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Abstract 

At the intersection of computation and cognitive science, graph theory is utilized as a formalized description of com-
plex relationships description of complex relationships and structures, but traditional graph models are static, lack 
the dynamic and autonomous behaviors of biological neural networks, rely on algorithms with a global view. This 
study introduces a multi-agent system (MAS) model based on the graph theory, each agent equipped with adaptive 
learning and decision-making capabilities, thereby facilitating decentralized dynamic information memory, modeling 
and simulation of the brain’s memory process. This decentralized approach transforms memory storage into the man-
agement of MAS paths, with each agent utilizing localized information for the dynamic formation and modification 
of these paths, different path refers to different memory instance. The model’s unique memory algorithm avoids 
a global view, instead relying on neighborhood-based interactions to enhance resource utilization. Emulating 
neuron electrophysiology, each agent’s adaptive learning behavior is represented through a microcircuit centered 
around a variable resistor. Using principles of Ohm’s and Kirchhoff’s laws, we validated the model’s efficacy in memo-
rizing and retrieving data through computer simulations. This approach offers a plausible neurobiological explanation 
for memory realization and validates the memory trace theory at a system level.

Keywords Memory modeling, MAS, Memory simulation, Decentralized algorithm

1 Introduction
1.1  Deficiencies in research on brain memory mechanisms
Memory is a cognitive function produced by the activ-
ity of the brain’s cortical neural system, and the abil-
ity to form memory is the foundation for accumulating 
knowledge and making reasoning judgments. As an 
extremely complex information processing system, 
humans have not yet developed a complete theoretical 
system for the brain’s memory mechanisms. Exploring 
how the brain encodes, stores, and retrieves informa-
tion remains a significant challenge in memory research. 

Modern neuroimaging technology is rapidly advancing, 
and through methods such as fluorescent tagging and 
two-photon imaging, humans are gradually unveiling the 
neural system’s connectivity and other details. However, 
such analyses can only offer limited insights, and we are 
still unfamiliar with the neural mechanisms and infor-
mation flow directions underlying memory activities. 
From a neurobiological perspective, memory refers to 
neural system activities or physical changes in neuronal 
connections triggered by external stimuli or brain states 
[1]. Neurobiological research on memory mechanisms 
focuses on synaptic plasticity [2–5], neurotransmitters 
[6, 7], and electrochemical signals [8, 9] at the cellular 
and molecular levels, while cognitive psychology likens 
memory to an information processing system respon-
sible for encoding, storing, and retrieving information. 
These theories provide a reasonable starting point to 
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map the brain’s coarse-scale organization using func-
tional imaging technologies including EEG and fMRI 
[10]. Neurobiology and cognitive psychology investigate 
the brain’s memory mechanisms from different levels, 
yet there remains a significant gap in our understanding 
of the actual biological processes behind memory, mak-
ing it challenging to accurately model the brain’s memory 
mechanisms.

Neurobiology provides a rich array of dynamic compo-
nents, and cognitive psychology outlines the global func-
tional layout of the brain, yet neither fully elucidates the 
complete process of brain information processing. Many 
unknown details still exist about how biological neural 
networks encode, store, and retrieve information, which 
cannot be fully explained by electrophysiological or ana-
tomical experiments, nor by cognitive experiments alone. 
The challenge in memory research at the level of biologi-
cal neural networks is to develop a computational model 
of brain information processing that adheres to neuro-
biological constraints and can execute memory tasks. 
Modern digital computers possess powerful storage 
capabilities, and comparing them with the brain can fur-
ther our understanding of what is still missing in memory 
research. Table  1 compares computer storage and brain 
memory management, from which the implementation 
process of computer storage, from the bottom to the 
top layer, is clear. However, the implementation process 
of brain memory involves numerous unknowns, which 
motivates us to simulate and emulate the brain’s memory 
process based on neurobiological mechanisms.

1.2  The memory trace theory
The concept of how memory is stored and retrieved has 
always been a focal point of exploration for neuroscien-
tists. Semon introduced the term “engram” to describe 
the neural substrate that stores memories [12]. He sug-
gested that experienced events activate a group of neu-
rons to produce chemical or physical changes, thereby 
forming engrams, with the cells generating memory 
traces known as engram cells. The reactivation of these 
engrams can induce the recovery of memories. Hebb 
proposed the theory of cell assemblies, positing that 
cells activated by the same event and having intrinsic 
connections would form cell assemblies, and the syn-
aptic connections between these assemblies would be 
strengthened [13]. Based on the memory trace theory 
and the theory of cell assemblies, we have gained further 
understanding of the neural basis of memory storage and 
retrieval-that the encoding and storage of memory infor-
mation depend on the concurrent activation of neurons 
during memory formation. During the memory storage 
phase, external stimuli cause a group of neurons in the 
brain to discharge together, initiating changes in relevant 

signaling pathways and gene expression. These neurons 
undergo lasting chemical or physical changes, and the 
memory information is believed to be stored in the net-
work formed by these neurons.

Thanks to a combination of various techniques such 
as molecular and cellular neurobiology, physiological 
recording and multiphoton imaging, transgenic and viral 
vector-mediated gene insertion, and optogenetics and 
chemo-genetics, neuroscientists have begun to identify 
and manipulate memory engram cells. Kitamura and 
colleagues demonstrated that memories are stored in 
engram cells through engram cell labeling and optoge-
netic manipulation, showing that engram cells reactivate 
during memory retrieval, and artificial activation or inhi-
bition of this group of engram cells can directly trigger or 
suppress memory expression, proving that fear memories 
exist in engram cells [14]. Many laboratories’ research 
results have begun to define engrams as the basic unit of 
memory. Recent studies on memory engram cell popula-
tions suggest that the memory trace of a given memory 
is not necessarily located in a single anatomical location 
but is distributed across multiple locations connected by 
a specific memory pattern, thus forming memory engram 
cell pathways [15].

Currently, three types of evidence support the rise of 
the memory trace theory: 

1. Observational studies provide correlational evidence 
between the physiological and structural characteris-
tics of neurons in specific brain regions and memory 
behaviors

2. In functional loss studies, animals or humans with 
physical or chemical damage to specific brain regions 
exhibit impairments in certain aspects of memory 
behavior.

