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Abstract Multimodal neuroimaging is increasingly used

in neuroscience research, as it overcomes the limitations of

individual modalities. One of the most important applica-

tions of multimodal neuroimaging is the provision of vital

diagnostic data for neuropsychiatric disorders. Multimodal

neuroimaging computing enables the visualization and

quantitative analysis of the alterations in brain structure

and function, and has reshaped how neuroscience research

is carried out. Research in this area is growing exponen-

tially, and so it is an appropriate time to review the current

and future development of this emerging area. Hence, in

this paper, we review the recent advances in multimodal

neuroimaging (MRI, PET) and electrophysiological (EEG,

MEG) technologies, and their applications to the neu-

ropsychiatric disorders. We also outline some future

directions for multimodal neuroimaging where researchers

will design more advanced methods and models for neu-

ropsychiatric research.
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1 Introduction

Neuroimaging has advanced rapidly in the past two dec-

ades. The advanced non-invasive neuroimaging techniques,

e.g., magnetic resonance imaging (MRI), positron emission

tomography (PET), electroencephalography (EEG), and

magnetoencephalography (MEG), have enabled the visu-

alization and analysis of the brain function and structure in

unprecedented detail and transformed the way we study the

nervous system under normal and pathological conditions

[1], particularly neuropsychiatric disorders including neu-

rological and psychiatric disorders that affect the nervous

system [2–4].

In the US, President Obama’s announcement of the ‘Brain

Research through Advancing Innovative Neurotechnologies

(BRAIN) Initiative’ on his state of the union address on April

2013 fueled resurgent interest in the neuroscience with a

bold commitment to better understand the brain over the

forthcoming decade [4]. Similar projects have been under-

taken in the European Union [5] and Asia [6].

Multimodal neuroimaging, which we declare as the

summation of information from different neuroimaging

modalities, has become one of the major drivers in neu-

roimaging research due to the recognition of the clinical

benefits of multimodal data [7, 8], and the better access to

hybrid devices, e.g., PET/CT [9, 10], PET/MRI [11], and

PET/MRI/EEG [12]. Multimodal neuroimaging data can

either be obtained from simultaneous imaging measure-

ment (EEG/fMRI [13], PET/CT[14]), or integration of

separate measurements (PET and sMRI [15], sMRI and

dMRI [16], fMRI and dMRI [17]).

S. Liu (&) � W. Cai � S. Liu � D. Feng

School of IT, The University of Sydney, Sydney, Australia

e-mail: sliu7418@uni.sydney.edu.au

F. Zhang � S. Pujol � R. Kikinis

Surgical Planning Laboratory, Harvard Medical School, Boston,

USA

M. Fulham

Department of PET and Nuclear Medicine, Royal Prince Alfred

Hospital, and the Sydney Medical School, The University of

Sydney, Sydney, Australia

D. Feng

Med-X Research Institute, Shanghai Jiao Tong University,

Shanghai, China

123

Brain Informatics (2015) 2:167–180

DOI 10.1007/s40708-015-0019-x

http://orcid.org/0000-0002-2371-0713
http://crossmark.crossref.org/dialog/?doi=10.1007/s40708-015-0019-x&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40708-015-0019-x&amp;domain=pdf


Multimodal neuroimaging advances neuroscience

research, i.e., neurology, psychiatry, neurophysiology, and

neurosurgery, by overcoming the limitation of individual

modalities and by allowing a more comprehensive picture

of the brain. For instance, we can jointly analyze the

structure and function using the data provided by PET/CT

and PET/MRI; EEG combined with functional MRI (fMRI)

improves the spatiotemporal resolution that cannot be

achieved by the single modality alone. Multimodal neu-

roimaging can also cross-validate findings from different

sources and identify associations and patterns, e.g.,

causality of brain activity can be deduced by linking

dynamics in different imaging readings. It can provide

access, in an experimental setting, to determine the roles of

different brain areas from multiple perspectives.

The growth of neuroimaging has spurred a parallel

development of multimodal neuroimaging computing,

which focuses on computational analysis of multimodal

neuroimaging data, including pre-processing, feature

extraction, image fusion, machine learning, visualization,

and post-processing. These computational advances help to

address the variations in spatiotemporal resolution and

merge the biophysical/biochemical information in images

[18].

We conducted a search on PubMed using the keywords

‘multimodal AND neuroimaging’ up to ‘31 Dec 2014.’

There were 1461 relevant publications retrieved from the

database. Figure 1 illustrates how multimodal neuroimag-

ing in neuroscience research has rapidly expanded over the

past 10 years. In 2004, there were 30 publications, and in

2014, there were close to 300 (indicated by the green area).

