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Abstract 

Transformers have dominated the landscape of Natural Language Processing (NLP) and revolutionalized generative AI 
applications. Vision Transformers (VT) have recently become a new state-of-the-art for computer vision applications. 
Motivated by the success of VTs in capturing short and long-range dependencies and their ability to handle class 
imbalance, this paper proposes an ensemble framework of VTs for the efficient classification of Alzheimer’s Disease 
(AD). The framework consists of four vanilla VTs, and ensembles formed using hard and soft-voting approaches. 
The proposed model was tested using two popular AD datasets: OASIS and ADNI. The ADNI dataset was employed 
to assess the models’ efficacy under imbalanced and data-scarce conditions. The ensemble of VT saw an improve-
ment of around 2% compared to individual models. Furthermore, the results are compared with state-of-the-art 
and custom-built Convolutional Neural Network (CNN) architectures and Machine Learning (ML) models under vary-
ing data conditions. The experimental results demonstrated an overall performance gain of 4.14% and 4.72% accuracy 
over the ML and CNN algorithms, respectively. The study has also identified specific limitations and proposes avenues 
for future research. The codes used in the study are made publicly available.

Keywords Vision transformer, Convolutional neural networks, Machine learning models, Alzheimer’s Disease, Swin 
transformer, Data efficient image transformers, Bidirectional encoder representation from image transformers

1 Introduction
Alzheimer’s Disease (AD) is one of the most prevalent 
and challenging neurodegenerative diseases profoundly 
impacting individuals, families, and societies worldwide. 
AD is characterized by the build-up of neuritic plaques 
and neurofibrillary tangles from amyloid-beta peptide-A 
in the medial temporal lobe of the brain and neocortical 

areas [1]. The disease slowly progresses, primarily affect-
ing cognition, memory, and overall brain function. The 
impact of AD goes beyond cognitive decline and can 
affect various aspects like memory loss, disorienta-
tion, difficulties in problem-solving, and quality of life 
[2]. The AD continuum has multiple stages. The Mild 
Cognitive Impairment (MCI) stage is an intermediate 
phase between cognitive decline due to normal aging 
and a more noticeable stage of dementia. The Early MCI 
(EMCI) and Late MCI (LMCI) terms are used to catego-
rize different stages of cognitive impairment between 
normal cognitive aging and more severe cognitive 
decline associated with AD. EMCI refers to individuals 
in the early MCI and may experience noticeable cogni-
tive changes that do not yet significantly impact their 
daily functioning. EMCI individuals are at an increased 
risk of developing more severe cognitive impairment 
or AD. LMCI represents a stage of MCI where cogni-
tive deficits have become more pronounced than EMCI. 
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These individuals may experience more noticeable cogni-
tive difficulties affecting their daily activities and are at a 
more elevated risk of progression to AD.

As AD progresses, it can impose emotional, financial, 
and logistical burdens on caregivers and families. Addi-
tionally, AD challenges healthcare systems with rising 
costs and strains on resources due to its increasing preva-
lence in aging populations – affecting approximately 50 
million people across the globe. This number is expected 
to double every 5 years, with an estimated 152 million 
cases by 2050 [3]. The recent World Alzheimer’s report 
[4] emphasizes an imperative need for early detection 
and intervention by implementing dementia-friendly 
policies and practices. The use of Artificial Intelligence 
(AI) research has proven effective in the early detection 
of AD, thus facilitating early intervention [5].

To detect early signs of AD, the AI models can analyze 
clinical records, neuroimaging scans, and biomarkers [6] 
to offer significant advancements. Single-classifier based 
AI models, which are simple and resource-efficient, were 
the traditional methods used for AD classification. They 
primarily include different types of machine and deep 
learning models and feature extraction techniques. How-
ever, they face challenges with high-dimensional medi-
cal data, leading to sub-optimal accuracy, generalization 
performance, computational inefficiencies due to large 
datasets, and sensitivity to data imbalance. They are also 
prone to overfitting since they may not effectively cap-
ture the subtle pattes critical for accurate diagnosis. On 
the contrary, ensemble methods provide robustness by 
combining the predictions of multiple models, resulting 
in more reliable and versatile predictions [5]. Ensembles 
also reduce the risk of overfitting and make the system 
adaptable to variations in the data, besides mitigating 
biases and variances present in individual models, result-
ing in more reliable and versatile predictions. While tra-
ditional classifiers have shown promise in AD detection, 
recent advancements in VTs offer novel methodologies 
that could further enhance diagnostic accuracy and pro-
vide new insights into AD disease diagnosis [7]. Their 
ability to capture long-range dependencies and process 

the sequence tokens in parallel mode contributes to their 
robust results across benchmark datasets.

The following are prominent reasons to undertake this 
endeavor: 

1 As the field of AI rapidly evolves, it becomes impera-
tive to examine Vanilla VTs’ performance for the task 
of AD classification both individually and as ensem-
bles. We do not see an exclusive study that does this 
kind of investigation under both data-scarce and 
data-rich conditions.

2 Ensemble classifiers combine predictions from mul-
tiple classifiers and can achieve higher accuracy and 
generalization capability. And, to the best of our 
knowledge, there is no exclusive ensemble ViT study 
in current literature that utilizes both ADNI and 
OASIS datasets.

3 The results of VTs and their ensembles were com-
pared with state-of-the-art ML and CNN-centric DL 
models. Such a comparative study would help both 
new entrants and real-time domain experts choose 
the models based on data availability and resources.

In this work, we selected four vanilla VTs to develop the 
ensemble model using max-voting and probability-based 
fusion for robust AD classification. The AD classifica-
tion overview using VT architectures variants is shown 
in Fig. 1. Specifically, we selected Microsoft’s Shifted win-
dow transformer (Swin) [8], Facebook’s Data-efficient 
Image Transformer (DeIT) [9], BERT pre-trained Image 
Transformers (BeIT) [10] and Google’s Vision transform-
ers (ViT) [11]. These vanilla VTs were selected based 
on their diversity in architectural design, proven per-
formance on benchmark datasets, and complementary 
strengths. Collectively, these models represent a compre-
hensive and robust ensemble for efficient AD classifica-
tion tasks.

The rest of the article is organized as follows: The 
related literature on the use of VT and ensemble is dis-
cussed in Sect.  2. The ensemble techniques used with 
VT are presented in Sect.  3. Experimental results and 
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analysis are discussed in Sect.  4, Challenges and future 
avenues are covered in Sect.  5, and Conclusions are 
drawn in Sect. 6.

2  Related work
Application of AI inspired by the success of Transform-
ers in NLP, VTs are now being widely used in medical 
imaging, specifically for analyzing neuroimaging data 
[12]. They show promise in early detection and diagno-
sis, especially with various neuroimaging modalities like 
MRI. The attention mechanism of VTs plays a key role in 
capturing complex patterns and dependencies in brain 
images. This section provides a review of literature that 
uses VTs in the classification of AD.

Maram et  al. [13] applies the ViT approach to detect 
AD using MRI images, showcasing good accuracy and 
precision on the OASIS dataset. The model focuses on 
critical regions demonstrating high accuracy, preci-
sion, recall, F1-score, and minimal false negatives. The 
study shows that the ViT model performs well. Using 
the OASIS dataset for AD, Sherwani et al. [14] compare 
the effectiveness of CNN and VT using two variants of 
VT architectures: Deep ViT and Class attention in Image 
Transformer (CaiT) [15]. While Deep ViT achieved an 
accuracy of 90.2%, CNN achieved an accuracy of 82.0% 
only.