3. The use of transgenic, optogenetics, and chemo-
genetic techniques to identify specific subgroups 
of cells related to specific memory behaviors. The 
ability to identify and manipulate engram cells and 
the whole-brain engram complex has advanced the 
study of the memory neural substrate. However, 
many unknown details remain about how biologi-
cal neural networks store information, such as how 
engram structures affect memory quality, how multi-
ple engrams interact, and how engrams change over 
time [11].

1.3  Directed graph and MAS for brain modeling
The brain can be conveniently represented as a net-
work of neurons and their directed interconnections, 
and memory maybe represented by those connection 
patterns according to the trace theory, making directed 
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graph a mathematical tool for studying its structure and 
memory system. Directed graph, as a branch of graph 
theory, which provides tools for processing and analyzing 
network structures. Tracing back to Euler’s solution to 
the Seven Bridges of Konigsberg problem in the 18th cen-
tury [16], it has been applied such as to design solutions 
for the Traveling Salesman Problem(TSP) [17], construct 
knowledge graphs [18], and create databases using graph 
structures [19], where graphs usually serve as structured 
representations of data or knowledge, inherently lack-
ing dynamic behavior, with their functionality reliant on 
externally applied algorithms. In these applications of 
graph theory, algorithms typically operate on the graph 
structure from a global view, meaning that the executor 
of the algorithm (like a CPU) has access to global infor-
mation and makes decisions.

The modeling of brain by directed graph is centralized, 
needs a “God’s eye” view, while biological neural net-
works lack such a global view or central controller and 
are characterized by decentralization, consisting of many 
simple units that are only connected to their neighbors. 
But if we upgrade the static nodes in the directed graph 
to dynamic agents, creating a network system by multi-
ple agents, it can better align with biological neural net-
works and more accurately model and simulate biological 
memory processes. We propose an algorithm that does 
not rely on a “God’s eye” view, focusing on implement-
ing a memory function in a multi-agent system (MAS). 
Just as neurons have only local connections, agents in a 
MAS can only see their connected neighbors. Each agent 
makes decisions based on its local field of information. 
Agents are no longer passive data storage nodes, but are 
active, autonomous units, which can adaptively learn how 

to respond in different contexts, simulating the behavior 
of biological neurons. Passive nodes with a single global 
algorithm and active agents with numerous independ-
ent small algorithms represent two completely different 
paradigms. Contrasting these two modes in Fig. 1, we see 
the difference between traditional centralized processing 
and the proposed decentralized processing. In the latter, 
each agent stores information and can also process and 
transmit information, forming complex dynamic patterns 
across the entire MAS.

We focus on the information processing mechanisms 
behind brain memory activities, using MAS to compre-
hensively model and simulate memory, abstracting mem-
ory instances into directed paths in the MAS. Through 
MAS and the pervasive learning algorithms inherent in 
each agent, it dynamically learns and optimizes these 
paths, achieving a memory mechanism based on MAS, 
enabling efficient information memory and retrieval. 
MAS can provide a detailed implementation algorithm 
for imprinting hypothesis at the directed graph network 
level. Perhaps providing an intermediate level between 
the low-level electrochemical level and the high-level 
behavioral level, offering a novel perspective on the 
brain’s memory mechanisms.

2  Related works
2.1  Hopfield and BAM network
The Hopfield network [20] is a type of recurrent neural 
network that can be abstracted as a directed complete 
graph, with many variants [21–26]. After a finite number 
of iterations, the input and output signals of the Hopfield 
network no longer change, and the state of the network 
is the memory vector obtained through recall. Each node 

Fig. 1 Comparison of centralized and decentralized modes
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receives inputs from all nodes except itself and outputs 
them to all nodes except itself, which is the contradic-
tion between Hopfield networks and biological neural 
networks.

Bidirectional associative memory networks [27] imple-
ment bidirectional associative functionality and have 
undergone many modifications [28–31]. Bidirectional 
association refers to the corresponding patterns stored 
in a network. In the BAM model, for successfully stored 
pattern pairs in the network, inputting any corresponded 
pattern can obtain a corresponding pattern. Like Hop-
field networks, the input and output layers in BAM net-
works are fully connected, which is different from actual 
biological neural networks.

2.2  Multi‑agent systems
Multi-agent systems have gained widespread attention in 
recent years. These decentralized systems accomplish a 
task through the collaborative effort of many small enti-
ties, each with independent behavior. The small entities 
make distributed independent decisions with individual 
tasks assigned to autonomous entities called agents, each 
determining the correct action for solving the task based 
on their inputs. Individual agents only have partial infor-
mation and communicate with their neighbors. These are 
applied in areas such as computer networks, drones, and 
robot swarms [32].

MAS are extensively used in robotic systems and to 
some extent can solve issues such as local positioning, 
obstacle detection, path planning, and navigation in 
multi-robot systems [33]. For example, a collision avoid-
ance problem was solved for multiple robots in a decen-
tralized, distributed framework, where input data were 
only collected from onboard sensors [34]. Each robot is 
an agent that shares its decision with all other robots, 
thereby achieving an optimal strategy among them.

Although multi-agent systems utilize distributed and 
decentralized decision-making, the connections between 
agents in these applications are relatively weak and do not 
form a fixed pattern for memory or other applications, 

currently there is no research on the implementation 
mechanism of biological memory in MAS.

3  Using multi‑agent system to model biological 
neural network

3.1  Modeling of the agent network
Inspired by the graph structure of Hopfield network and 
independent decision making abilities of agents, our pro-
posed MAS model can more accurately simulate and 
understand the complex memory processes in the human 
brain, whose memory system consists of many structur-
ally similar neurons connected by synapses, which can 
be abstracted as agents and its connections in a MAS, as 
shown in Fig. 2. Abstractly modeling this as a locally con-
nected MAS agent network aligns with biological reality. 
The process of signal transmission between neurons can 
be abstracted as a dynamic network flow.