There is a wide range of applications of multimodal neu-

roimaging, clinical and non-clinical, including building a

brain machine interface (BMI) [19], tracing neural activ-

ities and information pathways [20], mapping mind and

behavior to brain regions [21–23], evaluating the effects of

pharmacological treatments [24, 25], and image-guided

therapy (IGT) [26–28].

An important clinical application is the provision of

functional and anatomical data for diagnosis of neuropsy-

chiatric disorders [3, 4]. In another PubMed search on

these 1461 publications, using the keywords ‘(multimodal

AND neuroimaging) AND (neuropsychiatric OR neuro-

logical OR psychiatric),’ a substantial proportion (over

30%) of the relevant results focused on the neuropsychi-

atric disorders (see blue area in Fig. 1). The number of

publications dramatically increased each year from 10 to

121 in the period 2004–2014.

Previous reviews mainly focused on a single neuropsy-

chiatric disorder, and summarize the image-based findings

of them. For Alzheimer’s disease (AD), for example, Perrin

briefly reviewed the multimodal techniques, including

PET, fMRI, structural MRI (sMRI), and biochemical

examination of cerebrospinal fluid (CSF), to detect AD

pathology [29]. Ewers et al. integrated the findings on

changes in cortical gray matter volume, white matter fiber

tracts, and brain metabolism of patients [30], and dis-

cussed the sequential changes in neuroimaging biomarkers

during different disease stages [31], similar to the review

of Lin et al. [32]. In a more recent review, Nasrallah et al.

extended a review to other forms of neurodegenerative

dementia [33]. More in-depth reviews on other neu-

ropsychiatric disorders can be found in Sect. 3.

The goal of this review differs from those above in that

our interest is to review the recent advances in multimodal

neuroimaging and evaluate its applications in neuropsy-

chiatric disorders. Such a review will provide a clearer

picture of the current status and offer insights and inspi-

ration to researchers as they design better models/methods

for future research.

An extensive review of the image-based findings in

neuropsychiatric disorders is beyond the scope of this
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Fig. 1 The explosive growth of

multimodal neuroimaging

studies over the past two

decades. (Color figure online)
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paper, and we instead review recent studies with a focus on

the applications of multimodal neuroimaging, and refer the

readers to other reviews for the detailed findings. In

Sect. 2, we provide an overview of the common multi-

modal neuroimaging techniques, and analyze the spatial/

temporal resolution, functional/structural connectivity,

sensitivity/specificity to brain changes, risks/benefits for

clinical applications, computing workflows, and future

potential. In Sect. 3, we discuss how these neuroimaging

techniques can complement each other, and how they are

applied in neuropsychiatric disorders. In Sect. 4, we outline

future directions for multimodal neuroimaging in neu-

ropsychiatric research.

2 An overview of neuroimaging techniques

The different neuroimaging techniques have different bio-

physical/biochemical mechanisms, and vary in imaging

capabilities. Current neuroimaging techniques could be

broadly classified into functional and structural neu-

roimaging. For example, sMRI reveals the detailed anat-

omy of the brain, and diffusion MRI (dMRI) provides

information about fiber tracts. Functional modalities,

including fMRI, PET, and EEG/MEG, provide data in

brain metabolism and neural activity.

In the following paragraphs, we briefly summarize these

neuroimaging techniques with respect to

• spatial resolution; exploring the brain anatomy and

detecting morphological changes

• temporal resolution; monitoring neural activities and

interactions, tracing information pathways

• structural connectivity; tracing the major brain white

matter pathways

• functional connectivity; recording the neural co-activa-

tion, in the resting state

• molecular imaging; detecting the molecular activity

using agents to target specific functions

• safety and risks

• clinical availability, accessibility, and ease of use

• future developments

2.1 Structural MRI (sMRI)

sMRI includes a range of sequences—T1, T2, FLAIR, pro-

ton density [34]—that provide detailed information of brain

structure, and sMRI is critical for the management of neu-

ropsychiatric disorders. sMRI has spatial resolution up to

0.32 mm (isotropic) [12]. As shown in Fig. 2, sMRI,

however, does not provide connectivity information. Cur-

rently, there are approximately 25,000 MRI scanners in use

worldwide [35]. MRI is generally a safe procedure in

patients who do not have implanted devices, such as pace-

makers and implantable defibrillators [36], although there

are new MRI compatible pacemakers/defibrillators that have

been introduced [37]. MRI uses magnetic and radio waves

to generate images, rather than ionizing radiation like X-ray

or gamma ray. There are no known harmful side-effects

associated with temporary exposure to strong magnetic field

and radio waves used by MRI scanners. The narrow bore of

MRI scanners is problematic for patients who are claustro-

phobic or overweight.