Odusami et  al. [16] combine MRI and PET datasets 
from the ADNI repository using discrete wavelet trans-
form (DWT) and apply transfer learning using the pre-
trained neural network VGG16. An inverse discrete 
wavelet transform is used to reconstruct the fused image, 
and then a ViT that has already been trained is used to 
classify it. The study showed accuracy of over 98% for 
fused data when compared to 94% for CNN. Another 
study by Lyu et al. [17] introduces a cross-domain trans-
fer learning approach to address data insufficiency using 
ViT for AD vs CN classification pre-trained on the Ima-
geNet-21K dataset and fine-tuned on the brain imaging 
dataset. The incorporation of a slice-wise convolution 
embedding enhances the methodology. The results show 
that ViT outperforms CNN-based architecture and effec-
tively transfers knowledge. Saman et  al. [18] introduce 
a robust and optimized VT architecture for classifying 
healthy controls, MCI and AD using resting-state func-
tional MRI (rs-fMRI) and structural MRI (sMRI) data 
from ADNI. The study also uses Deep ViT with a re-
attention mechanism and class-attention in image trans-
formers (CaIT). The model, with 30% fewer parameters 
than a vanilla transformer, achieved F1-scores of 97% and 
99.55% for rs-fMRI and sMRI modalities, respectively.

Besides using datasets from ADNI, the authors in 
[19] have compared the performances of AD detection 
for datasets from Australian Imaging Biomarkers and 

Lifestyle Study (AIBL). In this work, authors propose a 
variant of ViT, namely, Resize Swin Transformer (RST), 
to address the challenges of brain imaging due to limited 
dataset sizes and labor-intensive preprocessing proce-
dures. This model extracts information from processed 
brain images, achieving multi-scale and cross-channel 
features. The RST is pre-trained on a natural image data-
set and demonstrates superior classification performance 
with over 99% and 94% accuracy on ADNI and AIBL 
datasets. The performances are compared with CNN-
based models, namely DenseCNN, CNN and ResNet. 
The ViT variant exhibits better classification perfor-
mance in AD prediction. Another study by Shin et  al. 
[20] proposes a ViT approach for classifying AD using 
18F-Florbetaben brain imaging, addressing the need for 
accurate diagnostic tools for early detection and treat-
ment of AD. The method uses the ViT architecture to 
process PET scans that reveal amyloid plaque accumula-
tion, a key indicator of AD. The implementation involves 
preprocessing the images to enhance quality before train-
ing the model. Performance evaluation demonstrates that 
the ViT approach significantly outperforms traditional 
methods in classifying AD versus non-AD subjects. The 
advantages of this approach include its ability to capture 
complex spatial relationships in imaging data and robust 
performance with multimodal inputs. Overall, the find-
ings suggest that ViT can be a powerful tool in the clini-
cal diagnosis of AD.

Several studies use an ensemble framework of VT 
and CNN. For instance, Rahma et al. [21] introduce two 
methods for AD diagnosis. The first method combines a 
Swin transformer with an enhanced EfficientNet, multi-
head attention, and a Depthwise Over-Parameterized 
Convolutional Layer (DO-Conv). The second method 
modifies the CoAtNet (a family of hybrid models - depth-
wise Convolution and Self-attention) network with ECA-
Net (Efficient Channel Attention network) and fused 
inverted residual blocks. Evaluation of the OASIS and 
ADNI datasets, along with Grad-CAM analysis, yields 
promising results. The former method achieves 93.2% 
accuracy on OASIS, while the latter method achieves 
97.33%. Similarly, the study of Nanni et  al. [22] fuses 
CNN with transformer ensembles, including Deit, ViT, 
and Swin topologies. The experimental results across 
multiple datasets show significant performance improve-
ments when combining diverse models for image clas-
sification tasks. In another article, Chen et  al. [23] 
propose an ensemble of CNN and VT in predicting AD 
stages, effectively differentiating between healthy con-
trols, very mild, mild, and moderate cases. The ensemble 
model achieves good classification accuracy. Xing et  al. 
[24] introduce a ViT model trained on multimodal PET 
images from ADNI followed by classification for AD 



Page 4 of 18Shaffi et al. Brain Informatics           (2024) 11:25 

diagnosis achieving an accuracy of 91% and an AUC of 
0.95.

This review of relevant literature, summarized in 
Table  1, suggests a widespread adoption of VTs in AD 
classification. While several studies have investigated 
the integration of VTs with CNNs, research exclusively 
dedicated to ensembles of vanilla VTs is unavailable for 
AD classification. Table  1 also shows models with sev-
eral gaps that must be addressed. Common gaps like high 
computational demands and the need for large datasets 
are found in VTs. To mitigate these gaps, the proposed 
work fine-tune the VT models and incorporate diverse 
datasets from both ADNI and OASIS that will enhance 
generalizability and clinical applicability. Additionally, 
exploring advanced ensemble techniques can improve 
the model performance and reliability. This study aims 
to address these significant gaps by proposing an ensem-
ble of Vanilla VTs and testing their performance using 
OASIS and ADNI datasets, thereby also providing a 
comparative evaluation with CNN-centric architectures. 
We also observed that no exclusive study exists on the 
comparative evaluation of VTs against the popular CNN 
architectures that utilize both ADNI and OASIS datasets.

3  Ensemble of vision transformers
This section aims to provide a complete pathway of how 
an MRI image is inferenced through an ensemble of VT 
framework for a robust AD classification. Figure 2 shows 
the proposed pipeline depicting the three main compo-
nents, namely, (i) preprocessing of brain images (covered 
in section  3.1), (ii) VT model training (covered in sec-
tion 3.2), and (iii) ablation study of vanilla transformers 
elaborated in section 3.3.

3.1  MRI preprocessing
The MRI images downloaded from ADNI contained raw 
data, and hence, they had to be preprocessed. The down-
loaded MRI files underwent four preprocessing stages: i) 
reorientation, ii)  registration, iii)  skull-stripping, and iv) 
histogram equalisation. The reorientation step aligns the 
brain images to MNI standard space where anterior por-
tion of the brain is upward facing while the superior side 
is forward facing. This step ensures correction of any ori-
entation variation due to differences in scanner settings 
or patient positioning during the scan. The registration 
process ensures alignment of brain images from differ-
ent subjects or time points into a common coordinate 
space. This alignment is crucial for comparing and ana-
lyzing images across individuals or longitudinal studies. 
The skull-stripping step is done to eliminate artifacts and 
non-brain structures such as skull, scalp, and extracranial 
tissues which are not useful in the AI based classification 
of brain images. In the final step histogram equalization 

enhances MRI features in the brain images. The sample 
images from this preprocessing process are detailed in 
Fig. 3

3.2  Overview of vision transformers used in the study
In light of the emergence of ViT [11], there have been 
significant advancements in VT architecture in recent 
times. Several prominent VT variants have come to fore, 
namely BEiT [10], Swin Transformers [8], and DeiT [9]. 
These architectures have demonstrated remarkable per-
formance across various benchmarks, including Ima-
geNet, compared to contemporary CNNs. In this section, 
we provide a brief overview of the VT variants.