We utilize a two-dimensional matrix of agents to form 
the MAS and abstractly model the biological neural net-
work. Figure  3a depicts a generated 10× 10 scale agent 
matrix of a MAS network. Agents, which possess their 
own behavior, are connected to neighbor agents through 
directed connections. Edge and internal agents are 
shown in orange and gray, respectively. Arrows between 
agents represent connections and directions of signal 
transmission. Notably, although there are bidirectional 
connections between edge and internal agents, only one 
direction is activated at a time. When an edge agent’s 
connection is directed toward an internal agent, it is 
used as an input, representing the abstract definition of 
a memory instance, such as of an object’s name. When 
a connection is directed toward an edge agent, it acts as 
an output, representing specific features of a memory 
instance such as color or smell. A non-activated connec-
tion indicates that the memory instance lacks a certain 
specific feature. The proposed model’s underlying MAS 
network should be capable of performing memory func-
tions across different scales and topological structures.

According to the memory trace theory, the content of 
memory is physically the propagation of neural excitation 

Fig. 2 Abstraction of human brain memory system into a locally connected MAS (a. Brain b. Connected neurons in the brain c. Neurons abstracted 
by nodes in a directed graph)
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in a biological neural network caused by input stimuli, 
along with the reinforcement and awakening of propa-
gation traces. The repeated occurrence of input stimuli 
can strengthen the connectivity between neurals. Inputs 
correspond to different propagation path traces, mean-
ing that connected paths are specific physical carriers. 
This process does not require an overarching “God’s eye” 
view and is reasonable within the context of a biological 
neural network, which is massive and dynamic. There-
fore, in our modeling, different paths are formed by arcs 
in the MAS as the physical implementation of memory. 
For example, in Fig. 3b, the agents at the top, bottom, left, 
and right, connected by some intermediate agents and 
directed connections, form a path that can be considered 
a memory instance in the MAS.

3.2  Formation of memory paths
Consider the implementation process of memory as the 
formation and consolidation of paths between agents 
in a MAS network is a natural approximation. Humans 
perceive external information through multiple senses 
to understand the characteristics of an object. Neurons, 
upon receiving stimuli, transmit signals to different 
downstream neurons in the network, forming various 
transmission paths. Repeated stimulation solidifies these 
paths, creating a memory. When similar signals are 
received again, they are transmitted along these estab-
lished paths, in a process known as path consolidation. 
First, we will show formation of memory paths in our 
model.

Based on this process, our model, as shown in Fig. 3a, 
classifies agents into edge and internal agents. Edge 
agents represent the characteristic information of mem-
ory instances, serving as inputs and outputs of informa-
tion. An activated edge agent indicates the presence of 

a feature. Activated edge agents can be in an input or 
output state (i.e., the respective starting point and end-
point of signal transmission), while inactivated agents 
cannot input or output signal. In the neuronal network 
of the biological cerebral cortex, action potential pulses 
are transmitted along directed paths. Therefore, in our 
design, the MAS network is endowed with the attrib-
utes of a circuit, using electric field theory to explain the 
establishment and consolidation of paths. This process is 
verified through computer simulation.

We model the signal transmission of the neural net-
work as the flow of electric current in a circuit, in which 
current always flows from a higher to a lower voltage 
level. The paths in the MAS are abstracted as current 
transmission paths between agents. Voltage levels are set 
depending on the states of edge agents. An edge agent 
in the input state is set to high voltage and in the output 
state is set to low voltage, which is seen as grounding. 
Inactive agents are set to a high resistance state, which is 
equivalent to disconnection. Input edge agents can con-
nect and transmit currents to output edge agents through 
internal agents. The current enters from an input agent 
and continuously propagates outward, forming different 
paths, and the transmission ends when it reaches an out-
put agent or there is no further path. As the current can 
only be output through output agents, a stable current 
flow is formed only on the paths that reach the output 
agents; these interconnected paths form the path traces 
of an instance on the MAS. Longer paths have higher 
resistances, so more currents are transmitted through the 
shortest path, which is the physical realization of mem-
ory, i.e., the dominant path of the memory instance or 
simply the memory instance path.

Figure  4a shows the numbering of each edge agent. 
A vector can be constructed by connecting the states 

Fig. 3 a Abstract modeling of neuronal network as sparsely connected MAS. b MAS path modeling representing memory instances
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of edge agents according to their numbers. This can be 
seen as a memory instance vector, representing differ-
ent external stimulus features by altering the vector’s 
bits, forming different interconnected memory instance 
paths that can be remembered by the MAS. The mem-
ory instance vector combines the states of edge agents. 
Vector bits are changed to construct current transmis-
sion paths corresponding to different memory instances, 
representing their connected paths. Table 2 shows a vec-
tor of edge agent states, where the first and second rows 
show agent numbers and agent states, respectively, where 
1 indicates an agent activated in the input state, −1 indi-
cates the output state, and 0 represents inactivation, this 
vector is a memory instance.

In Fig.  4b, memory instance of Table  2 is uploaded, 
some edge agents are set to high voltage, some to low 
voltage, and the rest to a high resistance state. Under the 
influence of the electric field, positive charges move from 
high to low potential, forming connected paths through 
internal agents. Current flows from high-voltage agents 
to low-voltage agents. A memory instance is distributed 
in the MAS in the form of current transmission paths. 
The green path in the graph has the fastest potential drop 
and is the dominant path of the memory instance.

As can be seen from Fig.  4b, the paths in the MAS 
network are a limited resource. Therefore, uploading 
multiple memory instances into one MAS can result in 

competition for paths and agent resources. When a path 
is occupied by one memory instance, other instances 
that also need this path can create resource competi-
tion, which can be incompatible and destructive. An ideal 
solution is to find a compatible path-sharing scheme for 
multiple memory instances. Then, during retrieval, addi-
tional features may be needed, not just the shared path 
for correct retrieval. This is like the human brain’s mem-
ory process, where the Hippocampus-Cortical two-tier 
system temporarily stores information. The hippocam-
pus may undertake batch processing of different memory 
instances, forming an intensive, path-compatible, multi-
instance composite representation to conserve resources, 
which is later separated and transferred to the cortex for 
long-term memory [35].