When certain contrast agents, mainly iron-oxide-based,

are used, sMRI can detect the activity of the targeted

molecules with high sensitivity and specificity. Gauberti

et al. recently gave a detailed review of the recent advances

in ‘molecular’ MRI highlighting molecules that play an

important role in neuroinflammation and which may be

used as therapeutic targets and biomarkers for neurological

disorders [38]. sMRI is a mature technique used in scien-

tific and clinical applications for decades; yet there are still

many new developments, i.e., new pulse sequences, new

contrast agents, ultra-high magnetic field, and hybrid

scanners, all of which offer new imaging opportunities.

2.2 Diffusion MRI (dMRI)

dMRI is a MRI sequence that encodes molecular diffusion

effects in the nuclear magnetic resonance signal by using

bipolar magnetic field gradient pulses [39]. DTI is a form of

diffusion imaging where fiber tracts can be delineated based

on the fractional anisotropy [40] and is currently the only

technique that allows us to trace the brain white matter

pathways in vivo, as shown in Fig. 2—dMRI. By probing at

many different orientations, dMRI is able to estimate the

orientation of axonal fiber bundles, based on the fact that

water diffuses most rapidly along the length of axons. This

also leads to longer scanning time as compared to sMRI.

Currently, dMRI is used as a research tool in laborato-

ries, and has not been evaluated in clinical trials due to the

crossing-fiber problems, the differences in signal estima-

tion models and fiber tracking algorithms, the variations in

datasets, and the lack of ground truth. Nevertheless, DTI is

used clinically in the pre-operative planning prior to sur-

gical resection of gliomas which usually displace but can

involve the fiber tracts. New models and methods are

proposed each year, e.g., the q-space trajectory imaging

(QTI) [41]. Large-scale datasets with uniformly collected

dMRI data are also growing in size, and will facilitate the

evaluation of these models and methods [42].

2.3 Functional MRI (fMRI)

fMRI is a MRI technique that can depict brain activity by

detecting the associated changes in brain hemodynamics. It
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uses blood-oxygen-level-dependent (BOLD) contrast that

is closely related to cerebral blood flow (CBF), as brain

function requires blood flow to supply oxygen for energy

consumption by neurons. It has relatively high spatial

resolution (2mm isotropic) and medium temporal resolu-

tion (minutes) for a set of successive scans. Similar to

sMRI, fMRI can be used to label specific molecules with

contrast agents [43], i.e., molecular fMRI [44]. fMRI is

used clinically to identify eloquent cortex prior to surgery,

e.g., identifying the motor cortex prior to resection of a

glioma in the posterior frontal lobe. Two particular

strengths of fMRI are that it is able to detect brain acti-

vation induced by a task, and provide the connectivity

between populations of neurons based on their co-activa-

tion at resting state. These two benefits essentially define

the two categories of fMRI analyses, task-evoked fMRI

and resting-state fMRI.

When the brain is performing a task, CBF usually

changes as neurons work to complete the task. The primary

use of task-evoked fMRI is to identify the correlation

between brain activation/interaction pattern and cognitive

states, such as perception, language, memory, emotion, and

thought [45, 46]. Recent research based on task-evoked

fMRI indicated that altered cognitive functions are related to

neuropsychiatric disorders. For instance, emotion regulation

capability is not sustained in depressed patients as compared

to healthy control subjects [47]. Resting-state fMRI is used

to detect the spontaneous activation pattern in the absence of

an explicit task or stimuli [48]. Resting-state fMRI enables

us to deduce the functional connectivity between dispersed
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Fig. 2 The overview of the properties of sMRI (blue), dMRI (green),

fMRI (orange), PET (red), EEG (violet), and multimodal neuroimaging

(gray), as indicated by the polar diagrams. Each axis in the diagram

represents an attribute, and greater distance from the origin means better

performance. Note the indexes in the diagrams are merely indicative and

should not be interpreted in a quantitative way. (Color figure online)
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brain regions, which form functional brain networks, or

resting-state networks (RSNs). The default mode network

(DMN) is a functional network of several brain regions that

show increased activity at rest and decreased activity when

performing a task [49]. DMN has been widely used as a

measure to compare individual differences in behaviors,

genetics, and neuropathologies, although the use of it as a

biomarker is controversial [50, 51].