3.2.1  Vision trasformer (ViT)
Image patches are fed as 1D vectors to the standard 
Transformer Encoder (TE) of the ViT [11]. The input 
image of dimension x ∈ R

H×W×C is divided into a series 
of 2D patches xp ∈ R

(N×(P2×C)) – where (H, W) repre-
sents the original image dimension, C denotes the num-
ber of channels, (P, P) denotes the patch dimension. The 
total number of patches obtained is determined using 
N = HW /P2 . The image patches are transformed to 
patch embeddings of D dimension. The positional encod-
ings and learnable class token ( z00 ∈ xclass ) are appended 
to these embeddings.

These embedding vectors sequence serves as input to the 
TE. The TE consists of alternating layers of Multiheaded 
Self-Attention (MSA) and Multi-Layer Perceptron (MLP) 
blocks. The layer normalization (LN) process is per-
formed before and after each block’s residual connec-
tions. Equations 1 and 2 represent MSA and MLP along 
with LN. The MLP head finally provides the class label of 
the inference image.

3.2.2  Data‑efficient image transformer (DeiT)
Touvron et al. [9] introduced DeiT to mitigate ViT’s reli-
ance on extensive datasets. DeiT facilitates ViT training 
on smaller datasets such as ImageNet-1k and employs 
a teacher-student framework to train a more compact 
transformer model. A new distillation token was intro-
duced to interact with the class and patch tokens in 
addition to the token utilized by ViT. Distillation can be 
categorized into two types: soft and hard. The teacher 
model supplies probability distributions in soft distilla-
tion as “soft” labels. In hard distillation, “hard” labels are 
the class predictions or decisions the teacher model pro-
vides. The difference between the outputs of the teacher 

(1)z′l =MSA(LN (zl−1)+ zl−1, where l = 1...L

(2)zl =MLP(LN (z′l)+ z′l , where l = 1...L
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and student models is minimized in soft distillation using 
Equation 3.

In hard distillation, the teacher’s decision is taken as the 
true label. Equation 4 yields the hard distillation using the 
teacher’s true label, yt = argmaxcZt(c).

Soft and hard distillation are training methods used 
to transfer knowledge from a larger teacher model to a 
smaller student model. The selection between soft and 
hard distillation hinges on the model’s specific objectives 
and the desired characteristics in the final predictions. 
These strategies aim to enhance the predictions of the 

(3)
Lglobal = (1− �)LCE(ψ(Zs), y)

+ �τ 2KL(ψ(Zs/τ),ψ(Zt/τ))

(4)
L
hardDistill
global =

1

2
LCE(ψ(Zs), y)+

1

2
LCE(ψ(Zs), yt)

student model by utilizing the knowledge distilled from 
a larger teacher model. Once the distillation process is 
complete, the student model can autonomously predict 
new, unseen data. Essentially, the distillation process 
represents a form of transfer learning where the student 
model acquires knowledge from the teacher model. The 
final classification utilizes only the trained student model, 
which independently makes predictions following the 
knowledge transfer process.

3.2.3  Shifted windows transformer (Swin)
The Swin Transformer, introduced by Liu et al. [8], rep-
resents an evolution of the Transformer block, replac-
ing the traditional multi-head self-attention (MSA) 
module with a shifted window-based module. The Swin 
Transformer block is structured with a shifted window-
based MSA module, supplemented by an MLP mod-
ule. It includes LN layers positioned before each MSA 
module and MLP, along with residual connections after 

Brain Imaging Preprocessing Vision Transformer Models Fusion Methods Predicted Class

Raw MRI

10 * 2 3 4 5 6 7 8 9

Non Demented
Cognitively Normal

Very Mild Demented
Early MCI

Mild Demented
Late MCI

Moderately Demented
Alzheimer’s Disease

OASIS
ADNI

*: Class Embedding (CE)
0 to 9: Patch and Position Embedding (PPE)

Enhancement

Reorientation Registration

Skull Stripping
DeiT Swin BEiT

Linear Embedding of Flattened Patches

Transformer Encoder

MLP Head

ViT

PPE + CE*

CD
R 

0.
0

CD
R 

0.
5

CD
R 

1.
0

CD
R 

1.
5

ViT

Swin

BEiT
DeiT

0 0 1 0

1 0 0 0

0 0 1 0

0 1 0 1

1 1 2 1

Hard Soft

Fig. 2 The proposed pipeline and its main components: (i) preprocessing and (ii) vision transformer models, namely, Google’s Vision Transformers 
(ViT) [11], Data-Efficient Image Transformer (DeiT) [9], Shifted windows Transformer (Swin) [8], and Bidirectional Encoder Representation from Image 
Transformers (BEiT) [10]. The detailed working mechanism of ViT is adapted from [11]. There are four vision transformer models to choose 
from that have been tested with the OASIS and the ADNI datasets. (iii) Decision Level Fusion, namely Hard-voting and Soft-voting. The hard voting 
mechanism is shown. (iv) AD Classification Labels, OASIS (Blue) and ADNI (Green)

Fig. 3 First Row – Intermediate Stages of Preprocessing: (i) reorientation, (ii) registration, (iii) skull-stripping, (iv) histogram equalisation. Second Row 
– Sample raw MRI scans from the ADNI cohorts. Third Row – Corresponding final preprocessed output
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each module. In Swin, a “window” denotes a partition or 
block of the input image that undergoes separate pro-
cessing within the self-attention mechanism. The Swin 
Transformer employs a hierarchical architecture that 
divides the input image into non-overlapping patches or 
windows at multiple scales or levels. Within each win-
dow, self-attention is applied independently, allowing 
the model to capture both local and global dependencies 
effectively across different spatial resolutions.

For large images, window-based self-attention provides 
scalability and efficiency, making it a preferred choice. 
The Swin Transformer utilizes an approach that alter-
nates between non-overlapping window partitioning and 
shifted window partitioning configurations within its 
blocks. This strategy optimizes the model’s ability to cap-
ture spatial relationships across varying scales effectively. 
The initial layer employs a standard partitioning strategy, 
evenly dividing the window into M x M blocks. The sub-
sequent layer utilizes a shifted configuration, displacing 
the windows by ( ⌊M2 ⌋ , ⌊

M
2 ⌋ ) pixels from the regularly par-

titioned windows in the previous layer. In this approach 
of partitioning, consecutive Swin Transformer blocks are 
computed as shown in equation 5.

where ẑl and zl represents the output features of the 
SW −MSA and the MLP module for block l respec-
tively. W −MSA and SW −MSA indicate window-based 
multi-head self-attention using shifted window partition 
configurations.

3.2.4  Bidirectional encoder representation from image 
transformers (BEiT)

Inspired by the success of Bidirectional Encoder Repre-
sentation from Transformers (BERT) in NLP, Bao et  al. 
[10] proposed the BEiT VT model. The BEiT model is 
pre-trained using BERT’s masked image modeling (MIM) 
framework, which utilizes two input views for each 
image: image patches and visual tokens.

The BEiT transforms the 2D image x ∈ R
H×W×C into 

N = HW /P2 patches xp ∈ R
N×(P2C) . Here, C represents 

the number of channels, (H, W) denotes the input image 
resolution, and (P, P) is the resolution of each patch. The 
raw image patches {xpi }

N
i=1 are vectorised to be used as 

input features. The tokenization step, through the dis-
crete variational autoencoder latent codes, transforms 
the image into visual tokens [25].