4  Autonomous agent design
4.1  Internal structure design of agents
A single biological neuron cell can differentiate vari-
ous signal inputs and output different signals to vari-
ous neighboring neurons. Based on this, we model a 
single agent of the MAS network, as shown in Fig.  5. 
There exists a path between each input and output, 
with diodes and variable resistors on each path. The 
total resistance value of the variable resistors is fixed, 
and they have collaborative change rules. Diodes ensure 
unidirectional current flow. These components enable 

Fig. 4 a Numbering of edge agents in MAS. b Setting different voltage states for edge agents

Table 2 Vector representation of edge agent state

Edge agent 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Status 0 0 0 0 0 1 0 0 0 0 0 0 0 0 – 1 0 0 0

Edge agent 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Status 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
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path consolidation and resource competition learning 
between agents.

The input and output of the agent in Fig. 5 is each con-
nected to four agents, where input agents x1, x2, x3, x4 
have respective incoming current values of Ix1, Ix2, Ix3, Ix4 , 
and output agents y1, y2, y3, y4 have respective outgoing 
current values of Oy1,Oy2,Oy3,Oy4 . The variable resistors 
are Rx1_y1,Rx1_y2, ...,Rx4_y4 , representing resistances on 
different paths inside agents from input to output. Vari-
able resistors have the function of distributing the output 
current.

Edge agents input by connecting to an external power 
source and output by grounding, or they can disconnect. 
Internal agents receive input and output currents from 
neighboring agents. Unlike internal agents, the resis-
tors inside edge agents do not have collaborative change 
rules, and they only function to limit current and prevent 
short-circuiting.

4.2  Agent’s adaptive resource competition learning 
algorithm

According to the trace theory of memory, a neural net-
work can reinforce recurring signal flow paths to achieve 
memory. After constructing the memory network 
through a MAS and agent circuit, converting memory 
instances into current transmission paths through poten-
tial differences, the memory function requires simulation 
of the process of consolidating the dominant path into 
the MAS. This relies on the changing rules of variable 
resistors in each agent. Variable resistors follow chang-
ing rules. The sum of the resistances of multiple variable 
resistors in a single agent remains constant, indicating 
that the total resource amount is constrained, i.e.,

where Rc is a constant, and m and n are the respec-
tive numbers of input and output paths. Like a rectan-
gle, if the area on the left side increases, the area on the 
right side decreases. The resistance of variable resistors 
through which current greater than a threshold value It 
flows gradually decreases. As the total resistance within 
an agent is constant, the reduced resistance is evenly dis-
tributed to the other variable resistors in the same agent,

where t is the number of iterations, Rxi_yi(t) is the resist-
ance of the variable resistor between input agent xi 
and output agent yi at the tth iteration, �rxi_yi(t) is the 
resistance change at the tth iteration, Ixi_yj is the current 
between input agent xi and output agent yi, kxi_yj indi-
cates whether Ixi_yj exceeds the threshold It , k is the total 
number of variable resistors where current is greater than 
the threshold, Lr is the proportion of resistance reduction 
in resistors with current flow after one iteration, Lr can 
be considered the learning rate, and C is the total value of 
the reduced resistance.

(1)
m
∑

i=1

n
∑

j=1

Rxi_yj = Rc,

(2)















































Rxi_yj(t + 1) = Rxi_yi(t)+�rxi_yj(t)














kxi_yj = 1, if Ixi_yj > it
kxi_yj = 0, otherwise
k =

�m
i=1

�n
j=1 kxi_yj

C =
�m

i=1

�n
j=1 Rxi_yj(t)× kxi_yj × Lr

�rxi_yi(t) =

�

−Rxi_yj(t)× Lr , if Ixi_yj > It
C

m×n−k
, otherwise

�m
i=1

�n
j=1�rxi_yj(t) = 0

Fig. 5 Modeling of simulation circuit structure inside agent of MAS
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5  Multi‑agent system’s memory function
5.1  Memory and retrieval process of current flowing paths
Inspired by the complex regulation mechanisms of bio-
logical neuronal signal transmission, each agent in the 
MAS possesses independent and autonomous path learn-
ing capabilities, enabling the network to record transmis-
sion paths. The MAS can be divided into two working 
modes: memory and retrieval. The variable resisters only 
change in memory mode.

The memory and retrieval of paths simulate the respec-
tive biological processes of memory and recall. Accord-
ing to an agent’s adaptive learning algorithm, in memory 
mode, the resistance of variable resistors through which 
a substantial current continually flows will gradually 
decrease. Continuously uploading the same memory 
instance vector to the edge agents will establish stable 
current transmission paths between agents from high to 
low voltage. Among the paths within each agent, the path 
with the fastest potential drop will dominate, and the 
resistance of variable resistors on this dominant path will 
gradually decrease through natural competition, while 
the resistance on other paths increases. This change 
solidifies the current transmission path traces in the 
MAS. The longer the current flow, the lower the resist-
ance, making it easier for current to flow, for the path to 
be more likely activated, and for the stored content to be 
more profound, reinforcing the path.

In retrieval mode, some bits of the memory instance 
vector may be lost, such as remembering an object’s 
shape but not its color. When such a partial valid vec-
tor, the so-called probe vector, is loaded onto the MAS, 
only certain edge agents are set to their corresponding 
states, and lost edge agents are set to low voltage. This 
assumes the possible existence of uncertain features, and 
later judgments are made based on the current level, with 
larger output currents indicating retrieved paths. The 
input state bits in the probe vector must not be lost; oth-
erwise, no retrieval can occur due to the lack of input. In 
extreme cases, all bits except those corresponding to the 
input agents in the probe vector may be lost. From Ohm’s 
Law, sub-paths with smaller resistance receive more cur-
rent. Since the resistance on the dominant path of the 
memory instance is relatively low, a larger proportion 
of current will flow along this path. The longer the dura-
tion of the memory process, the less the resistance on the 
path, and the greater the proportion of current flowing 
along the dominant path, making selective current flow 
the basis for path retrieval.

Notably, when more than one memory instance is 
stored in a MAS and their current flow paths over-
lap, new stored instances will disrupt the path traces 
of the original instances solidified in the network, in 
a process known as retroactive inhibition. In such 

cases, for accurate retrieval, the number of permissi-
ble lost bits in the probe vector decreases, which is like 
requiring more detailed features to distinguish similar 
objects. For example, from Fig.  6, it can be seen that, 
after sequentially uploading green and red instances 
into the MAS, since the paths overlap (black path), the 
graph stores the composite paths of the two memory 
instances.

