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Abstract Investigating brain connectivity networks for

neurological disorder identification has attracted great

interest in recent years, most of which focus on the graph

representation alone. However, in addition to brain net-

works derived from the neuroimaging data, hundreds of

clinical, immunologic, serologic, and cognitive measures

may also be documented for each subject. These measures

compose multiple side views encoding a tremendous

amount of supplemental information for diagnostic pur-

poses, yet are often ignored. In this paper, we study the

problem of subgraph selection from brain networks with

side information guidance and propose a novel solution to

find an optimal set of subgraph patterns for graph classi-

fication by exploring a plurality of side views. We derive a

feature evaluation criterion, named gSide, to estimate the

usefulness of subgraph patterns based upon side views.

Then we develop a branch-and-bound algorithm, called

gMSV, to efficiently search for optimal subgraph patterns

by integrating the subgraph mining process and the pro-

cedure of discriminative feature selection. Empirical stud-

ies on graph classification tasks for neurological disorders

using brain networks demonstrate that subgraph patterns

selected by the multi-side-view-guided subgraph selection

approach can effectively boost graph classification perfor-

mances and are relevant to disease diagnosis.

Keywords Subgraph pattern � Graph mining � Side
information � Brain network

1 Introduction

Modern neuroimaging techniques have enabled us to

model the human brain as a brain connectivity network or a

connectome. Rather than vector-based feature representa-

tions as traditional data, brain networks are inherently in

the form of graph representations which are composed of

brain regions as the nodes, e.g., insula, hippocampus,

thalamus, and functional/structural connectivities between

the brain regions as the links. The linkage structure in these

brain networks can encode tremendous information con-

cerning the integrated activity of the human brain. For

example, in brain networks derived from functional mag-

netic resonance imaging (fMRI), connections/links can

encode correlations between brain regions in functional

activity, while structural links in diffusion tensor imaging

(DTI) can capture white matter fiber pathways connecting

different brain regions. The complex structures and the lack

of vector representations within these graph data raise a
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challenge for data mining. An effective model for mining

the graph data should be able to extract a set of subgraph

patterns for further analysis. Motivated by such challenges,

graph mining research problems, in particular graph clas-

sification, have received considerable attention in the last

decade.

The graph classification problem has been studied

extensively. Conventional approaches focus on mining

discriminative subgraphs from graph view alone. This is

usually feasible for applications like molecular graph

analysis, where a large set of graph instances with labels

are available. For brain network analysis, however, usually

we only have a small number of graph instances, ranging

from 30 to 100 brain networks [19]. In these applications,

the information from the graph view alone may not be

sufficient for mining important subgraphs. Commonly,

however, in neurological studies, hundreds of clinical,

serologic, and cognitive measures are available for each

subject in addition to brain networks derived from the

neuroimaging data [4, 5]. These measures comprise mul-

tiple side views. This supplemental information, which is

generally ignored, may contain a plurality of side views to

guide the process of subgraph mining in brain networks.

Despite its value and significance, the feature selection

problem for graph data using auxiliary views has not been

studied in this context so far. There are two major diffi-

culties in learning from multiple side views for graph

classification, as follows:

1.1 The primary view in graph representation

Graph data naturally compose the primary view for graph

mining problems, from which we want to select discrimi-

native subgraph patterns for graph classification. However,

it raises a challenge for data mining with the complex

structures and the lack of vector representations. Conven-

tional feature selection approaches in vector spaces usually

assume that a set of features are given before conducting

feature selection. In the context of graph data, however,

subgraph features are embedded within the graph structures

and usually it is not feasible to enumerate the full set of

subgraph features for a graph dataset before feature

selection. Actually, the number of subgraph features grows

exponentially with the size of graphs.

1.2 The side views in vector representations

In many applications, side information is available along

with the graph data and usually exists in the form of vector

representations. That is to say, an instance is represented by

a graph and additional vector-based features at the same

time. It introduces us to the problem of how to leverage the

relationship between the primary graph view and a plu-

rality of side views, and how to facilitate the subgraph

mining procedure by exploring the vector-based auxiliary

views. For example, in brain networks, discriminative

subgraph patterns for neurological disorders indicate brain

injuries associated with particular regions. Such changes

can potentially express in other medical tests of the subject,

e.g., clinical, immunologic, serologic, and cognitive mea-

sures. Thus, it would be desirable to select subgraph fea-

tures that are consistent with these side views.

Figure 2 illustrates two strategies of leveraging side

views in the process of selecting subgraph patterns. Con-

ventional graph classification approaches treat side views

and subgraph patterns separately and may only combine

them at the final stage of training a classifier. Obviously,

the valuable information embedded in side views is not

fully leveraged in the feature selection process. Most

subgraph mining approaches focus on the drug discovery

problem which have access to a great amount of graph data

for chemical compounds. For neurological disorder iden-

tification, however, there are usually limited subjects with a

Subgraph Patterns

Side Views
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Brain Networks Graph Classification
Input

Fig. 2 Two strategies of leveraging side views in feature selection

process for graph classification: late fusion and early fusion [6]

Fig. 1 An example of multiple side views associated with brain

networks in medical studies
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small sample size of brain networks available. Therefore, it

is critical to learn knowledge from other possible sources.