(5)

ẑl = W −MSA(LN (zl−1))+ zl−1,

zl = MLP(LN (ẑl))+ ẑl ,

ẑl+1 = SW −MSA(LN (zl))+ zl ,

zl+1 = MLP(LN (ẑl+1))+ ẑl+1,

Approximately 40% of the image patches undergo ran-
dom masking in the MIM framework. The positions 
that are masked are represented as M ∈ {1, · · · ,N }0.4N . 
The patches that are masked are subsequently substi-
tuted with a learnable embedding e[M] ∈ R

D . The Trans-
former block will then be provided with corrupted 
image patches xM = {x

p
i : i /∈ M}Ni=1

⋃

{e[M] : i ∈ M}Ni=1 
as inputs. The final hidden vectors {hLi }

N
i=1 are con-

sidered to be the encodings of the input patches. The 
softmax classifier is used at each masked position 
{hLi : i ∈ M}Ni=1 to predict the corresponding visual tokens 
pMIM(z′|xM) = softmaxz′(Wch

L
i + bc) , where xM is the 

corrupted image, Wc ∈ R
|V |×D , and bc ∈ R

|V |.

3.3  Ensemble techniques
The essence of ensemble classification is to improve pre-
diction performance by fusing the predictions of multiple 
individual classifiers. Our study used two common fusion 
approaches: Max voting and probability-based voting, also 
termed hard voting and soft voting. This section describes 
the two fusion techniques used in our study.

3.3.1  Max‑voting‑based fusion (Hard voting)
Max or Hard voting is a prediction technique generally 
used for classification problems. For the given set of n 
models, with prediction vectors −→p i(i = 1, · · · , n) . The pre-
diction vectors are also termed as vote. The final prediction 
is determined by finding the most commonly predicted 
label by taking the mode of the predicted labels among 
the individual classifiers or by considering the highest vote 
obtained from majority of the models [5, 26].

3.3.2  Probability‑based ensemble (Soft voting)
Probability based ensemble or Soft voting is an effective 
algorithm that combines the predictions of multiple clas-
sifiers by utilizing the probability of predictions. In this 
approach probabilities are assigned to each class for each 
classifier. The class with the highest total probability is con-
sidered as the prediction of the ensemble [5, 26]..

Let β i
k(i = 1, · · · , n, k = 1, · · · ,C) represent the prob-

ability output of n models belonging to C classes. This 
ensemble technique predicts the final label by summing the 
predicted probabilities by individual models.

(6)PMV = mode(
−→
p i)

(7)Plj = argmaxl∈C

(

n
∑

i=1

β i
1,

n
∑

i=1

β i
2, · · · ,

n
∑

i=1

β i
C

)
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4  Results
4.1  Experimental setup
The details pertaining to the experimental setup such as 
the number of samples, train-test subsets, preprocessing 
pipeline, hyper-parameters, etc. are all described in this 
section.

4.1.1  Dataset
The experimentation was conducted using Open Access 
Series of Imaging Studies (OASIS, www. oasis- brains. org) 
and Alzheimer’s Disease Neuroimaging Initiative (ADNI, 
https:// adni. loni. usc. edu/) datasets.

The OASIS dataset: This dataset consists of 6400 
images classified into four different classes based on 
Clinical Dementia Rating (CDR) score. The classes 
non-demented(3200), very mild demented(2240), mild 
demented(896) and moderately demented(64) maps to 
CDR score of 0, 0.5, 1.0 and 2.0 respectively. The values 
in the parenthesis denote the total samples in the respec-
tive classes. The dataset was divided into 70:30 train-
test subsets with 5120 and 1280 samples, respectively. 
The preprocessed image files suitable for processing was 
downloaded from the Hugging Face platform [27].

The ADNI dataset: T1-weighted MRI images with Mag-
netisation Prepared - RApid Gradient Echo (MPRAGE) 
from subjects belonging to either genders aged between 
50 and 65 were downloaded. The MPRAGE technique 
is used to highlight the anatomical structure of gray and 
white matters in the brain region [28]. We downloaded 
1056 raw MRI images from the Axial plan belonging to 
four categories: AD (223), EMCI (475), LMCI (262), 
and CN (96), resulting in 1056 samples. The total num-
ber of samples in each class is denoted in parentheses. 
Train and test samples were split into 90:10 proportions, 
with 950 training and 106 test samples to ensure that 
the model has enough data to learn from. Images in this 
dataset are taken from ADNI-1, ADNI-2, and ADNI-GO 
cohorts and downloaded in NIfTI format. The dimen-
sion of ADNI MRI image used in our experimentation is 
218× 192.

4.1.2  Metrics
The evaluation of models involved the utilisation of 
accuracy(Ac ), sensitivity(Se ), and specificity(Sp ) as per-
formance metrics [5]. Accuracy measures the ratio of 
correctly classified samples to the total number of sam-
ples. Specificity(Sp ), or the true negative rate (TNR), 
quantifies the test’s ability to correctly identify individu-
als without the specific ailment being tested. The false 
positive rate (FPR) can be derived as 1− Sp . Sensitiv-
ity(Se ), also referred to as recall or the true positive rate 
(TPR), evaluates the test’s ability to accurately identify 

individuals with the targeted ailment. The false negative 
rate (FNR) can be calculated as 1− Se . All reported val-
ues were averaged using the one-vs-all strategy.

4.1.3  Model implementation
The pretrained weights of the VT models were down-
loaded from the Hugging Face platform. The pretrained 
models utilized were all the Vanilla version of Google’s 
ViT, Microsoft’s Swin and BeiT, and Facebook’s DeiT 
models. The ViT, Swin and BeiT were trained using Ima-
geNet’s 21K dataset (14 million samples spanning 21,841 
classes). The DeiT model, known as a data efficient 
model, was pretrained utilizing ImageNet’s 1K data-
set. The ML models were implemented using the well 
known Python library Scikit-learn. The pretrained CNN 
models were obtained from the Tensorflow package. The 
fine-tuning and subsequent evaluation was carried out 
on a Windows system equipped with NVidia RTX 3060 
GPU and 3.2 GHz CPU. The code used in this study can 
be downloaded at: https:// github. com/ snous hath/ VIT- 
CNN- AD. git.

4.2  Model training
In this experiment, we analyze the training dynamics of 
four different VT architectures using both OASIS and 
ADNI datasets. As mentioned previously, the OASIS 
represents a balanced dataset with sufficient samples and 
the ADNI dataset represents a data-scarce condition. We 
represent and compare the distribution of validation loss, 
training loss, and validation accuracy across 50 epochs 
using line plots as shown in Fig. 4.

The line plots of all four algorithms (on both OASIS 
and ADNI datasets) depict a consistent downward trend 
in both validation and training loss, suggesting the effi-
cacy of VT models in capturing AD patterns during 
fine-tuning. Moreover, the observed increase in valida-
tion accuracy across all algorithms signifies successful 
generalization to the validation data. Notably, despite 
being trained on a smaller ImageNet-1K dataset, the 
fine-tuned DeiT model demonstrates comparable trends 
with the other three models which were pretrained on a 
significantly larger ImageNet-21K dataset. This demon-
strates the DeiT’s data-efficient capability to train from 
a smaller pretraining dataset.The observed trends in per-
formance remain consistent across models, irrespective 
of whether the fine-tuning was conducted using a more 
balanced dataset (OASIS) or an imbalanced and smaller 
dataset (ADNI). This consistency shows the robustness 
and generalization capabilities of the VT models across 
varying data conditions. Despite the inherent differences 
in dataset characteristics, including size and class distri-
bution, the VT models exhibit comparable effectiveness 

http://www.oasis-brains.org
https://adni.loni.usc.edu/
https://github.com/snoushath/VIT-CNN-AD.git
https://github.com/snoushath/VIT-CNN-AD.git
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in capturing AD patterns and achieving successful gener-
alization during the fine-tuning process.