5.2  Path current calculation based on Kirchhoff’s laws
To evaluate the effectiveness of memory, it is neces-
sary to calculate the current flowing through each 
path. For complex meshed circuits, Kirchhoff ’s Voltage 
Law (KVL) and Kirchhoff ’s Current Law (KCL) can be 
applied. KVL states that the algebraic sum of the poten-
tial differences (voltages) across all elements in a closed 
loop is zero, and KCL states that the sum of currents 
entering a node is the sum of currents leaving it.

In the MAS, we know the variable resistors of each 
path and the input voltage. The positive pole of the 
input power source is connected to the agents in the 
input state and the negative pole to the agents in the 
output state. By applying KVL in the loop from the out-
put-state edge agents to the input-state edge agents and 
using KCL at the internal agents, a set of equations can 
be established to solve for the current values in each 
branch. Agents that are not activated can be considered 
to have no current flow and can be ignored in the cal-
culations. Taking the current flow paths in the MAS in 
Fig. 7 as an example, the input and output currents of 
each agent are numbered. The equations obtained by 
applying KCL to internal agents are

and, applying KVL to loops, we obtain

The voltage is calculated using Ohm’s Law, U = IR , where 
Uinput is the input voltage, and Ri is the resistance value 
of the variable resistor on the corresponding path within 
the agent for current Ii.

Through the above process, we can evaluate the 
retrieval effect of memory instances by calculating the 
current flowing through each path in retrieval mode. A 
significant current still flowing through the dominant 

(3)



















I1 − I3 = 0

I2 − I4 − I5 = 0

I3 − I6 = 0

I4 − I7 = 0

I5 − I8 = 0

(4)







I1 × R1 + I3 × R3 + I6 × R6 −Uinput = 0

I2 × R2 + I5 × R5 + I8 × R8 −Uinput = 0

I2 × R2 + I4 × R4 + I7 × R7 − Uinput = 0
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path in retrieval mode indicates successful retrieval. We 
next discuss the memory and retrieval processes.

6  Simulation experiment
We conducted a series of simulation experiments to 
investigate the role of MAS in modeling memory sys-
tems. Our focus was on exploring the generation, func-
tionality, and capacity of these MASs, simulating the 
varied microstructural complexities found in biological 
memory systems. The experiments ranged from initial 
network generation to comprehensive memory function-
ality tests, including capacity testing for single and mul-
tiple memory instances. We also conducted comparative 
analyses with other models.

6.1  Generation of MAS network
Considering that the memory systems of biological enti-
ties have many microscopic structural differences, for 
better simulation, we first initialize the MAS, to generate 
MAS networks of varying scales and connection relation-
ships. For ease of visualization, the MAS is set in a grid 
format, with its width and depth determining its size and 
scale. After determining the number of agents based on 
the side length, the agent matrix is traversed, and con-
nections in random directions are established between 
adjacent agents to generate MAS networks with differ-
ent topological structures, as shown in Algorithm  1. 
Figure 3a shows an example of randomly generated net-
works with a side length of 10.

Algorithm 1 MAS Generation Algorithm
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6.2  Assigning activation states to edge agents
In biological neural networks, different stimuli lead to 
the formation of memories. In our simulation, a mem-
ory instance is uploaded through the edge agents of the 
MAS. For visualization purposes, the top edge of the net-
work is defined as the input edge, where activated agents 
are assigned a high-voltage state. The others are output 
edges, with activated agents assigned a grounding state. 
Agents corresponding to nonzero vector bits are acti-
vated. Inactive edge agents are assigned a high-resistance 
state. Each memory instance is divided into component 
A, which corresponds to the input edge, and components 
B, C, and D, corresponding to the three output edges. In 
the MAS network, electric current flows from A to B, C, 
and D. Like water, the current always flows downstream, 
where A acts as the upstream, and B, C, D as the down-
stream. Figure 8 shows a schematic representation of the 
correspondence between each component of a memory 
instance and the MAS.

In memory mode, stable current can only form on 
the paths between agents in a high-voltage state and 
grounding state. According to their changing rules, as the 

current continues to flow, the resistance values of varia-
ble resistors on the dominant path with the fastest poten-
tial drop decrease continuously. The path is solidified into 
the MAS through the reduction of resistance values of 
variable resistors on the path.

Retrieval has two modes: awakening based on upstream 
information, and awakening based on both upstream and 
downstream information. However, in either mode, the 
edge agent corresponding to component A, serving as 
the energy source of the MAS, must not be omitted from 
the probe vector. The difference between the probe vec-
tor and the memory instance vector is quantified by the 
Hamming distance, d = ρn , where n is the length of the 
vector, and ρ is the proportion of differing bits.

When using awakening based on upstream informa-
tion, all bits in the probe vector, except for the input bit 
corresponding to component A, are set to be missing, 
testing the effect of retrieval in the most extreme case. 
In this mode, the mapping method of the edge agents 
corresponding to component A remains unchanged, 
and all edge agents corresponding to the output state 
of B, C, and D are grounded to simulate the complete 
loss of this characteristic information, intending to acti-
vate all output paths. Here, ρ reaches its maximum, 
ρmax = 1−

x+f×(2y+x)
n  , where x, y are the respective 

width and depth of the MAS, and f is the proportion of 
activated agents in the memory instance.

When multiple instances are stored in the MAS, there 
is interference between the paths of each instance, includ-
ing partial sharing, partial destruction, or even breakage. 
The original paths are no longer complete, and continu-
ing to use awakening based on upstream information 
may lead to retrieval failure. Therefore, awakening based 
on both upstream and downstream information is intro-
duced. Compared with awakening based on upstream 

Fig. 6 Distribution of two memory instance paths in MAS

Fig. 7 Currents on multiple connected path branches in MAS Fig. 8 Correspondence of memory instance vector to edges of MAS
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information, the probe vector in this mode retains more 
information and has fewer missing bits, i.e., some edge 
agents corresponding to the output state of components 
B, C, and D remain in their original high-resistance state. 
This aims to reduce available output paths, better retrieve 
the composite paths stored in the MAS, and improve the 
retrieval effect of each instance path.