We notice that transfer learning can borrow supervision

knowledge from the source domain to help the learning on

the target domain, e.g., finding a good feature representa-

tion [10], mapping relational knowledge [24, 25], and

learning across graph database [29]. However, to the best

of our knowledge, they do not consider transferring com-

plementary information from vector-based side views to

graph database whose instances are complex structural

graphs.

To solve the above problems, in this paper, we introduce

a novel framework that fuses heterogeneous data sources at

an early stage. In contrast to existing subgraph mining

approaches that focus on a single view of the graph rep-

resentation, our method can explore multiple vector-based

side views to find an optimal set of subgraph features for

graph classification. We first verify side information con-

sistency via statistical hypothesis testing. Based on auxil-

iary views and the available label information, we design

an evaluation criterion for subgraph features, named gSide.

By deriving a lower bound, we develop a branch-and-

bound algorithm, called gMSV, to efficiently search for

optimal subgraph features with pruning, thereby avoiding

exhaustive enumeration of all subgraph features. In order to

evaluate our proposed model, we conduct experiments on

graph classification tasks for neurological disorders, using

fMRI and DTI brain networks. The experiments demon-

strate that our subgraph selection approach using multiple

side views can effectively boost graph classification per-

formances. Moreover, we show that gMSV is more effi-

cient by pruning the subgraph search space via gSide.

2 Problem formulation

A motivation for this work is the premise that side infor-

mation could be strongly correlated with neurological sta-

tus. Before presenting the subgraph feature selection

model, we first introduce the notations that will be used

throughout this paper. Let D ¼ fG1; . . .;Gng denote the

graph dataset, which consists of n graph objects. The

graphs within D are labeled by ½y1; . . .; yn�>, where yi 2
f�1;þ1g denotes the binary class label of Gi.

Definition 1 (Graph) A graph is represented as

G ¼ ðV;EÞ, where V ¼ fv1; . . .; vnvg is the set of vertices,

E � V � V is the set of edges.

Definition 2 (Subgraph) Let G0 ¼ ðV 0;E0Þ and G ¼
ðV;EÞ be two graphs. G0 is a subgraph of G (denoted as

G0 � G) iff V 0 � V and E0 � E. If G0 is a subgraph of G,

then G is supergraph of G0.

Definition 3 (Side view) A side view is a set of vector-

based features zi ¼ ½z1; . . .; zd�> associated with each graph

object Gi, where d is the dimensionality of this view. A

side view is denoted as Z ¼ fz1; . . .; zng.

We assume that multiple side views fZð1Þ; . . .;ZðvÞg are

available along with the graph dataset D, where v is the

number of side views. We employ kernels jðpÞ on ZðpÞ,

such that jðpÞij represents the similarity between Gi and Gj

from the perspective of the p-th view. The RBF kernel is

used as the default kernel in this paper, unless otherwise

specified:

jðpÞij ¼ exp �
kzðpÞi � z

ðpÞ
j k22

dðpÞ

 !
ð1Þ

In this paper, we adopt the idea of subgraph-based graph

classification approaches, which assume that each graph

object Gj is represented as a binary vector xj ¼
½x1j; . . .; xmj�> associated with the full set of subgraph pat-

terns fg1; . . .; gmg for the graph dataset fG1; . . .;Gng. Here
xij 2 f0; 1g is the binary feature of Gj corresponding to the

subgraph pattern gi, and xij ¼ 1 iff gi is a subgraph of Gj

(gi � Gj), otherwise xij ¼ 0. Let X ¼ ½xij�m�n
denote the

matrix consisting of binary feature vectors using S to

represent the graph dataset D. X ¼ ½x1; . . .; xn� ¼
½f1; . . .; fm�> 2 f0; 1gm�n

. The full set S is usually too large

to be enumerated. There is usually only a subset of sub-

graph patterns T � S relevant to the task of graph classi-

fication. We briefly summarize the notations used in this

paper in Table 1.

The key issue of discriminative subgraph selection using

multiple side views is how to find an optimal set of sub-

graph patterns for graph classification by exploring the

auxiliary views. This is non-trivial due to the following

problems:

– How to leverage the valuable information embedded in

multiple side views to evaluate the usefulness of a set

of subgraph patterns?

– How to efficiently search for the optimal subgraph

patterns without exhaustive enumeration in the primary

graph space?

In the following sections, we will first introduce the opti-

mization framework for selecting discriminative subgraph

features using multiple side views. Next, we will describe

our subgraph mining strategy using the evaluation criterion

derived from the optimization solution.
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3 Data analysis

A motivation for this work is that the side information

could be strongly correlated with the health state of a

subject. Before proceeding, we first introduce real-world

data used in this work and investigate whether the available

information from side views has any potential impact on

neurological disorder identification.

3.1 Data collections

In this paper, we study the real-world datasets collected

from the Chicago Early HIV Infection Study at North-

western University [27]. The clinical cohort includes 56

HIV (positive) and 21 seronegative controls (negative).