4.3  Model testing
In this experiment, we used both OASIS and ADNI data-
sets to check the efficacy of trained vanilla VTs under 
both data-sufficient (OASIS) and data-constrained 
(ADNI) situations.

The evaluation results, presented in Table  2, demon-
strate an outstanding performance by all models, with 
comparable test accuracies. The table reveals that across 
all models, including ViT, Swin Transformer, DeiT, and 
BEiT, remarkable accuracy is achieved on the OASIS 
dataset, ranging from 97.18% to 98.43%. Notably, both 
specificity and sensitivity values exhibit consistency, sig-
nifying robust performance in correctly identifying true 
negatives and true positives. Additionally, the low FNR 
and FPR indicate the models’ ability to minimize clas-
sification errors effectively. Similarly, the models exhibit 
commendable performance on the smaller ADNI dataset, 
with accuracy ranging from 99.04% to 99.52%. Specific-
ity and sensitivity values remain consistently high, indica-
tive of the models’ efficacy in accurately classifying both 
inter-class and intra-class cases within the dataset.

It is important to note that despite the ADNI dataset’s 
smaller size relative to OASIS, the VT models maintain 
comparable or even slightly higher accuracy on ADNI, 
highlighting their ability to fine-tune with limited sam-
ples and generalize effectively to smaller datasets. This 
feature is critical for medical scenario applications where 
data availability may be limited. This ability of VT mod-
els to effectively learn from and adapt to smaller datasets 
underscores their robustness and generalization capabili-
ties. The VT models’ consistent performance across data-
sets indicates their adaptability to fine-tune regardless of 
whether the underlying dataset is balanced, imbalanced, 
limited or adequate.

4.4  Fusion of VTs
This section reports the results of the ensemble classifi-
cation of Vanilla VTs. For this purpose, we have consid-
ered hard and soft ensemble techniques as described in 
Section  3. Ensemble classifiers offer several advantages 
in machine learning [5]: (i) the diversity of algorithms 
ensures that particular weakness of a classifier is miti-
gated through a robust classifier in the ensemble, (ii) 
by combining multiple models, ensembles can achieve 
higher accuracy and robustness compared to individual 
models, and additionally (iii) ensemble methods provide 

(a) (b)Model Training on OASIS Dataset Model Training on the ADNI dataset

Fig. 4 Model Training of Vanilla VT algorithms: a On OASIS Dataset, b On ADNI Dataset

Table 2 Performance of VTs on various performance metrics on OASIS and ADNI datasets

Models OASIS dataset ADNI dataset

Acc Spe Sen FNR FPR Acc Spe Sen FNR FPR

ViT 0.9718 0.9882 0.91915 0.0808 0.0118 0.9904 0.9963 0.9919 0.0080 0.0036

Swin 0.9804 0.9913 0.9415 0.0584 0.0086 0.9952 0.9963 0.9887 0.01124 0.00368

DeiT 0.9843 0.9931 0.9696 0.0303 0.0068 0.9904 0.9963 0.9887 0.0112 0.0036

BEiT 0.9773 0.9905 0.9533 0.0466 0.0094 0.9904 0.9963 0.9887 0.0112 0.0036
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stability across different datasets and conditions, gen-
eralize well to new data. Here, we provide classification 
performance of four vanilla VTs as an ensemble of 2, 3, 
and 4 classifiers and provide substantiated analysis (See 
Table 3). We used the OASIS dataset only in this experi-
ment as individual model performance on the ADNI 
dataset was almost 100% (Fig. 5).

Some observations from this experiment are: 

1 Firstly, it is to be noted that the ensemble of VT 
achieved an accuracy improvement of 0.63% to 0.86% 
compared to individual VT performance. While this 
increment seems less significant from an academic 
point of view, its clinical significance can be pro-

Table 3 Performance evaluation of various ensembles of vision transformers

No.of Models Ensemble Type Accuracy Specificity Sensitivity FNR FPR

2 ViT+Swin Hard 0.9757 0.9894 0.9297 0.0702 0.0105

Soft 0.9851 0.9933 0.9484 0.0515 0.0066

ViT+BEiT Hard 0.9781 0.9906 0.9333 0.0666 0.0093

Soft 0.9835 0.9926 0.9638 0.0361 0.0073

ViT+DeiT Hard 0.9750 0.9894 0.9276 0.0723 0.0105

Soft 0.9835 0.9931 0.9457 0.0542 0.0068

Swin+BEiT Hard 0.9875 0.9940 0.9725 0.0274 0.0059

Soft 0.9875 0.9943 0.9531 0.0468 0.0056

Swin+DeiT Hard 0.9851 0.9930 0.9701 0.0298 0.0069

Soft 0.9890 0.9951 0.9539 0.0460 0.0048

BEiT+DeiT Hard 0.9859 0.9935 0.9698 0.0301 0.0064

Soft 0.9906 0.9958 0.9721 0.0270 0.0041

3 ViT+Swin+BEiT Hard 0.9898 0.9954 0.9552 0.0447 0.0044

Soft 0.9851 0.9933 0.9484 0.0515 0.0066

ViT+Swin+DeiT Hard 0.9851 0.9936 0.9486 0.0513 0.0063

Soft 0.9851 0.9933 0.9484 0.0515 0.0066

ViT+BEiT+DeiT Hard 0.9882 0.9947 0.9685 0.0314 0.0052

Soft 0.9835 0.9926 0.9638 0.0361 0.0073

Swin+BEiT+DeiT Hard 0.9929 0.9968 0.9754 0.0245 0.0031

Soft 0.9828 0.9923 0.9450 0.0549 0.0076

4 ViT+Swin+BEiT+DeiT Hard 0.9906 0.9956 0.9737 0.0262 0.0043

Soft 0.9835 0.9926 0.9464 0.0535 0.0073
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Fig. 5 Confusion matrices of vanilla VTs and best ensembles (soft and Hard)
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found. In a clinical context, even a slighter improve-
ment in accuracy means early diagnosis of AD and 
the potential for personalized interventions, thereby 
significantly improving patient outcomes.

2 The enhanced performance of the ensemble of BEiT 
and DeiT could be due to fundamentally different 
architectural designs and training objectives offered 
by these algorithms.

3 BEiT’s architecture extends the transformer archi-
tecture by introducing bidirectional encoders, allow-
ing the model to capture local and global contextual 
information within the image. This bidirectional 
processing enables BEiT to better understand the 
relationships between image patches. DeiT focuses 
on knowledge distillation to distill knowledge from 
large-scale teacher models into smaller student 
models. By effectively transferring knowledge from 
pre-trained models, DeiT achieves competitive per-
formance with significantly reduced computational 
resources and data requirements.

4 In terms of learning objectives offered, DeiT learns 
from a teacher model through knowledge distil-
lation, while BEiT learns representations through 
self-supervised learning. By fusing these models, the 
ensemble benefits from the diverse learning objec-
tives pursued by DeiT and BEiT.