6.3  Memory functionality testing
We tested the memory functionality of the MAS when 
storing a single instance. A memory instance was loaded 
into the MAS network to observe if it could be success-
fully stored. The experiment checked if the current on 
the connected path of the memory instance in the MAS 
during upstream information-based awakening was 

significantly greater than that of other paths. This allowed 
for a clear distinction between old and new paths. For a 
MAS with only one memory instance, if the memory is 
successful, it should be able to accurately restore the orig-
inal path. Since the resistance values on the original path 
are relatively small, only the previously reinforced domi-
nant path of the memory instance will maintain a larger 
proportion of current, while the current on other paths 
will be smaller. This is an important criterion to differen-
tiate between established and temporary traces.

In this experiment, the learning rate Lr was set at 10%. 
The memory functionality was tested in a 20 × 20 MAS 
network, as shown in Fig. 9, which was randomly gener-
ated using Algorithm 1. In each test, a memory instance, 
with 30% of the edge agents randomly activated, was 
uploaded to the MAS, for 30 iterations of the memory 
process, like rehearsing to reinforce memory. This learn-
ing process iteratively adjusts the resistance values of the 
variable resistors on connected paths, gradually forming 
a so-called dominant path with relatively low resistance. 
After each iteration, the graph was switched to retrieval 
mode, the probe vector was uploaded, and the output 
current of each path was calculated. The proportion of 
the current of the memory instance’s dominant path to 
the total current of all paths is

where ij represents the output current values of each 
path, m is the total number of paths, and the dominant 
path consists of the first k paths. At this point, ρ=0.525.

α =

∑k
i=1 ij

∑m
j=1 ij

,m > k ,

Fig. 9 Randomly generated 20 × 20 MAS where directed 
connections between agents form the basis for path creation

Fig. 10 Changes in MAS metrics at different iteration counts
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The results, as shown in Fig.  10a, indicate that with 
increasing iterations, randomly generated memory 
instances 1 and 2 have differences in the α curve after 
iterative reinforcement, but both achieve significant 
improvement, similar to the varying efficiency humans 
experience when memorizing different content. A ran-
dom agent was selected to observe the changes in the 
resistance values of its internal variable resistors, as 
depicted in Fig.  10b. The resistance values of variable 
resistors on the dominant path inside the agent gradu-
ally decreased, and the reduced resistance was evenly 
distributed to the variable resistors on the other paths 
of the same agent, causing the resistance on these paths 
to increase gradually. The dominant paths of memory 
instances 1 and 2 in the MAS are shown in Fig.  11a, b. 
Figure 10a also shows the average value of α from experi-
ments with 1000 test cases, which showed an increase 
after iteration. This demonstrates that the memory func-
tion of the MAS operates well. With different memory 
instances, after a certain number of iterations, the current 
flowing through the original dominant path in retrieval 
mode is significantly greater than that of other paths, 
solidifying this path as the representation of the memory 
instance, thereby realizing the memory function. The 

experimental results indicate that memory instances 1 
and 2 require a similar number of iterations to achieve 
the same memory effect. Random testing on another 
1000 examples yielded similar results, indicating that the 
MAS and path-finding algorithms are not dependent on 
specific examples and are universally applicable to a wide 
variety of content.

Taking memory instance 2 as an example, the currents 
in various paths were calculated and visualized at the 
0th, 10th, 20th, and 30th iterations of memory, visually 
demonstrating the process by which the dominant path 
gradually becomes more prominent among many paths 
with increasing iterations, as shown in Fig.  12, where 
the thickness of paths and opacity of agents represent 
the magnitude of the current. Thicker paths and lower 
opacity indicate greater current. Green paths have the 
fastest potential drop from the activated input agents to 
each connected output agent. Paths with a current less 
than 0.4 mA are not displayed. Green edge agents are 
activated output agents corresponding to the memory 
instance, and gray agents are inactivated output agents. It 
can be observed that as iterations proceed, the current on 
the dominant path continuously increases, and the path 
is gradually solidified into the graph.

Fig. 11 Dominant path of memory instance in MAS

Fig. 12 Currents of various paths at different numbers of iterations
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The activation proportion of edge agents affects the 
number of MAS resources occupied by a memory 
instance. A higher activation proportion may lead to the 
occupation of more paths, and the dominant path may be 
more expansive. We conducted experiments on memory 
instances with different activation proportions of edge 
agents. The experimental results are the average value 
of α with 1000 test cases, as shown in Fig. 13a, indicat-
ing that memory instances with higher proportions have 
higher proportions of current output α on their dominant 
paths after memory. This may be because such instances 
can access more path resources for output during 
retrieval. At the same time, according to the definition of 

ρmax , the higher the proportion of activated agents, the 
smaller ρmax becomes, reducing the difference between 
the probe vector and the original vector.

Neural networks in different people’s brains vary in 
terms of the number of neurons, topological connec-
tions, and other microscopic details. Despite these 
numerous and fine structural differences, they do not 
seem to affect memory function, indicating universal-
ity. To verify the effectiveness of the memory function of 
the MAS network under different topological structures 
and sizes, Algorithm  1 was used to generate randomly 
topologized MASs of sizes 10 × 10, 30 × 30, and 20 × 
30, as illustrated in Figs.  3a, 14a, and 14b, respectively. 

Fig. 13 a Proportion of current output on dominant paths under different agent activation ratios. b MASs of different sizes and topological 
connections demonstrate similar learning capabilities, indicating universality

Fig. 14 MASs randomly generated with significant variations in the number of agents and connectivity relationships
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Using the parameters from Fig. 10, memory experiments 
were conducted in these MASs, and the average α was 
calculated from 1000 test cases. The results, as shown 
in Fig.  13b, indicate that despite the different sizes and 
topologies of the three MASs, they all achieve improve-
ments after iterations, meaning they all can perform the 
memory function.