Recent improvements in spatiotemporal resolution of

fMRI have led to higher statistical power to detect RSNs.

Further investigation is needed to derive the neuropsychi-

atric biomarkers from the network and/or network

dynamics, and further evaluate them for the diagnosis of

individual neuropsychiatric disorders and to guide therapy.

2.4 Positron emission tomography (PET)

PET is the most powerful and versatile approach to study

neurotransmitter/receptor interactions. It has lower spa-

tiotemporal resolution when compared to MRI, and

involves injection of a radioactive tracer and exposure to

ionizing radiation. PET is inherently a molecular imaging

technique, which is exquisitely sensitive for detecting the

targeted molecules or processes. For example, 2-[18F]flu-

oro-2-deoxy-D-glucose (FDG) is the most widely used

radiotracer that can assess the glucose metabolism in brain,

thus has been used for diagnosis, staging, and monitoring

treatment of cancers [52] and neurodegenerative disor-

ders [53]. In recent years, the percentage of FDG-PET

brain studies have decreased due to the introduction of new

tracers, e.g., the amyloid-binding compounds, 18F-BAY94-

9172, 11C-SB-13, 11C-BF-227, 18F-AV-45, and 11C-Pitts-

burgh compound B (11C-PiB). There are a number of

reviews of amyloid imaging agents [29, 54–56].

2.5 Electroencephalography (EEG)

and magnetoencephalography (MEG)

EEG and MEG detect the synchronized activity of an

assembly of neurons by displaying their weighted sum of

instantaneous neuronal electrical current or magnetic fluxes

throughout the brain. EEG and MEG are widely used in

neurology clinics due to the simplicity and mobility of

EEG monitoring systems, both are safe procedures. EEG

and MEG allow us to explore brain cortical activation

pattern with ultra-high temporal resolution and record the

event-evoked neural information flow in real time. How-

ever, EEG and MEG are limited by the low spatial reso-

lution and specificity, and the inability to detect and record

the signals from subcortical regions.

An important opportunity for the future is the integration

of EEG and MEG with MRI, in particular, with fMRI. EEG

and MEG are able to demonstrate the brain activation at

much greater temporal resolution when compared to MRI.

The MRI produces the anatomical template which enhan-

ces the inherent poor spatial resolution of EEG and MEG

source images. However, a major challenge has been to

develop EEG and MEG technology that can operate in a

high magnetic field. Other challenges exist to better

understand the correlation between BOLD signals and

electrophysiological events via neurovascular coupling and

enhance performance of EEG source imaging from

simultaneously acquired fMRI data.

2.6 Multimodal neuroimaging

Multimodal neuroimaging, which we refer to as the col-

lective information offered in multiple imaging modalities,

has become a major driver for current research due to the

awareness of the clinical benefits of the multimodal data.

As shown in Fig. 2, multimodal data analysis could take

the advantages from multiple imaging techniques, e.g.,

improving both spatial and temporal resolution, finding the

anatomical basis for functional connectivity, targeting

disease biomarkers with high specificity and sensitivity,

along with many new opportunities to improve brain

research. Multimodal neuroimaging is currently limited by

the availability and safety of the imaging scanners, but

novel neuroimaging scanners, especially the hybrid scan-

ners, such as PET/CT and EEG/MRI, will become more

widely available in the midrange future. Multimodal neu-

roimaging analysis is much more challenging than single

modality analysis, as multimodal neuroimaging requires

sophisticated computing methods, i.e., pre-processing,

feature extraction, image fusion, machine learning, visu-

alization, and post-processing, to tackle the large variations

in the spatiotemporal resolution and integrate the bio-

physical/biochemical information of the multimodal data.

Many multimodal neuroimaging computing methods have

been proposed and applied to a wide range of clinical and

non-clinical applications, e.g., brain computer communi-

cation [19], information pathways tracing [20], brain

mapping [21–23], drug development and discovery [24,

25], pre-operative surgical planning, and intra-operative

surgical navigation [28, 57].

As shown in Fig. 1, there has been explosive growth in

multimodal neuroimaging approaches during the last dec-

ade, and we may foresee such growth in the following

years.

3 Applications to neuropsychiatric disorders

Neuropsychiatric disorders represent the most disabling

and costly category, based on the systematic analysis of
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descriptive epidemiology of 291 diseases and injuries from

1990 to 2010 for 187 countries [58]. As shown in Fig. 3,

neuropsychiatric disorders caused the largest number of

years lost due to illness, disability, and early death mea-

sured by disability-adjusted life years (DALYs) in US, and

the socioeconomic burden of neuropsychiatric disorders

will be aggravated as people live longer.