5 We also noticed that the hard-voting scheme out-
performed soft-voting ensembles in cases with more 
than two classifiers in the ensemble. For example, 
consider models A, B, and C with probability values 
[0.2, 0.59, 0.1, 0.01], [0.6, 0.20, 0.1, 0.1], and [0.3, 0.31, 
0.2, 0.19], respectively, with ground truth label as 1. 
Model A predicts class 1, model B predicts class 0, 
and model C predicts class 1. From this example, 
model C shows that the probability values among 
class-0 and class-1 have very narrow differences 
affecting the dominant decision shown by models A 
and B. Due to this ambiguity, the sum of probability 
values exhibits similar confidence between class-0 
and class-1 based on soft voting, leading to uncer-
tainty in the decisions. However, the hard-voting 
technique correctly predicts the final label as class-1 
based on the max-voting, outperforming the soft-
voting mechanism.

6 DeiT performs better than other VTs despite being 
trained on smaller datasets primarily due to the pro-
cess of knowledge distillation. In this process, a larger 
pre-trained model (typically a ViT) acts as a “teacher” 
model and transfers its knowledge to a smaller stu-
dent model (the DeiT). During training, the student 
model learns to mimic the predictions of the teacher 
model. This process enables the DeiT to benefit from 

the rich representations learned by the larger model, 
even though it is trained on smaller datasets.

7 Furthermore, DeiT typically has fewer parameters 
compared to ViT due to its smaller size. This param-
eter efficiency allows DeiT to learn more effectively 
from the limited data available, leading to better utili-
zation of the dataset and improved performance.

8 Increasing the number of classifiers in the ensemble 
may not improve the overall accuracy significantly. If 
the individual classifiers in the ensemble make simi-
lar errors on the same data instances, then combining 
them through majority voting/hard-voting might not 
lead to improvements in accuracy. Ensembles mainly 
benefit if presented with diverse type of individual 
classifiers, meaning each classifier should bring 
unique perspectives or capture different aspects of 
the data.

4.5  Comparison with CNN
Despite VTs’ advancement in the last few years, CNNs 
continue to remain the cornerstone of computer vision 
tasks, mainly for data-efficient architecture train-
ing. VTs, on the other hand, require a massive dataset 
for training from scratch. In this section, we provide 
a comparative analysis of VTs with CNNs using both 
ADNI and OASIS datasets. We considered popu-
lar EfficientNetB0, InceptionResNetV2, InceptionV3, 
ResNet50, ResNet101, and ResNet152 pre-trained mod-
els for this purpose. The fine-tuning was performed 
by replacing the last classification layer of these archi-
tectures with the following sequence of layers as in 
[ 5 ] : DO(0.5)− Flatten− BN − 2048N − BN − DO(0.5)

−1024N − BN − DO(0.5)− 4N  . Here, DO(i) denotes a 
dropout layer of probability i, BN implies the Batch Nor-
malization layer and cN indicates a fully connected layer 
consisting of c neurons. We empirically fixed a learning 
rate of 1e10− 5 using the Adam activation function. The 
VT and CNN models were fine-tuned for 50 epochs. 
Additionally, popular CNN architectures [29–31] from 
literature are also used in this comparative study. Alzhei-
merNet [31] uses an InceptionV3 pre-trained architec-
ture with an RMSProp optimizer and a learning rate of 
0.00001. Yousry et al. [29] use a custom-built CNN with 
an Adam optimizer, where feature maps are initialized 
using a Glorot initializer. A study by Helaly et al. [30] uti-
lizes the VGG19 pre-trained architecture. The results are 
reflected in Tables 4 and 5.

4.5.1  Using the OASIS dataset
This section reports the performance of VTs with various 
CNN models using the OASIS dataset.
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All four vanilla VT models performed well as indi-
cated by their training and validation losses. These 
models are effective in capturing the underlying AD 
patterns well in the MRI samples which is evident in 
their generalization ability as indicated by their test 
accuracies. However, the popular EfficientNetB0 archi-
tecture exhibited high training and validation errors. 
The large gap in their training and validation error indi-
cates that the model is overfitting the data as its test 
accuracy is only 0.4380. InceptionResNetV2 and Incep-
tionV3 models also exhibit overfitting behavior as their 
validation losses are high compared to training losses. 
For instance, InceptionV3 has a notable difference in 
test (0.73) and validation (0.93) accuracy. The CNNs 
do not exhibit any signs of underfitting based on the 
results in Table 4. All variants of ResNet architectures 
demonstrated good performance without any signs of 
overfitting or underfitting which is evident through 
their high test and validation accuracy. Overall, the 

VTs demonstrated robust performance as against CNN 
models.

4.5.2  Using the ADNI dataset
In this experiment, we use a smaller subset of the ADNI 
dataset to assess the effectiveness of VTs in learning 
and generalizing from limited samples. The outcomes 
of this experiment are summarized in Table 5.

The performance analysis conducted on the smaller 
ADNI dataset highlights the efficiency of Vision Trans-
formers (VTs) when compared to Convolutional Neural 
Networks (CNNs). Particularly noteworthy are mod-
els like BEiT, ViT, and Swin, which showcase remark-
able adaptability despite the constraints of limited data. 
The results reveal consistently high accuracy and rela-
tively low loss values for VTs, indicating their ability to 
effectively learn from smaller datasets. Notably, BEiT 
stands out with a remarkable 100% accuracy on the test 
set, underscoring its exceptional fine-tuning capability 
even with limited samples. In contrast, certain CNNs, 
such as EfficientNetB0 and ResNet152, exhibit signs of 
potential overfitting, as evidenced by larger disparities 
between test and validation accuracies. This disparity 
emphasizes the robustness of VTs in mitigating overfit-
ting challenges, making them particularly advantageous 
in scenarios characterized by limited data availability, 
such as medical health contexts. Overall, this experi-
ment underscores the superior performance and gen-
eralization capabilities of VTs, even in scenarios with 
restricted training examples.

4.6  Comparison with machine learning algorithms

Computer vision tasks have seen the application of 
deep learning to almost any task and have achieved rea-
sonable success on that front. However, not every prob-
lem needs to be solved by a deep learning algorithm, 
which necessitates the availability of adequate samples. 
Recently, Shaffi et al. [5] have shown that a small num-
ber of diverse ML classifiers outperform DL algorithms 
and also concluded that ML algorithms are the pre-
ferred choice over DL algorithms in data-constrained 
applications such as the medical sector. In this section, 
we provide the performance of four top-performing 
ML algorithms from the study conducted by Shaffi 
et  al. [5], which are Support Vector Machines (SVM), 
K-Nearest Neighbor (KNN), Logistic Regression (LR), 
and Extreme Gradient Boosting (XGB) [32]. This study 
will also help us see if computationally and memory-
intensive VT architectures are viable, especially when 
ML algorithms can perform better or on par with con-
temporary deep learning algorithms. The reported ML 