Demographic information is presented in Table 2. HIV

and seronegative groups did not differ in age, gender,

racial composition or education level. More detailed

information about data acquisition can be found in [5].

The datasets contain functional magnetic resonance

imaging (fMRI) and diffusion tensor imaging (DTI) for

each subject, from which brain networks can be con-

structed, respectively.

For fMRI data, we used DPARSF toolbox1 to extract a

sequence of responds from each of the 116 anatomical

volumes of interest (AVOI), where each AVOI represents a

different brain region. The correlations of brain activities

among different brain regions are computed. Positive cor-

relations are used as links among brain regions. For details,

functional images were realigned to the first volume, slice

timing corrected, and normalized to the MNI template and

spatially smoothed with an 8-mm Gaussian kernel. The

linear trend of time series and temporally band-pass fil-

tering (0.01–0.08 Hz) were removed. Before the correlation

analysis, several sources of spurious variance were also

removed from the data through linear regression: (i) six

parameters obtained by rigid body correction of head

motion, (ii) the whole-brain signal averaged over a fixed

region in atlas space, (iii) signal from a ventricular region

of interest, and (iv) signal from a region centered in the

white matter. Each brain is represented as a graph with 90

nodes corresponding to 90 cerebral regions, excluding 26

cerebellar regions.

For DTI data, we used FSL toolbox2 to extract the brain

networks. The processing pipeline consists of the following

steps: (i) correct the distortions induced by eddy currents in

the gradient coils and use affine registration to a reference

volume for head motion, (ii) delete non-brain tissue from

the image of the whole head [15, 30], (iii) fit the diffusion

tensor model at each voxel, (iv) build up distributions on

diffusion parameters at each voxel, and (v) repetitively

sample from the distributions of voxel-wise principal dif-

fusion directions. As with the fMRI data, the DTI images

Table 1 Important notations

Symbol Definition and description

|.| Cardinality of a set

k:k Norm of a vector

D ¼ fG1; . . .;Gng Given graph dataset, Gi denotes the i-th graph in the dataset

y ¼ ½y1; . . .; yn�> Class label vector for graphs in D, yi 2 f�1;þ1g
S ¼ fg1; . . .; gmg Set of all subgraph patterns in the graph dataset D
f i ¼ ½fi1; . . .; fin�> Binary vector for subgraph pattern gi, fij ¼ 1 iff gi � Gj, otherwise fij ¼ 0

xj ¼ ½x1j; . . .; xmj�> Binary vector for Gj using subgraph patterns in S, xij ¼ 1 iff gi � Gj, otherwise xij ¼ 0

X ¼ ½xij�m�n
Matrix of all binary vectors in the dataset, X ¼ ½x1; . . .; xn� ¼ ½f1; . . .; fm�> 2 f0; 1gm�n

T Set of selected subgraph patterns, T � S
IT 2 f0; 1gm�m Diagonal matrix indicating which subgraph patterns are selected from S into T
min_sup Minimum frequency threshold; frequent subgraphs are contained by at least min_sup �jDj graphs
k Number of subgraph patterns to be selected

kðpÞ Weight of the p-th side view (default: 1)

jðpÞ Kernel function on the p-th side view (default: RBF kernel)

Table 2 Demographic characteristics

HIV Control p

Age (mean years � SD) 33.3 � 10.1 31.4 � 8.9 0.45

Gender (% male) 89 % 76 % 0.22

Race (% white) 62 % 76 % 0.22

Education (% college) 81 % 90 % 0.29

1 http://rfmri.org/DPARSF.
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
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were parcellated into 90 regions (45 for each hemisphere)

by propagating the Automated Anatomical Labeling

(AAL) to each image [34]. Min-max normalization was

applied on link weights.

In addition, for each subject, hundreds of clinical,

imaging, immunologic, serologic, and cognitive measures

were documented. Seven groups of measurements were

investigated in our datasets, including neuropsychological

tests, flow cytometry, plasma luminex, freesurfer, overall

brain microstructure, localized brain microstructure, brain

volumetry. Each group can be regarded as a distinct view

that partially reflects subject status, and measurements

from different medical examinations can provide comple-

mentary information. Moreover, we preprocessed the fea-

tures by min-max normalization before employing the RBF

kernel on each view.

3.2 Verifying side information consistency

We study the potential impact of side information on

selecting subgraph patterns via statistical hypothesis testing.

Side information consistency suggests that the similarity of

side view features between instances with the same label

should have higher probability to be larger than that with

different labels. We use hypothesis testing to validate whe-

ther this statement holds in the fMRI and DTI datasets.

