin-

ical data.

2.2.2 Bayes classifiers

Bayes classifiers are a family of simple probabilistic clas-

sifiers based on Bayes’ theorem with strong (naive) inde-

pendence assumptions between the features. Seixas et al.

[10] proposed a Bayesian network decision model for

supporting diagnosis of AD, MCI, and NC, and achieved

better performance than several well-known classifiers,

including the näive Bayes, logistic regression model,

multilayer perceptron ANN, decision table, decision stump

optimized by the Adaboost algorithm and J48 decision tree.

Liu et al. [92] proposed the multifold Bayesian Kernel-

ization method, which can differentiate AD from NC with

a high accuracy, but achieved poor results in diagnosing

MCI-converter (MCIc) and MCI-non-converter (MCInc).

Plant et al. [93] combined the feature selection with clas-

sification using a Bayes classifier for the discrimination

between AD and NC on MRI data and reported an accuracy

of up to 92 %. Lopez et al. [94] applied the multivariate

methods, such as PCA and LDA, to feature extraction, and

then employed the Bayesian framework for automated

diagnosis of AD and NC using PET and SPECT.

2.2.3 Support vector machine (SVM)

A SVM constructs a hyperplane or a set of hyperplanes in a

high- or infinite-dimensional space, which can be used for

classification, regression, or other tasks [95]. Since the

constructed hyperplane has the largest distance to the

nearest training data points of any class, SVMs in general

have lower generalization error than other classifiers, and

hence have been commonly used to solve pattern classifi-

cation problems which have limited training samples [38,

96–98]. Klöppel et al. [43] first used the SVM-based cri-

teria to select the most discriminative features, and then

applied the SVM-based classifier to diagnose healthy

controls and schizophrenia patients using MRI brain ima-

ges. Vemuri et al. [37] also used SVM as both feature

selection criteria and a classifier, and achieved a sensitivity

of 86 % and a specificity of 92 % in AD diagnosis on MRI

data. Schmitter et al. [99] used SVM to verify that two

distinct VBM algorithms, i.e., the FreeSurfer and an in-

house algorithm MorphoBox, can achieve comparable

results to the conventional whole-brain VBM techniques.

Hackmack et al. [100] firstly used the dual-tree wavelet

transform to extract features, and then used a linear SVM

to discriminate multiple sclerosis from NC. Dukart et al.

[101] used the meta-analysis- based-SVM to diagnose AD

and NC on both MRI and PET data and achieved an

accuracy of 90.0 %, a sensitivity of 91.8 % and a speci-

ficity of 87.8 %. Ortiz et al. [102] used the SVM classifier

to verify the performance of three different feature

extraction methods, including PCA, learning vector quan-

tization (LVQ), and voxels as features (VAF) and

demonstrated that LVQ features could generate the best

result. Nir et al. [103] used the fiber-tract modeling method

to extract image features and applied SVM to differenti-

ating AD from NC and achieved an accuracy of 86.2 %, a

sensitivity of 88.0 %, and a specificity of 89.2 %.

2.2.4 Artificial neural network (ANN)

ANNs are a family of models inspired by biological

neural networks and are used to estimate or
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approximate functions that depend on a large number

of inputs and are generally unknown. They have been used

to solve a wide variety of tasks that are hard to solve using

ordinary rule-based programming. Deng et al. [104] showed

that using ANN can get higher sensitivity and accuracy than

traditional discriminant function analysis [105] in dementia

classification using MRI. Huang et al. [105] combined the

VBM technique and ANN to differentiate AD from NC and

achieved 100 % accuracy. Garcı́a-Pérez et al. [106]

employed the artificial neural network technology to build an

automaton to assist neurologists during the differential

diagnosis of AD andVD. The recent studies also suggest that

deep learning, which is usually based on a hierarchical ANN,

is effective in capturing high-level variations of brain images

and improves the dementia classification [107–109].

Generally, ANN can be viewed as a ‘black box’ for the

best discriminant analysis. Due to its parallel nature, ANN

can easily take the advantage of hardware development and

is typically suitable for solving classification problems with

massive training data. However, tuning the parameters

involved in ANN is often time-consuming, which has ham-

pered the application of ANNs to dementia identification.