Table 4 Vision transformers vs CNNs on OASIS dataset

Architectures Test Val Train Val

Acc Acc Loss Loss

EfficientNetB0 0.4380 0.9259 0.7412 0.6825

InceptionResNetV2 0.5210 0.8144 1.0295 0.9748

InceptionV3 0.7312 0.9329 0.5748 0.6860

ResNet50 0.8492 0.9659 0.3030 0.4474

ResNet101 0.8296 0.9640 0.3074 0.4510

ResNet152 0.8554 0.9711 0.2919 0.4024

Shamrat et.al [31] 0.8695 0.9635 0.2897 0.3698

Helaly et.al [30] 0.8898 0.9563 0.3358 0.3581

Yousry et. al [29] 0.9012 0.9536 0.3025 0.3231

DeiT 0.9843 0.9550 0.0570 0.1483

Table 5 Vision transformers vs CNNs on ADNI dataset

Architectures Test Val Train Val

Acc Acc Loss Loss

EfficientNetB0 0.8803 0.9900 0.3932 0.2606

InceptionResNetV2 0.5980 0.8366 1.0259 1.0107

InceptionV3 0.8564 0.9662 0.3524 0.5360

ResNet50 0.9473 0.9946 0.0627 0.1874

ResNet101 0.9425 0.9914 0.0334 0.3252

ResNet152 0.8755 0.9915 0.0990 0.2349

Shamrat et.al [31] 0.8984 0.9236 0.3897 0.2706

Helaly et.al [30] 0.9123 0.9836 0.2698 0.1896

Yousry et. al [29] 0.9535 0.0.9946 0.0624 0.1963

BEiT 1.0 0.9841 0.05 0.06
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results are after determining optimal hyperparameter 
values based on the grid-search approach using a five-
fold cross-validation technique.

The results of ML algorithms using OASIS and ADNI 
datasets are tabulated in Table 7 and Table 6, respectively. 
The KNN algorithm outperformed other ML algorithms 
on the OASIS dataset (0.9371 acc). Unlike other machine 
learning algorithms, KNN does not assume any underly-
ing data distribution. This can make it more flexible and 
fit complex relationships between the input features and 
target variables. Additionally, KNN can capture local 
patterns well in the data by assigning a new data point 
to the class of most of its k-nearest neighbours in the 
training set [33]. On the other hand, the SVM is particu-
larly well-suited to handle high-dimensional data, where 
the number of features is vast compared to the num-
ber of observations [34]. SVM can use kernel functions 
to transform the input data into a higher-dimensional 
space, where it may be possible to find a linear boundary 
that separates the classes [35]. This allows SVM to han-
dle non-linearly separable data, which may not be possi-
ble for other linear models. In addition, SVM has good 
generalization capabilities on new and unseen data. The 
SVM algorithm obtained higher recognition accuracy on 
both OASIS(0.9132) and ADNI (0.9904) datasets.

From Table  7, it can be observed that both the logis-
tic regression and KNN algorithms have the same accu-
racy score. The KNN has a slightly higher specificity 
score than logistic regression indicating KNN might bet-
ter identify negative cases than logistic regression [33]. 
Logistic Regression performance was better with ADNI 
compared to OASIS. As the smaller ADNI dataset is 

imbalanced, the model might have learned to favour the 
majority class resulting in overall high accuracy. On the 
other hand, on the larger balanced OASIS dataset, the 
model might have performed better on all classes but 
with slightly lower overall accuracy. The XGBoost algo-
rithm performed consistently well on both datasets. It is 
due to the in-built L1- and L2-regularization techniques 
which can circumvent situations of overfitting. The regu-
larization techniques are very useful on smaller datasets 
such as ADNI, where an algorithm can easily overfit. 
XGB is also scalable to handle large datasets. Compared 
to ML algorithms, the accuracy and other metrics of VT 
architectures are significantly higher. There is a nearly 5% 
increase in the accuracy observed by VT architectures. 
That is further enhanced when the VT ensembles are 
utilized. This experiment confirms that the Vision Trans-
former architectures are very efficient due to their inher-
ent computation of self-attention mechanism that helps 
to capture long-range dependencies in the MRI images, 
which in turn helps in gaining overall accuracy.

The performance evaluation of various models are 
shown in Table 8. It is clearly evident that the VT mod-
els significantly outperform CNN and traditional ML 
algorithms. VT models such as DeiT and BEiT achieve 
the highest accuracy and sensitivity, with DeiT reach-
ing 98.43% accuracy and 96.96% sensitivity. Ensem-
ble methods further enhance performance, with the 
Swin+BEiT+DeiT ensemble (hard voting) attaining an 
exceptional accuracy of 99.29% and sensitivity of 97.54% 
while maintaining low false negative and false positive 
rates. These results emphasize the superior ability of VT 
models to fine-tune effectively for AD classification tasks.

Furthermore, Fig.  6 shows the overall performance 
improvement of VTs compared with ML and CNN 
algorithms on the OASIS dataset. There is a significant 
improvement in accuracy of approximately 5% com-
pared to state-of-the-art ML and CNN models. These set 
of experiments made us conclude that VTs are efficient 
classifiers in the four-way classification of AD, whether 
applied individually or as an ensemble, under varying 
data conditions. However, the final choice of suitable 
classifier for real-time application can depend on sev-
eral parameters and availability of resources. Table  9 
shows various circumstances for the choice of classifiers 
between machine learning, CNN and VTs.

5  Challenges and future avenues
Our study has substantially contributed to the existing 
knowledge-base on AD classification. However, several 
challenges remain, and prospective avenues for future 
academic investigations need to be contemplated. Fig-
ure 7 enumerates the challenges identified along with the 
avenues for further exploration in this section. 

Table 6 Results of ML algorithms on OASIS dataset

Method Accuracy Specificity Sensitivity FNR FPR

XGBoost 0.8902 0.9633 0.8905 0.1094 0.0366

SVM 0.9132 0.9107 0.9135 0.0864 0.0893

KNN 0.9371 0.9790 0.9377 0.0622 0.0209

LR 0.907 0.969 0.9074 0.0925 0.0309

BEiT [10] 0.9843 0.9931 0.9696 0.0303 0.0068

Table 7 Results of ML algorithms on ADNI dataset

Method Accuracy Specificity Sensitivity FNR FPR

XGBoost 0.9809 0.9925 0.9803 0.0196 0.0074

SVM 0.9904 0.9967 0.9895 0.0104 0.0032

KNN 0.9809 0.9931 0.9803 0.0196 0.0068

LR 0.9809 0.9925 0.9803 0.0196 0.0074

Swin 0.9952 0.9963 0.9887 0.0112 0.0036
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1 Unexplored Preprocessing steps: MRI scans can 
be affected by various types of noise, artifacts, and 
inconsistencies, which can significantly reduce the 
quality and interoperability of the data. Therefore, 
proper MRI preprocessing techniques are impor-
tant to ensure accuracy and reliability of data thereby 
improving the performance of AI algorithms and 
provide accurate and consistent results. In this work, 
MRI images are preprocessed as described in sec-
tion 3.1. However there exists several other preproc-
essing factors such as noise reduction, bias field cor-
rection, intensity normalization, and other methods 
to detect and remove artifacts. These preprocessing 
steps have not been utilized in our study and there-
fore opens avenues to explore its effect down the pro-
posed pipeline to enable more accurate and mean-
ingful analyses.

2 Using Only MRI Axial plane: Relying only on MRI 
axial planes for AI analysis is one of the biases and 
poses several challenges, like overlooking pathologi-
cal features visible in other orientations, like sagittal 
and coronal planes. This could reduce the sensitiv-
ity and specificity of AI models for disease detection 
and impact diagnostic accuracy. Therefore, there are 
future prospects for evolving AI algorithms capa-
ble of integrating information from multiple image 
planes to enhance diagnostic accuracy.