For each side view, we first construct two vectors a
ðpÞ
s

and a
ðpÞ
d with an equal number of elements, sampled from

the sets AðpÞ
s and AðpÞ

d , respectively:

AðpÞ
s ¼ fjðpÞij jyiyj ¼ 1g ð2Þ

AðpÞ
d ¼ fjðpÞij jyiyj ¼ �1g ð3Þ

Then, we form a two-sample one-tail t test to validate the

existence of side information consistency. We test whether

there is sufficient evidence to support the hypothesis that

the similarity score in a
ðpÞ
s is larger than that in a

ðpÞ
d . The

null hypothesis is H0 : l
ðpÞ
s � lðpÞd � 0, and the alternative

hypothesis is H1 : l
ðpÞ
s � lðpÞd [ 0, where lðpÞs and lðpÞd

represent the sample means of similarity scores in the two

groups, respectively.

The t test results, p values, are summarized in Table 3.

The results show that there is strong evidence, with sig-

nificance level a ¼ 0:05, to reject the null hypothesis on the

two datasets. In other words, we validate the existence of

side information consistency in neurological disorder

identification, thereby paving the way for our next study of

leveraging multiple side views for discriminative subgraph

selection.

4 Multi-side-view discriminative subgraph selection

In this section, we address the first problem discussed in

Sect. 2 by formulating the discriminative subgraph selec-

tion problem as a general optimization framework as

follows:

T 	 ¼ argminT �SFðT Þ s.t. jT j � k ð4Þ

where j � j denotes the cardinality and k is the maximum

number of feature selected. FðT Þ is the evaluation crite-

rion to estimate the score (can be the lower the better in this

paper) of a subset of subgraph patterns T . T 	 denotes the

optimal set of subgraph patterns T 	 � S.

4.1 Exploring multiple side views: gSide

Following the observations in Sect. 3.2 that the side view

information is clearly correlated with the prespecified label

information, we assume that the set of optimal subgraph

patterns should have the following properties. The simi-

larity/distance between instances in the space of subgraph

features should be consistent with that in the space of a side

view. That is to say, if two instances are similar in the

space of the p-th view (i.e., a high jðpÞij value), they should

also be close to each other in the space of subgraph features

(i.e., a small distance between subgraph feature vectors).

On the other hand, if two instances are dissimilar in the

space of the p-th view (i.e., a low jðpÞij value), they should

be far away from each other in the space of subgraph

features (i.e., a large distance between subgraph feature

vectors). Therefore, our objective function could be to

minimize the distance between subgraph features of each

pair of similar instances in each side view, and maximize

the distance between dissimilar instances. This idea is

formulated as follows:

argmin
T �S

1

2

Xv
p¼1

kðpÞ
Xn
i;j¼1

kIT xi � IT xjk22H
ðpÞ
ij ð5Þ

where IT is a diagonal matrix indicating which subgraph

features are selected into T from S, ðIT Þii ¼ 1 iff gi 2 T ,

Table 3 Hypothesis testing results (p values) to verify side infor-

mation consistency

Side views fMRI dataset DTI dataset

Neuropsychological tests 1.3220e-20 3.6015e-12

Flow cytometry 5.9497e-57 5.0346e-75

Plasma luminex 9.8102e-06 7.6090e-06

Freesurfer 2.9823e-06 1.5116e-03

Overall brain microstructure 1.0403e-02 8.1027e-03

Localized brain microstructure 3.1108e-04 5.7040e-04

Brain volumetry 2.0024e-04 1.2660e-02
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otherwise ðIT Þii ¼ 0. The parameters kðpÞ 
 0

are employed to control the contributions from each

view.

HðpÞ
ij ¼

1

jHðpÞj
ði; jÞ 2 HðpÞ

� 1

jLðpÞj
ði; jÞ 2 LðpÞ

8>><
>>: ð6Þ

where HðpÞ ¼ fði; jÞjjðpÞij 
 lðpÞg, LðpÞ ¼ fði; jÞjjðpÞij \lðpÞg,
and lðpÞ is the mean value of jðpÞij , i.e., 1

n2

Pn
i;j¼1 j

ðpÞ
ij . This

normalization is to balance the effect of similar instances

and dissimilar instances.

Intuitively, Eq. (5) will minimize the distance between

subgraph features of similar instance-pairs with jðpÞij 
 lðpÞ,

while maximizing the distance between dissimilar

instance-pairs with jðpÞij \lðpÞ in each view. In this way, the

side view information is effectively used to guide the

process of discriminative subgraph selection. The fact

verified in Sect. 3.2 that the side view information is

clearly correlated with the prespecified label information

can be very useful, especially in the semi-supervised

setting.

With prespecified information for labeled graphs, we

further consider that the optimal set of subgraph patterns

should satisfy the following constraints: labeled graphs in

the same class should be close to each other; labeled

graphs in different classes should be far away from each

other. Intuitively, these constraints tend to select the

most discriminative subgraph patterns based on the

graph labels. Such an idea has been well explored in the

context of dimensionality reduction and feature selection

[2, 32].

The constraints above can be mathematically formulated

as minimizing the loss function:

argmin
T �S

1

2

Xn
i;j¼1

kIT xi � IT xjk22Xij ð7Þ

where

Xij ¼

1

jMj ði; jÞ 2 M

� 1

jCj ði; jÞ 2 C
0 otherwise

8>>><
>>>:

ð8Þ

and M ¼ fði; jÞjyiyj ¼ 1g denotes the set of pairwise

constraints between graphs with the same label, and C ¼
fði; jÞjyiyj ¼ �1g denotes the set of pairwise constraints

between graphs with different labels.