The results show that as the number of iterations in the 
memory process increases, the current flowing through 
the dominant path of the memory instance gradually 
increases. This indicates that the path is progressively 
solidified into the MAS after the sample is repeatedly 
uploaded. The learning algorithm may exhibit slight dif-
ferences in memory effectiveness in MAS networks of 
different sizes and topological structures, but it can gen-
erally achieve memory of path traces. This demonstrates 
that MASs generally possess memory functionality when 
combined with path representation and path solidifica-
tion algorithms.

6.4  Incremental memory and retrieval testing of multiple 
memory instances

Both the human brain and computer memory devices 
contain a large amount of varied content, and their mem-
ory mechanisms must ensure compatibility. In comput-
ers, file management systems ensure that different files 
exclusively occupy different spaces, making compatibility 
issues relatively simple. However, in MASs, there is an 
issue of sharing small units. When more than one mem-
ory instance is stored in the same MAS, the dominant 
paths of different memory instances will likely partially 
overlap. Subsequent stored memory instances will inter-
fere with and potentially disrupt paths already stored due 
to resource competition, a phenomenon known as retro-
active inhibition.

We conducted a two-part experiment in a 20 × 20 
MAS, as shown in Fig.  9. First, testing was done using 

awakening based on upstream information, followed 
by tests using probe vectors with different ρ values for 
awakening based on both upstream and downstream 
information. Memory instances with 30% of edge agents 
randomly activated were generated and incrementally 
stored in the same MAS in a certain order. The learning 
rate Lr was set at 10%, and each instance was iterated 30 
times in the memory process.

In the retrieval of each instance, the proportion of the 
output current of each branch on the dominant path to 
the total output current on the dominant path is calcu-
lated as

The primary evaluation metric was α , while secondary 
metrics included the similarity of β1 − βk at this point to 
its value when the instance was stored alone in the same 
MAS for the same number of iterations. Similarity was 
quantified using cosine similarity; the values of β1 − βk 
were arranged in the same order to form vectors, and the 
cosine similarity between them was calculated. This was 
used to assess the deviation in the output balance of each 
branch. These β values form a vector,

The cosine similarity is

where Vpre and Vcurr refer to the vectors of β values from 
the previous (stored alone) and current (with other 
instances stored) retrieval scenarios, respectively.

In the same MAS, 10 memory instances were incre-
mentally stored, and after completing the memory 
process of each instance, retrieval based on upstream 

βo =
io

∑k
j=1 ij

, 1 ≤ o ≤ k .

V = [β1 β2 · · · βk ].

ϕ =
Vpre · Vcurr

�Vpre��Vcurr�
,

Fig. 15 a Retrieval effectiveness with different subsequent memory instance counts. b Impact of probe vectors with different ρ values on retrieval 
effectiveness. c Different iteration counts in memory process influence retrieval effects
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information was conducted for the stored instances. 
The experiment was repeated 1000 times with different 
test cases, and the results were averaged. As shown in 
Fig. 15a, the retrieval effectiveness significantly decreased 
compared with when stored alone, as discussed earlier. 
The number of subsequent instances (reflecting the origi-
nal position of the extracted instance) showed a negative 
correlation with both α and ϕ , indicating that the mem-
ory of new instances continuously interferes with paths 
already stored in the graph, but the impact on ϕ is rela-
tively minor.

The results of the experiment in Fig. 15a also indicate 
that the MAS retains the ability to distinguish whether 
a particular instance has been stored before, even after 
storing 10 instances. During retrieval, α remains higher 
than the average value shown in Fig.  10a without itera-
tive memory, indicating that the current still preferen-
tially flows through the previously established paths. This 
is akin to recognizing a person whose name we cannot 
recall.

Testing based on both upstream and downstream 
information was conducted after all 10 memory instances 
were stored in each experiment. Probe vectors with dif-
ferent ρ values were uploaded to test the retrieval effec-
tiveness. The experiment was repeated 1000 times with 
different test cases, and the results were averaged. As 
shown in Fig.  15b, the retrieval effectiveness gradually 
improves as ρ decreases, with both metrics showing sig-
nificant improvement. The results are markedly better 
than those from awakening based on upstream informa-
tion alone. This is like a human better recalling things 
after receiving some hints.

From the previous experiments and the definition 
of the memory learning algorithm, it is known that the 
number of memory iterations and the learning rate 
affect the proportion of the dominant path output dur-
ing retrieval. In an incremental memory process, the 
number of iterations for subsequent instances can also 

be considered an indicator of the degree of interference 
of preceding instances on solidified paths. To test the 
impact of the number of memory process iterations on 
the retrieval effectiveness of multiple memory instances, 
two memory instances with 30% of edge agents acti-
vated were randomly generated and uploaded to a 20 × 
20 network, with the learning rate Lr maintained at 10%. 
The number of iterations in the memory process was set 
to 10, 20, and 30. The first and second instances stored 
were the disturbed and disturbing instance, respectively. 
After memory, the disturbed instance was subjected to 
upstream information-based awakening retrieval testing. 
The experiment was repeated 1000 times under differ-
ent iteration counts, and the results were averaged. The 
results, as shown in Fig.  15c, indicate that the number 
of iterations in the memory process positively correlates 
with α , and negatively with ϕ , which is consistent with 
theoretical analysis. The increase in α is due to the deeper 
solidification of the paths of the preceding instance, while 
the decrease in ϕ is due to increased interference from 
subsequent memory instances on the preceding instance.

In summary, the experiments observed the retro-
active inhibition phenomenon in the graph and veri-
fied the impact of probe vectors with different ρ values 
on retrieval effectiveness through awakening based on 
both upstream and downstream information after stor-
ing multiple instances. ρ is negatively correlated with 
retrieval effectiveness, confirming the influence of the 
number of iterations in the memory process on retrieval 
effectiveness.

6.5  Capacity testing
As previously mentioned, different instances stored 
in the MAS interfere with each other to some degree, 
affecting their retrieval. In the capacity testing experi-
ment, a certain number of memory instances were ran-
domly generated, and all were subsequently stored in the 
same MAS. Each stored instance was then individually 

Fig. 16 a Capacity measured by individually retrieving instances after storing different quantities. b Capacity measured after changing number 
of activated agents in memory instances. c Capacity measured with consistent network depth
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retrieved, and α was calculated. Memory was considered 
successful if α ≥ 90% . Retrieval was conducted using 
the awakening method based on upstream information, 
which reflects the number of instances that can be suc-
cessfully and completely stored in a MAS after storing 
multiple instances.