3 Used only neuroimaging data: The sole use of 
neuroimaging data poses several challenges. For 
instance, the data may not capture the full complex-
ity of AD pathology, leading to biased feature repre-
sentations. Clinicians currently rely on a combination 
of various biomarkers to assess the likelihood of AD. 
In our study, we focused solely on MRI data for AD 
classification. Therefore by integrating multi-modal 

ResNet50 ResNet152 ResNet101 IncV3 Custom CNN BEiT VT Ensemble

XGB (89.02)

LR(90.70) SVM (91.32)

KNN (93.71)

83.10 83.80

87.30

91.40

94.29

98.43 99.29

4.72% Increase compared to ML

 4.14% Increase compared to DL

Comparing Machine Learning vs Deep Learning vs Visual Transformers

Fig. 6 Transformer performance in comparison to ML and DL algorithms

Table 8 Performance comparision of ML, CNN and VT using OASIS dataset

Type.of Models Methods Accuracy Specificity Sensitivity FNR FPR

ML XGBoost 0.8902 0.9633 0.8905 0.1094 0.0366

SVM 0.9132 0.9107 0.9135 0.0864 0.0893

KNN 0.9371 0.9790 0.9377 0.0622 0.0209

LR 0.907 0.9690 0.9074 0.0925 0.0309

CNN EfficientNetB0 0.4380 0.5281 0.4121 0.7623 0.331

InceptionResNetV2 0.5210 0.7655 0.2714 0.7285 0.2344

ResNet50 0.8492 0.9333 0.8301 0.1698 0.0666

ResNet101 0.8296 0.9260 0.8013 0.1986 0.0739

ResNet152 0.8554 0.9382 0.8233 0.1766 0.0617

VT ViT 0.9718 0.9882 0.9195 0.0808 0.0118

Swin 0.9804 0.9913 0.9415 0.0584 0.0086

DeiT 0.9843 0.9931 0.9696 0.0303 0.0068

BEiT 0.9773 0.9905 0.9533 0.0466 0.0094

VT Ensemble BEiT+DeiT (Soft) 0.9906 0.9958 0.9721 0.0270 0.0041

Swin+BEiT+DeiT (Hard) 0.9929 0.9968 0.9754 0.0245 0.0031
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neuroimaging biomarkers, we could enhance model 
robustness and diagnostic accuracy. These models 
provide information on how the predictions were 
made and which features were critical in making the 
predictions thereby useful in creating explainable DL 
models. By doing so, they increase trust and promote 
the clinical use of ML and DL-based diagnostic tools 
for AD.

4 Time-memory overhead: Although ensembles 
of VT models perform well in terms of accuracy 
and other performance metrics, they significantly 
increase computational resources. Each model needs 
to be trained on a full dataset, which is time-consum-
ing and resource-intensive. Even if they are trained in 
parallel mode, computational resources increase. In 
addition, hyperparameter tuning, such as grid search, 
for individual models adds additional layers of com-
putational time.

 In terms of memory consumption, each model in 
the ensemble has its own set of parameters, increas-
ing overall memory usage. Transformer models are 
known for their large number of parameters. Stor-
ing the weights and configurations of each model 
requires additional memory. This can be substantial, 
especially when dealing with multiple large models, 
as conducted in our study. In the future, one can 
work on optimization or approximation techniques 
to reduce these overheads.

5 Blackbox Models: The models that we have 
employed for AD classification in this study are all 
blackbox in nature. We have not fully utilized the 

self-attention mechanism of VTs and their applicabil-
ity in interpreting the fine-tuned VT models. In our 
future endeavors, we aim to fully utilize the inbuilt 
attention mechanism of VTs and provide atten-
tion maps of brain regions that characterize distinct 
stages of AD. This aligns with the broader objective 
of enhancing the transparency and interpretability of 
AI models, facilitating a deeper understanding of the 
underlying decision-making processes [36, 37].

6 Different Subsets of ADNI: In our study, only a sub-
set of MRI images were extracted from the ADNI 
repository encompassing both male and female sub-
jects aged between 50 and 65 years leading to selec-
tion bias. This approach results in generalizability, 
risks missing important features, and aggravating 
class imbalances, leading to incorrect predictions. 
Furthermore, restricting the data may hinder the 
model from learning from various imaging tech-
niques and long-term data, which is essential for 
accurate analysis of disease progression. Insufficient 
representation of the whole dataset can also artifi-
cially inflate performance metrics, leading to a mis-
leading sense of accuracy. To address these issues, it 
is crucial to ensure that the subset is representative, 
employ cross-validation, maintain a balanced dataset, 
and transparently report limitations to improve the 
model’s robustness and applicability.

7 Raw Pixel Values Used For Training: In our study 
we trained all models (ML, DL, VT) using direct 
raw pixel values. Instead of raw pixel values, we can 
extract robust low-dimensional features and use 
them for training the model. This deserves a thor-
ough independent study as a number of different fea-
tures space can be used such as subspace algorithms 
like Principal Component Analysis (PCA), Fisher 
Linear Discriminant Analysis (FLDA), frequency 
domain features such as Wavelets, Discrete Cosine 
Transform, etc. One can even study application of 
various pretrained ConvNet architectures for feature 
extraction and subsequent model training.

8 Standard datasets: In this work, we used standard-
ized datasets, ADNI and OASIS. However, relying 
solely on standardized datasets may limit the diver-
sity and representativeness of the data, potentially 
overlooking unique characteristics or differences pre-
sent in specific patient populations. On the contrary, 
incorporating proprietary datasets for AD enhances 
the viability of AI tools in disease care by enriching 
the dataset with specialized or targeted information. 
Proprietary datasets are privately owned and not 
freely accessible. These datasets may contain data 
from niche populations with specific clinical set-
tings that are not found in standardized datasets. By 
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leveraging these additional data sources, along with 
the expertise of clinicians to identify clinically rel-
evant patterns or features and interpret and validate 
the data, we can develop more robust and accurate 
diagnostic models for conditions like Alzheimer’s 
disease. This dataset can, therefore, serve as a valu-
able resource for advancing knowledge, improving 
care delivery, and addressing the healthcare needs of 
a niche population.

6  Conclusion
Vision Transformer architectures have emerged as an 
alternative to traditional CNN-centric models for com-
puter vision tasks. Their ability to discover dependency 
among image patches through a multi-head attention 
mechanism has enabled the VTs to demonstrate higher 
accuracy consistently across several benchmark datasets.

In this work, we proposed an ensemble of VT archi-
tectures for the task of AD classification. The ensemble 
VTs demonstrated a 2% improvement over individual VT 
models. We used both soft and hard voting mechanisms 
for fusion, where the soft ensemble of BEiT and DeiT 
models obtained an accuracy of 99.06% while the hard 
ensemble of Swin, BEiT, and DeiT obtained the highest 
accuracy of 99.29%. The research also involved a com-
parative analysis of VTs versus ML and CNN algorithms 
using the ADNI and OASIS datasets. We observed a 
significant increase of approximately 5% in accuracy 
for VTs compared to traditional ML and CNN models, 
showcasing VTs’ exceptional fine-tuning capability even 
with limited samples. We also identified and addressed 
several limitations in our research work, paving the way 
for future studies to build upon our findings and further 
enhance the effectiveness of Vision Transformer archi-
tectures in Alzheimer’s Disease classification.
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