By defining matrix U 2 Rn�n as

Uij ¼ Xij þ
Xv
p¼1

kðpÞHðpÞ
ij ð9Þ

we can combine and rewrite the function in Eq. (5) and

Eq. (7) as

FðT Þ ¼ 1

2

Xn
i¼1

Xn
j¼1

kIT xi � IT xjk22Uij

¼ trðI>
T XðD� UÞX>IT Þ

¼ trðI>
T XLX

>IT Þ
¼
X
gi2T

f>i Lf i

ð10Þ

where trð�Þ is the trace of a matrix, D is a diagonal matrix

whose entries are column sums of U, i.e., Dii ¼
P

j Uij, and

L ¼ D� U is a Laplacian matrix.

Definition 4 (gSide)Let 0D ¼ fG1; . . .;Gng denote a

graph dataset with multiple side views. Suppose U is a

matrix defined as Eq. (9), and L is a Laplacian matrix

defined as L ¼ D� U, where D is a diagonal matrix,

Dii ¼
P

j Uij. We define an evaluation criterion q, called

gSide, for a subgraph pattern gi as

qðgiÞ ¼ f>i Lf i ð11Þ

where f i ¼ ½fi1; . . .; fin�> 2 f0; 1gn is the indicator vector

for subgraph pattern gi, fij ¼ 1 iff gi � Gj, otherwise

fij ¼ 0. Since the Laplacian matrix L is positive semi-def-

inite, for any subgraph pattern gi, qðgiÞ
 0.

Based on gSide as defined above, the optimization

problem in Eq. (4) can be written as

T 	 ¼ argmin
T �S

X
gi2T

qðgiÞ s.t. jT j � k ð12Þ

The optimal solution to the problem in Eq. (12) can be

found by using gSide to conduct feature selection on a set

of subgraph patterns in S. Suppose the gSide values for all
subgraph patterns are denoted as qðg1Þ� � � � � qðgmÞ in

sorted order, then the optimal solution to the optimization

problem in Eq. (12) is

T 	 ¼ [k
i¼1fgig ð13Þ

4.2 Searching with a lower bound: gMSV

Now we address the second problem discussed in Sect. 2,

and propose an efficient method to find the optimal set of

subgraph patterns from a graph dataset with multiple side

views.

A straightforward solution to the goal of finding an

optimal feature set is the exhaustive enumeration, i.e., we
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could first enumerate all subgraph patterns from a graph

dataset, and then calculate the gSide values for all subgraph

patterns. In the context of graph data, however, it is usually

not feasible to enumerate the full set of subgraph patterns

before feature selection. Actually, the number of subgraph

patterns grows exponentially with the size of graphs.

Inspired by recent advances in graph classification

approaches [7, 20, 21, 37], which nest their evaluation

criteria into the subgraph mining process and develop

constraints to prune the search space, we adopt a similar

approach by deriving a different constraint based upon

gSide.

By adopting the gSpan algorithm proposed by Yan and

Han [38], we can enumerate all the subgraph patterns for a

graph dataset in a canonical search space. In order to prune

the subgraph search space, we now derive a lower bound of

the gSide value:

Algorithm 1 The Proposed Method: gMSV
Input: D, min sup, k, {λ(p), κ(p)}v

p=1
Output: T : Set of optimal subgraph patterns
1: T = ∅, θ = Inf
2: while unexplored nodes in the DFS code tree �= ∅ do
3: g = currently explored node in the DFS code tree
4: if freq(g) ≥ min sup then
5: if |T | < k or q(g) < θ then
6: T = T ∪ {g}
7: if |T | > k then
8: gmax = argmaxg′∈T q(g′)
9: T = T /{gmax}
10: end if
11: θ = maxg′∈T q(g′)
12: end if
13: if q̂(g) < θ then
14: Depth-first search the subtree rooted from g
15: end if
16: end if
17: end while
18: return T

Theorem 1 Given any two subgraph patterns gi; gj 2 S,
gj is a supergraph of gi, i.e., gi � gj. The gSide value of gj
is bounded by q̂ðgiÞ, i.e., qðgjÞ
 q̂ðgiÞ. q̂ðgiÞ is defined as

q̂ðgiÞ,f>i L̂f i ð14Þ

where the matrix L̂ is defined as L̂pq , minð0; LpqÞ.