Neuroimaging techniques have expanded beyond a tra-

ditional diagnostic role to have a fundamental role in

patient management from diagnosis, to selection and

assessment of treatment and to prognosis stratification.

There is a rising trend of using the multimodal neu-

roimaging approaches in neuropsychiatric disorders, as

shown in Fig. 1. In this section, we summarize how these

neuroimaging techniques can be integrated using the mul-

timodal computing methods, and further demonstrate their

applications in neuropsychiatric disorders as well as in

stroke, traumatic brain injury (TBI), brain tumors, and the

brain connectome (Fig. 4).

These multimodal approaches can be separated into

categories that include a structural–structural combination,

a functional–functional combination, and a structural–

functional combination. Each category has different

applications, and requires different computing workflows.

In brief, a structural–structural combination, e.g., sMRI-

dMRI, is used to extract and fuse various morphological

features and is applied to disorders that affect both gray

matter and white matter, such as TBI and stroke. The

functional–functional combination can be used to explore

brain activation/metabolism patterns and is mainly applied

to cognition and consciousness-related disorders, e.g.,

epilepsy and obsessive-compulsive disorder (OCD). The

structural–functional combination is virtually applicable to

all disorders, but more frequently used for identifying the

structure–function associations in neurodegenerative dis-

orders, neurodevelopmental disorders, multiple sclerosis,

schizophrenia, bipolar disorder, brain tumors, and the brain

connectome.

3.1 Structural–structural combination

sMRI-dMRI methods dominate the structural–structural

category, as they take clinical benefits of sMRI and dMRI

by integrating the gray matter and white matter mor-

phometry. It has become a useful tool to detect lesions and

evaluate treatments for various neuropsychiatric disorders

that cause brain morphological changes. Here, we list a few

examples of clinical uses of sMRI-dMRI.

Traumatic brain injury (TBI) has very high incidence,

resulting in 6.8 million TBI cases every year in the US, and

causes impairment of memory, information processing,

attention, and executive function [59]. Multimodal struc-

tural neuroimaging can assist neurosurgeons, intensive care

specialists, neurologists, and rehabilitation specialists in

the management of TBI [60]. Conventional brain CT

usually fails to detect the subtle structural abnormalities in

mild TBI, and sMRI and dMRI are the methods of choice

to evaluate and predict outcome in TBI. The sMRI

sequences (T1, T2, FLAIR, susceptibility-weighted imag-

ing (SWI) and gradient-recalled echo (GRE)) provide

highly accurate depiction of pathological lesions, and

dMRI detects the effects of TBI on brain connectivity and

non-hemorrhagic diffuse axonal injury (DAI), which are

not detected by CT. The sMRI-dMRI methods are widely

used in TBI [61, 62]. There are also some studies that have

used dMRI and fMRI to validate the connectivity infor-

mation in TBI patients in the recovery phase [63, 64].

The sMRI-dMRI methods have been routinely used in

the assessment and treatment planning for stroke. Stroke is

a leading cause of death worldwide. There are different

types of stroke, and each requires a different diagnostic

approach and treatment. T2*-weighted sMRI, e.g., SWI

and GRE, is primarily used to detect hemorrhagic stroke,

and has equal sensitivity to standard CT methods. How-

ever, dMRI is 4-5 times more sensitive in detecting acute

ischemic stroke than CT. Other structural imaging tech-

niques, such as perfusion CT (PCT), CT angiography

NeurologicalPsychiatric

Fig. 3 The disability-adjusted life years (DALYs) of 291 diseases and injuries based on the systematic analysis of descriptive epidemiology from

1990 to 2010 in US [58]. (Color figure online)
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(CTA), digital subtraction angiography (DSA), perfusion-

weighted imaging (PWI), and MR angiography (MRA),

can also be used to evaluate suspected vascular occlusion,

edema, and cerebral infarction. Tong et al. [65] recently

published a comprehensive comparison of these methods in

the evaluation and management of stroke. Another review

on multimodal neuroimaging in stroke is given by Copen

et al. [66].

sMRI-dMRI methods have also been used to analyze the

gray and white matter alterations in schizophrenia [67]

and Autism spectrum disorders (ASDs) [16, 68], neu-

rodegeneration simulation [69], classification of AD and

frontotemporal dementia (FTD) [70], and Parkinson’s

Disease (PD) staging [71].

3.2 Functional–functional combination

EEG-fMRI is valued in functional brain research due to the

complementary nature of EEG and fMRI. EEG-fMRI can

provide simultaneous cortical and subcortical recording of

brain activity with high spatiotemporal resolution.