So far we have reviewed the application of four classical

pattern classification methods to automated dementia

identification. It is worth noting that dementia identifica-

tion is essentially a supervised classification problem, and

hence, the advances in supervised machine learning and

pattern classification can find immediate application on this

topic.

3 Performance comparison

There are several comparative studies in the literature.

Horn et al. [90] applied a set of 116 descriptors, which

correspond to the average activity in ROIs calculated from

the images of 82 AD and 91 FTD patients, to a number of

linear and nonlinear classifiers, including the logistic

regression, LDA, SVM, KNN, multilayer perceptron, and

kernel logistic PLS. They compared the performance of

those classifiers in differentiating AD from FTD and con-

cluded that the PLS ? KNN is the best method since it

achieves the highest accuracy with leave-one-out cross-

validation. Cuingnet et al. [38] evaluated the performance

of ten approaches in automatically discriminating between

patients with AD, MCI, and elderly controls using the T1-

weighted MRI data acquired on 509 subjects from the

ADNI database. In those approaches, the classifier is SVM

and the involved feature extraction methods can be

grouped into three categories. The first category is based on

segmented tissue probability maps, including directly using

the voxels of the tissue probability maps as features [43],

using the STAND score [37], grouping the voxels into

anatomical regions as features using a labeled atlas [44],

and aggregating voxel values in homogeneously discrimi-

native regions to form features [42]. The second category is

based on the cortical thickness, including direct, atlas-

based, and ROI-based methods. The third category is based

on hippocampi, including the volume and shape of left and

right hippocampus. They concluded that, for AD versus

CN, whole-brain methods achieved high accuracies (up to

81 % sensitivity and 95 % specificity); for the detection of

MCIc, the sensitivity was substantially lower; and for the

prediction of conversion, no classifier obtained signifi-

cantly better results than chance.

Next, we compare the performance of the automated

dementia identification methods published in recent years

in Table 1. It reveals that, when differentiating AD from

NC, many methods can achieve an accuracy of[90 % and

even 100 % on smaller datasets, whereas when separating

MCI from AD or NC, the performance of those methods is

much lower.

4 Perspective

Due to the advances inmedical imaging, it is now possible to

sequentially capture two separate yet complementary

information of a patient study in a single scan, i.e., PET/CT

[110]. Furthermore, it is predicted that the next-generation

molecular imaging modalities will continuously advance in

multi-modality paradigm, such as the recent development of

PET/MRI and SPCET/CT [111]. Multimodal neuroimaging

has several distinct advantages over single modality neu-

roimaging, including improving both spatial and temporal

resolution, finding the anatomical basis for functional con-

nectivity, targeting disease biomarkers with high specificity

and sensitivity, along with many new opportunities to

improve brain research [109]. Recently, Gray et al. [112]

proposed a multi-modality classification framework, in

which manifolds are constructed based on pairwise simi-

larity measures derived from random forest classifiers, and

achieved classification accuracies of 89 % between AD and

NC, and 75 % between MCI and NC. Liu et al. [113] sum-

marized the recent advances in multimodal neuroimaging

technologies, along with their applications to the neuropsy-

chiatric disorders. We believe that the application of multi-

modality neuroimaging will substantially improve the per-

formance of automated dementia identification.

5 Conclusion

In this paper, we provide a brief review of automated

dementia identification algorithms, which from a pattern

classification perspective can be divided into two stages:
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feature extraction and classification. We summarize the

voxel-based, vertex-based, and ROI-based feature extrac-

tion methods and LDA-based, Bayesian, SVM-based, and

ANN-based pattern classification methods used in various

dementia identification algorithms. We also compare the

performance of some of those algorithms. The comparison

shows that satisfying diagnosis of AD and NC can be

achieved by many algorithms; whereas differentiating MCI

from AD or NC still remains a major challenge. Therefore,

more research effort should be devoted to discovering the

patterns embedded in brain images of MCI patients. We

expect novel solutions could be proposed to address this

issue.
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