Proof According to Definition 4,

qðgjÞ ¼ f>j Lf j ¼
X

p;q:Gp;Gq2GðgjÞ
Lpq ð15Þ

where GðgjÞ, fGkjgj � Gk; 1� k� ng. Since gi � gj,

according to anti-monotonic property, we have

GðgjÞ � GðgiÞ. Also L̂pq , minð0; LpqÞ, we have L̂pq � Lpq

and L̂pq � 0. Therefore,

qðgjÞ ¼
X

p;q:Gp;Gq2GðgjÞ
Lpq 


X
p;q:Gp;Gq2GðgjÞ

L̂pq



X

p;q:Gp;Gq2GðgiÞ
L̂pq ¼ q̂ðgiÞ

ð16Þ

Thus, for any gi � gj, qðgjÞ
 q̂ðgiÞ. h

Wecan nownest the lower bound into the subgraphmining

steps in gSpan to efficiently prune the DFS code tree. During

the depth-first search through the DFS code tree, we always

maintain the currently top-k best subgraph patterns according

to gSide and the temporally suboptimal gSide value (denoted

by h) among all the gSide values calculated before. If

q̂ðgiÞ
 h, the gSide value of any supergraph gj of gi should be
no less than q̂ðgiÞ according to Theorem 1, i.e.,

qðgjÞ
 q̂ðgiÞ
 h. Thus, we can safely prune the subtree

rooted from gi in the search space. If q̂ðgiÞ\h, we cannot

prune this subtree since there might exist a supergraph gj of gi
such that qðgjÞ\h. As long as a subgraph gi can improve the

gSide values of any subgraphs in T , it is added into T and the

least best subgraph is removed from T . Then we recursively

search for the next subgraph in theDFS code tree. The branch-

and-bound algorithm gMSV is summarized in Algorithm 1.

5 Experiments

In order to evaluate the performance of the proposed

solution to the problem of feature selection for graph

classification using multiple side views, we tested our

algorithm on brain network datasets derived from neu-

roimaging, as introduced in Sect. 3.1.

5.1 Experimental setup

To the best of our knowledge, this paper is the first work on

leveraging side information in feature selection problem for

graph classification. In order to evaluate the performance of

the proposed method, we compare our method with other

methods using different statistical measures and discrimi-

native score functions. For all the compared methods, gSpan

[38] is used as the underlying searching strategy. Note that

although alternative algorithms are available [17, 18, 37], the

search step efficiency is not the focus of this paper. The

compared methods are summarized as follows:

– gMSV: The proposed discriminative subgraph selection

method using multiple side views. Following the

observation in Sect. 3.2 that side information consis-

tency is verified to be significant in all the side views,

the parameters in gMSV are simply set to kð1Þ ¼ � � � ¼
kðvÞ ¼ 1 for experimental purposes. In the case where
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some side views are suspect to be redundant, we can

adopt the alternative optimization strategy to iteratively

select discriminative subgraph patterns and update

view weights.

– gSSC: A semi-supervised feature selection method for

graph classification based upon both labeled and

unlabeled graphs. The parameters in gSSC are set to

a ¼ b ¼ 1 unless otherwise specified [21].

– Discriminative Subgraphs (Conf, Ratio, Gtest, HSIC):

Supervised feature selection methods for graph classi-

fication based upon confidence [12], frequency ratio

[16–18], G test score [37], and HSIC [20], respectively.

The top-k discriminative subgraph features are selected

in terms of different discrimination criteria.

– Frequent Subgraphs (Freq): In this approach, the

evaluation criterion for subgraph feature selection is

based upon frequency. The top-k frequent subgraph

features are selected.

We append the side view data to the subgraph-based graph

representations computed by the above algorithms before

feeding the concatenated feature vectors to the classifier.

Another baseline that only uses side view data is denoted as

MSV.

For a fair comparison, we used LibSVM [9] with linear

kernel as the base classifier for all the compared methods.

In the experiments, 3-fold cross validations were per-

formed on balanced datasets. To get the binary links, we

performed simple thresholding over the weights of the

links. The threshold for fMRI and DTI datasets was 0.9 and

0.3, respectively.

5.2 Performance on graph classification

The experimental results on fMRI and DTI datasets are

shown in Figs. 3 and 4, respectively. The average perfor-

mances with different numbers of features of each method

are reported. Classification accuracy is used as the evalu-

ation metric.

In Fig, 3, our method gMSV can achieve the classifi-

cation accuracy as high as 97.16% on the fMRI dataset,

which is significantly better than the union of other sub-

graph-based features and side view features. The black

solid line denotes the method MSV, the simplest baseline

that uses only side view data. Conf and Ratio can do

slightly better than MSV. Freq adopts an unsupervised

process for selecting subgraph patterns, resulting in a

comparable performance with MSV, indicating that there is

no additional information from the selected subgraphs.

Other methods that use different discrimination scores

without leveraging the guidance from side views perform

even worse than MSV in graph classification, because they

evaluate the usefulness of subgraph patterns solely based

on the limited label information from a small sample size

of brain networks. The selected subgraph patterns can

potentially be redundant or irrelevant, thereby compro-

mising the effects of side view data. Importantly, gMSV

outperforms the semi-supervised approach gSSC which

explores the unlabeled graphs based on the separability

property. This indicates that rather than simply considering

that unlabeled graphs should be separated from each other,

it would be better to regularize such separability/closeness

to be consistent with the available side views.