Epilepsy is one of the most prevalent neurological dis-

orders worldwide. EEG-fMRI is increasingly used to pro-

vide clinical support for the diagnosis of epilepsy, in

Epilepsy

ADHD

Bipolar DisorderMultiple Sclerosis

OCD

Brain Tumor

Schizophrenia

Connectome

ASD

Stroke

CT

CTA MRA

DSA

PCT PWI

TBI

CT

Fig. 4 The applications of the multimodal neuroimaging approaches

in a variety of neuropsychiatric disorders, as well as in stroke, brain

injury, brain tumor, and connectome. The color of circle indicates

various neuroimaging techniques, same as in Fig. 2. The size of the

circle indicates the prevalence of use the technique in specific

applications. Note the sizes are only indicative and should not be

interpreted in a quantitative way. (Color figure online)
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addition to the routinely used sMRI [72] and PET [14,

73]. Researches have used EEG-fMRI to identify a set of

brain functional regions that collectively form ‘conscious-

ness,’ including contributions from the DMN, ascending

arousal systems, and the thalamus, as summarized by

Bagshaw et al. [74]. The activation of these regions and

the connection of the networks are important in the eval-

uation of epilepsy, and together may provide a more fun-

damental understanding of the alterations of consciousness

experienced in epilepsy. Abela et al. [75] focused on

altered network compositions in epilepsy, and identified the

specific connectivity pathways that characterize the

underlying epilepsy syndromes, such as mesial temporal

lobe epilepsy (MTLE), lateral temporal lobe epilepsy

(LTLE), frontal lobe epilepsy (FLE), idiopathic general-

ized epilepsy (IGE), and absence epilepsy (AE). A sub-

stantial proportion of patients have refractory epilepsy and

surgery offers the potential to reduce seizure frequency.

Successful surgical treatments, however, require accurate

localization of the seizure onset zones and an understand-

ing of surrounding functional cortex to avoid iatrogenic

disability. PET, MRI, and intracranial EEG (iEEG) are all

needed for optimal surgical planning and treatment eval-

uation of refractory epilepsy [76, 77].

Another important application of EEG-fMRI is to

evaluate patients with obsessive-compulsive disorder

(OCD). OCD is a chronic and relatively common neu-

ropsychiatric disorder that characterized by stereotyped

and repetitive behaviors. Patients with OCD feel intense

need to carry out these behaviors, and have impaired ability

to recognize an error and to adjust future responses. OCD

may result in social disability. Two neuroimaging

biomarkers of error commission, the error-related nega-

tivity (ERN) and the dorsal anterior cingulate cortex acti-

vation, have been identified using EEG and fMRI,

respectively [78]. However, Agam et al. [79] recently

suggested that these biomarkers have different neural and

genetic mediation. dMRI is also increasingly being used to

examine the microstructural integrity of white matter in

OCD patients, since white matter abnormalities have long

been suspected in OCD, but the findings are inconsistent.

For example, one recent study indicated that patients with

OCD had decreased fractional anisotropy in the anterior

cingulum bundle [80], but in another recent study, the

OCD patients showed increased fractional anisotropy of the

cingulum bundle [81]. Further investigation on large

datasets is needed to confirm these findings.

3.3 Structural–functional combination

sMRI-dMRI-fMRI has been ubiquitously used in neu-

ropsychiatric research largely because of high clinical

availability, and partially due to its capability to link brain

function, structure, and connectivity. It has been increas-

ingly used in research in attention-deficit hyperactivity

disorder (ADHD), Autism spectrum disorder (ASD),

bipolar disorder, schizophrenia, and clinically in multiple

Sclerosis (MS).

ADHD is one of the most commonly diagnosed child-

hood behavioral disorders. It is characterized by persistent

inattention (ADHD-I), hyperactivity-impulsivity (ADHD-

H), or a combination of both (ADHD-C). ADHD affects at

least 5–11% of school-age children, and symptoms may

persist into adulthood [82]. Previous studies using sMRI

have reported various findings, such as decreased total

brain volume and abnormalities in specific brain regions.

The task-evoked and resting-state fMRI approaches were

also used in ADHD studies to detect the abnormal brain

activation. The use of sMRI and fMRI was reported

recently in ADHD [83, 84]. It is only quite recently that

dMRI has been applied to ADHD to characterize the dis-

rupted interconnected structural networks in the brain.

Shenton et al. provided a brief summary of the latest

studies [85]. For example, Hong et al. used dMRI and

whole-brain tractography to investigate the altered white

matter connectivity in 71 children with ADHD, and iden-

tified a single network (comprising 23 brain regions and 25

links) that differentiates the ADHD group from the normal

control group [86].

ASDs are neurodevelopmental disorders characterized

by deficits in social reciprocity, impaired communication,

and restricted interests and repetitive behaviors. Previous

studies using sMRI have shown that infants with ASD

might have excessive brain growth followed by abnormally

slow or even arrested growth as compared to normal

developing control infants in early childhood [87]. Sub-

sequent research indicated ASD affects both gray and

white matter volumes. Therefore, dMRI has been exploited

to describe the microstructural integrity and orientation of

white matter. fMRI has enhanced the understanding of the

neural circuity of ASDs by demonstrating the convergent

structural and functional changes [88, 89]. For example,

Mueller et al. used sMRI-dMRI-fMRI approach and iden-

tified three brain areas with strong correlations between the

structural and functional abnormalities: right tem-

poroparietal junction and the left frontal lobe, bilateral

superior temporal gyri, and the right temporoparietal

region [90].

MS is a demyelinating disease commonly seen in young

people. The cause of MS is unknown. Symptoms and signs

vary across patients and can include cognitive impairment,

fatigue, vertigo, diplopia, ataxia, hemiparesis, and para-

paresis in severe MS patients. Histopathologic and neu-

roimaging examinations suggest that both white matter and

gray matter are affected. In particular, the thalamus can be

affected frequently in MS [91], which can lead to impaired
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cognition. sMRI can detect the thalamic atrophy; dMRI can

be used to demonstrate the altered thalamocortical white

matter pathways, and fMRI can be used to show the

association between the resting-state thalamocortical

functional connectivity and cognitive impairment.

Recently, sMRI-dMRI-fMRI was jointly used in several

studies [92, 93].

Bipolar disorder is a psychotic disorder that characterized

states of depression and mania, and sometimes with symp-

toms common to schizophrenia. It is therefore difficult to

conceptualize bipolar disorder and its subtypes, and differ-

entiate it from other psychiatric disorders. The multimodal

MRI methods have been applied to bipolar disorder and

clearly demonstrate abnormalities in brain networks associ-

ated with emotion processing, emotion regulation, and reward

processing. In a recent study, Sui et al. proposed a joint

analysis model for fMRI and DTI for discriminating bipolar

disorder from schizophrenia [94]. Common abnormalities

were seen in dorsolateral prefrontal cortex, thalamus, and

uncinate fasciculus, whereas differences were found in medial

frontal and visual cortex, as well as occipitofrontal white

matter tracts. Phillips and Swartz recently published an

extensive review of these neuroimaging findings and further

pointed out the future directions of neuroimaging research in

bipolar disorder [95].

Schizophrenia is a major psychosis that is characterized

by altered perception, thought processes, and behaviors. It

can be highly heritable disorder [96], and can be triggered

by a combination of genetic factors and environmental

interactions [97]. Disconnection in white matter pathways

and alteration of cortex are assumed to underlie the cog-

nitive abnormalities in schizophrenia, although this is a

hypothesis and as yet there is no direct proof. The

approaches used for characterizing schizophrenia are very

similar to those for bipolar disorder, primarily using sMRI-

dMRI-fMRI. Various findings in schizophrenia studies

have been reported, based on the investigation on

microstructure of white matter [98] or gray matter [97], or

the connectivity between different brain regions [67, 99].

The study of brain networks, the connectome, is the

focus of intense current neuroscience research [100].

Exploration on the neural systems and brain connections is

critical to advance our understanding of normal brain

reaction and is one of the greatest challenges of the twenty

first century. The Human Connectome Project1 is directed

at tackling this challenge using the highest quality imaging

data available today, predominantly MRI data, comple-

mented by EEG and MEG. The information about brain

anatomy, structural connectivity, and functional connec-

tivity is being obtained using dMRI and resting-state fMRI.

Additional information about brain function is being

obtained using task-evoked fMRI, EEG, and MEG to

record the brain activity.

sMRI-PET is a new structural–functional combination

that is being applied to neurodegenerative diseases and

brain tumors to improve the localization and targeting of

diseased tissue with high accuracy and sensitivity. AD is

the most common neurodegenerative disorder among aging

people, and it accounts for close to 70% of all dementia

cases. In AD, activities of daily living deteriorate over a

number of years, ultimately leading to death. There is no

cure [101]. AD neuroimaging biomarkers can detect the

changes in brain structure (e.g., atrophy on sMRI) and

function (e.g., hypometabolism, amyloid plaque, and NFT

formation on PET) before there is cognitive impairment.