Similar observations are found in Fig. 4, where gMSV

outperforms other baselines by achieving a good perfor-

mance as high as 97.33% accuracy on the DTI dataset. We

notice that only gMSV is able to do better than MSV by

adding complementary subgraph-based features to the side

view features. Moreover, the performances of other
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Fig. 3 Classification performance on the fMRI dataset with different

numbers of features.
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schemes are not consistent over the two datasets. The 2nd

and 3rd best schemes, Conf and Ratio, for fMRI do not

perform as well for DTI. These results support our premise

that exploring a plurality of side views can boost the per-

formance of graph classification, and the gSide evaluation

criterion in gMSV can find more informative subgraph

patterns for graph classification than subgraphs based on

frequency or other discrimination scores.

5.3 Time and space complexity

Next, we evaluate the effectiveness of pruning the sub-

graph search space by adopting the lower bound of gSide in

gMSV. In this section, we compare the runtime perfor-

mance of two implementation versions of gMSV: the

pruning gMSV uses the lower bound of gSide to prune the

search space of subgraph enumerations, as shown in

Algorithm 1; the unpruning gMSV denotes the method

without pruning in the subgraph mining process, e.g.,

deleting the line 13 in Algorithm 1. We test both

approaches and recorded the average CPU time used and

the average number of subgraph patterns explored during

the procedure of subgraph mining and feature selection.

The comparisons with respect to the time complexity

and the space complexity are shown in Figs. 5 and 6,

respectively. On both datasets, the unpruning gMSV needs

to explore exponentially larger subgraph search space as

we decrease the min_sup value in the subgraph mining

process. When the min_sup value is too low, the subgraph

enumeration step in the unpruning gMSV can run out of the

memory. However, the pruning gMSV is still effective and

efficient when the min_sup value goes to very low, because

its running time and space requirement do not increase as

much as the unpruning gMSV by reducing the subgraph

search space via the lower bound of gSide.

The focus of this paper is to investigate side information

consistency and explore multiple side views in discrimi-

native subgraph selection. As potential alternatives to the

gSpan-based branch-and-bound algorithm, we could

employ other more sophisticated searching strategies with

our proposed multi-side-view evaluation criterion, gSide.

For example, we can replace with gSide the G test score in

LEAP [37] or the log ratio in COM [17] and GAIA [18],

etc. However, as shown in Figs. 5 and 6, our proposed

solution with pruning, gMSV, can survive at

min sup ¼ 4%; considering the limited number of subjects

in medical experiments as introduced in Sect. 3.1, gMSV is

efficient enough for neurological disorder identification

where subgraph patterns with too few supported graphs are

not desired.

5.4 Effects of side views

In this section, we investigate contributions from different

side views. The well-known precision, recall, and F1 are

used as metrics. Precision is the fraction of positive pre-

dictions that are positive subjects. Recall is the fraction of

positive subjects that are predicted as positive. F-measure

is the harmonic mean of precision and recall. Table 4

shows performance of gMSV on the fMRI dataset by

considering only one side view each time. In general, the

best performance is achieved by simultaneously exploring

all side views. Specifically, we observe that the side view

flow cytometry can independently provide the most infor-

mative side information for selecting discriminative sub-

graph patterns on the fMRI brain networks. This is
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Fig. 6 Average number of subgraph patterns explored in the mining

procedure for pruning versus unpruning with varying min_sup

Table 4 Average classification performances of gMSV on the fMRI

dataset with different single-side views

Side views Precision Recall F1

Neuropsychological tests 0.851 0.679 0.734

Flow cytometry 0.919 0.872 0.892

Plasma luminex 0.769 0.682 0.710

Freesurfer 0.851 0.737 0.785

Overall brain microstructure 0.824 0.500 0.618

Localized brain microstructure 0.686 0.605 0.637

Brain volumetry 0.739 0.737 0.731

All side views 1.000 0.949 0.973
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plausible as it implies that HIV brain alterations in terms of

functional connectivity are most likely to express from this

side view (i.e., in measures of immune function, the HIV

hallmark). It is consistent with our finding in Sect. 3.2 that

the side view flow cytometry is the most significantly cor-

related with the prespecified label information. Similar

results on the DTI dataset are shown in Table 5.

5.5 Feature evaluation

Figures 7 and 8 display the most discriminative subgraph

patterns selected by gMSV from the fMRI dataset and the

DTI dataset, respectively. These findings examining func-

tional and structural networks are consistent with other

in vivo studies [8, 35] and with the pattern of brain injury at

autopsy [11, 23] in HIV infection. With the approach

presented in this analysis, alterations in the brain can be

detected in initial stages of injury and in the context of

clinically meaningful information, such as host immune

status and immune response (flow cytometry), immune

mediators (plasma luminex) and cognitive function (neu-

ropsychological tests). This approach optimizes the valu-

able information inherent in complex clinical datasets.

Strategies for combining various sources of clinical infor-

mation have promising potential for informing an under-

standing of disease mechanisms, for identification of new

therapeutic targets and for discovery of biomarkers to

assess risk and to evaluate response to treatment.

6 Related work

To the best of our knowledge, this paper is the first work

exploring side information in the task of subgraph feature

selection for graph classification. Our work is related to

subgraph mining techniques and multi-view feature selec-

tion problems. We briefly discuss both of them.