As a result, sMRI and PET with 18F-FDG and amyloid

tracers are being increasingly used in the evaluation of

patients with early dementia in the research setting [8,

102–106]. These studies also demonstrated clear benefits of

multimodal neuroimaging over any single technique alone.

Recently, dMRI [107, 108] and fMRI [109] have also

been used in the evaluation of dementia as there is evi-

dence that suggests the functional connection between

networks is disrupted [110–112]. There are many exten-

sive reviews which summarized these imaging techniques

and the image-based findings [29–31, 33].

Over 200,000 individuals are diagnosed with primary or

metastatic brain tumors in the US each year [28]. The

primary use of sMRI-PET in brain tumors is to accurately

localize and label the lesion, e.g., tumor and edema. PET

has the potential to more accurately detect the peripheral

tumor boundary than using sMRI alone [11, 113]. For

brain tumor surgery, dMRI is usually combined with sMRI

and PET for pre-operative surgical planning and intra-

operative surgical navigation. For example, Durst et al.

used dMRI to predict tumor infiltration in patients with

gliomas [114]. Tempany et al. used sMRI and dMRI

tractography to display a complete brain map for surgical

planning [28]. They further demonstrated how to optimize

the separation between tumor and normal brain in intrinsic

brain tumors with sMRI, and how to avoid inadequate

resection of the tumor.

4 Future directions

Multimodal neuroimaging approaches have been increas-

ingly used in detection, diagnosis, prognosis, and treatment

planning of neuropsychiatric disorders. In this paper, we

have briefly summarized the recent advances in neu-

roimaging techniques, and reviewed their applications to

neuropsychiatric disorders to provide an overview of the

current status. We have also outlined some future direc-

tions for multimodal neuroimaging research.1 http://www.neuroscienceblueprint.nih.gov/connectome

Multimodal neuroimaging computing 175

123

http://www.neuroscienceblueprint.nih.gov/connectome


Improved neuroimaging capabilities Neuroimaging

techniques will continue to advance rapidly, with higher

spatial/temporal/angular resolutions, shorter scan time, and

better image contrast. In particular, hybrid scanners, e.g.,

PET/CT and PET/MRI, will become more clinically

accessible. These technologies will enable more discover-

ies in the neuropsychiatric disorders. The improved imag-

ing capabilities will offer better neuroimaging biomarkers

to evaluate neuropsychiatric disorders, and various sub-

types or different stages of the same disorder with higher

statistical power. These biomarkers will be standardized so

they can be widely used clinically and evaluated in large-

scale sample sets. In addition, once the biomarkers reach a

satisfactory level or the treatment, appropriate clinical

guidelines must be developed to support and encourage

widespread clinical testing.

Enhanced neuroimaging computing models and methods

The continued growth in the complexity and dimension-

ality of the neuroimaging data will spur the parallel

advances of computation models and methods to analyze

such complex data. Future neuroimaging analysis models

will integrate the longitudinal information to track the

long-term changes in the biomarkers [115]. This is essen-

tial for us to understand the pathology of the disorders and

its degeneration trajectory. With sufficiently large longi-

tudinal datasets, we may be able to identify the causes and

detect the early signs, as well as predict the course of the

disorders. Future studies will also focus on subject-cen-

tered therapy. However, no matter how large the datasets

are, they cannot include the entire population, and there

will always be inter-subject variations. Personalized/pa-

tient-centered care is highly demanded and is the ultimate

goal of neuroimaging studies [116]. Neuroimaging com-

puting models and methods also need to keep increasing

the degree of automation, accuracy, reproducibility, and

robustness, and eventually need to be integrated into the

clinical workflow to facilitate clinical testing of the new

neuroimaging biomarkers.

Converged neurotechnologies Another future direction

will be to combine imaging with non-imaging studies. The

multidisciplinary nature of neuroimaging computing will

keep bringing together clinicians, biologists, computer

scientists, engineers, physicists, and other researchers.

Imaging genetics is a very promising area for the future,

where the aim is to identify the genetic basis of anatomical

and functional abnormalities of the human brain and show

how this is connected with neuropsychiatric disorders.

There is a trend to use imaging findings in brain disorders

to reveal the endophenotypes for various gene mutations.

By converting the endophenotype data to novel genetic

biomarkers, it may be possible to identify individuals at

greater risk of developing brain disorders, and in the near

future provide treatment options before the symptoms

appear.
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