Mining subgraph patterns from graph data has been

studied extensively by many researchers. In general, a

variety of filtering criteria are proposed. A typical evalu-

ation criterion is frequency, which aims at searching for

frequently appearing subgraph features in a graph dataset

satisfying a prespecified min_sup value. Most of the fre-

quent subgraph mining approaches are unsupervised. For

example, Yan and Han developed a depth-first search

algorithm: gSpan [38]. This algorithm builds a lexico-

graphic order among graphs, and maps each graph to an

unique minimum DFS code as its canonical label. Based on

this lexicographic order, gSpan adopts the depth-first

search strategy to mine frequent-connected subgraphs

efficiently. Many other approaches for frequent subgraph

mining have also been proposed, e.g., AGM [14], FSG

[22], MoFa [3], FFSM [13], and Gaston [26].

Moreover, the problem of supervised subgraph mining

has been studied in recent work which examines how to

improve the efficiency of searching the discriminative

subgraph patterns for graph classification. Yan et al.

introduced two concepts structural leap search and fre-

quency-descending mining, and proposed LEAP [37] which

is one of the first works in discriminative subgraph mining.

Thoma et al. proposed CORK which can yield a near-op-

timal solution using greedy feature selection [33]. Ranu

Table 5 Average classification performances of gMSV on the DTI

dataset with different single-side views

Side views Precision Recall F1

Neuropsychological tests 0.630 0.705 0.662

Flow cytometry 0.847 0.808 0.822

Plasma luminex 0.801 0.705 0.744

Freesurfer 0.664 0.632 0.644

Overall brain microstructure 0.626 0.679 0.647

Localized brain microstructure 0.717 0.775 0.741

Brain volumetry 0.616 0.679 0.644

All side views 1.000 0.951 0.974

Fig. 7 Discriminative subgraph patterns that are associated with HIV,

selected from the fMRI dataset

Fig. 8 Discriminative subgraph patterns that are associated with HIV,

selected from the DTI dataset
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and Singh proposed a scalable approach, called GraphSig,

that is capable of mining discriminative subgraphs with a

low frequency threshold [28]. Jin et al. proposed COM

which takes into account the co-occurrences of subgraph

patterns, thereby facilitating the mining process [17]. Jin

et al. further proposed an evolutionary computation

method, called GAIA, to mine discriminative subgraph

patterns using a randomized searching strategy [18]. Our

proposed criterion gSide can be combined with these effi-

cient searching algorithms to speed up the process of

mining discriminative subgraph patterns by substituting the

G test score in LEAP [37] or the log ratio in COM [17] and

GAIA [18], etc. Zhu et al. designed a diversified discrim-

ination score based on the log ratio which can reduce the

overlap between selected features by considering the

embedding overlaps in the graphs [39]. Similar idea can be

integrated into gSide to improve feature diversity.

There are some recent works on incorporating multi-view

learning and feature selection. Tang et al. studied unsuper-

vised multi-view feature selection by constraining that

similar data instances from each view should have similar

pseudo-class labels [31]. Cao et al. explored tensor product to

bring different views together in a joint space and presents a

dual method of tensor-based multi-view feature selection

[4]. Aggarwal et al. considered side information for text

mining [1]. However, these methods are limited in requiring

a set of candidate features as input, and therefore are not

directly applicable for graph data. Wu et al. considered the

scenario where one object can be described by multiple

graphs generated from different feature views and proposes

an evaluation criterion to estimate the discriminative power

and the redundancy of subgraph features across all views

[36]. In contrast, in this paper, we assume that one object can

have other data representations of side views in addition to

the primary graph view.

In the context of graph data, the subgraph features are

embedded within the complex graph structures and usually

it is not feasible to enumerate the full set of features for a

graph dataset before the feature selection. Actually, the

number of subgraph features grows exponentially with the

size of graphs. In this paper, we explore the side infor-

mation from multiple views to effectively facilitate the

procedure of discriminative subgraph mining. Our pro-

posed feature selection for graph data is integrated to the

subgraph mining process, which can efficiently prune the

search space, thereby avoiding exhaustive enumeration of

all subgraph features.

7 Conclusion and future work

We presented an approach for selecting discriminative sub-

graph features using multiple side views. By leveraging

available information frommultiple side views togetherwith

graph data, the proposed method gMSV can achieve very

good performance on the problem of feature selection for

graph classification, and the selected subgraph patterns are

relevant to disease diagnosis. This approach has broad

applicability for yielding new insights into brain network

alterations in neurological disorders and for early diagnosis.

A potential extension to our method is to combine fMRI

and DTI brain networks to find discriminative subgraph

patterns in the sense of both functional and structural

connections. Other extensions include better exploring

weighted links in the multi-side-view setting. It is also

interesting to have our model applied to other domains

where one can find graph data and side information aligned

with the graph. For example, in bioinformatics, chemical

compounds can be represented by graphs based on their

inherent molecular structures and are associated with

properties such as drug repositioning, side effects, ontology

annotations. Leveraging all these information to find out

discriminative subgraph patterns can be transformative for

drug discovery.
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