The experiment was conducted in 10 × 10, 20 × 20, and 
30 × 30 networks. Several sets of memory instances with 
30% activated edge agents were randomly generated, with 
varying numbers in each set. The instances were incre-
mentally stored in the same MAS, group by group. The 
learning rate Lr was set at 10%, and each instance under-
went 30 iterations of the memory process. The results, 
as shown in Fig.  16a, indicates that the memory capac-
ity of MAS networks is limited, and larger networks are 
not necessarily better; smaller-scale networks seem to 
have a larger capacity. For the same network, more sam-
ples can be stored when internal resource competition is 
not intense. Once the memory limit is reached, storing 
more samples can disrupt the paths occupied by previ-
ous instances, leading to retrieval failure of instances that 
were originally remembered.

We conducted further testing regarding the issue of 
larger MAS networks having smaller capacities. To con-
trol variables, the number of activated edge agents in 
memory instances randomly generated for 20 × 20 and 
30 × 30 networks was 12 (10×4×30%) in both cases, and 
experiments were conducted in these networks with the 
same parameters as in Fig. 16a. The results, as shown in 
Fig. 16b, indicate that reducing the number of activated 
agents can increase the memory capacity of MASs. How-
ever, larger networks still have a lesser capacity than 
smaller-scale networks.

In capacity tests based on square MASs, the phenom-
enon of larger network sizes corresponding to smaller 
capacities was observed. A possible reason for this is 
that the square network topology, with equal length and 
width, is not conducive to resource conservation, as the 
paths formed tend to be deeper. Therefore, we tested net-
works with a consistent depth but varying widths. Capac-
ity tests were conducted in 20 × 10 and 30 × 10 networks, 
with experimental parameters consistent with those in 
Fig. 16b. The results, as shown in Fig. 16c, indicate that 

in networks with consistent depth, larger network sizes 
correspond to greater capacities. The cerebral cortex has 
a similar structure, with consistent depth across different 
areas (six layers of cells), but also has the ability to later-
ally expand, forming a flat structure.

A total of 1000 memory instances with 12 activated 
edge agents were randomly generated and uploaded to 30 
× 10, 30 × 20, and 30 × 30 MASs. The average numbers of 
agents and agent connections in the paths formed were 
calculated, to compare the resource consumption of net-
works with different depths. The experimental results are 
shown in Table 3, and indicate that, with the same width, 
networks with smaller depths consume fewer resources 
per instance, forming paths with fewer agents. This 
explains why the MAS networks with smaller depths per-
formed better in the earlier experiments. A related bio-
logical fact is that the cerebral cortex has relatively few 
layers, forming a flat structure that is not deep, but that 
has extensive horizontal expansion capabilities.

6.6  Capacity comparison
We compare the capacity of the proposed model with 
that of the Hopfield network measured in experiments. 
Like the criterion of α ≥ 90% set in this paper, in the 
Hopfield network, a retrieved vector is considered suc-
cessfully remembered if its similarity with the origi-
nal vector exceeds 90%. The memory efficiency of the 
Hopfield network is optimal when each binary bit of a 
memory instance is independently generated with a 50% 
probability of being one of two values [36], which corre-
sponds to randomly activating 50% of the edge agents in 
the proposed model. To control variables, other param-
eter settings remained the same as in subsection 6.5, but 
we randomly activated 50% of the edge agents. At the 
same time, ρ for the probe vector used in the Hopfield 
network was the same as ρmax.

The experimental results, as shown in Table  4, are 
similar to our earlier conclusions. The proposed model 
shows higher memory efficiency in networks with 
smaller depths and outperforms the Hopfield network 
in capacity. However, as the depth increases, the capac-
ity gradually becomes less than that of the Hopfield net-
work. Furthermore, in the experiments, the capacity of 

Table 3 Attributes of dominant paths of memory instances 
uploaded to networks of different depths

Size of 
MAS 
network

Number of connections between 
agents in connected subgraph 
of instance

Average number of 
agents constituting 
path

30 × 10 364.459 54.439

30 × 20 813.775 83.721

30 × 30 1385.789 113.686

Table 4 Capacity of our method and hopfield network

Our method Hopfield

Size Measured capacity Size Measured 
capacity

30× 10 108 300 20

30× 20 32 600 22

30× 30 15 900 25
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the Hopfield network dropped rapidly when the binary 
bits of the memory instance were unevenly distributed, 
which corresponds to a decrease in the activation ratio 
in the proposed method. As mentioned above, reducing 
the activation ratio in our method can increase the mem-
ory capacity. Therefore, our model can flexibly adjust 
memory capacity by varying the proportion of activated 
agents, whereas the Hopfield network cannot. In addi-
tion, compared with the fully connected network of the 
Hopfield model, our model’s sparsely connected network 
consumes fewer resources and achieves greater memory 
capacity, especially in networks with smaller depths. As 
the number of connections in a fully connected network 
grows quadratically, a 30× 30 Hopfield network contains 
900× 899 = 809100 connections, way higher compared 
with the one in Table 3.

However, our method of retrieval is based on extract-
ing downstream agents from upstream agents, and it 
cannot retrieve information represented by downstream 
agents if upstream agents are lost, meaning it cannot 
extract upstream agents based on downstream agents. 
Meanwhile, the Hopfield network does not differentiate 
between upstream and downstream agents.

6.7  Capacity testing of networks with six layers of depth
The cerebral cortex of higher primates has a vertical 
depth of six layers of cells and the capability for lateral 
expansion. Mimicking this form of the brain’s cortex, 
the depth of the MAS network was set to six layers. In 
this configuration, the memory instance retains compo-
nents A and D, with no B or C. Component A is used for 
input and D for output, consistent with previous capacity 
testing experiments, and retrieval is based on upstream 
information. To control variables, the number of bits 
in the memory instance vectors was maintained at 20 
bits (10 bits each for A and D), with an activation ratio 
of 50%. Random starting positions were selected on the 
top edge of the MAS, with component A continuously 
uploaded from the starting position and D uploaded to 
the symmetric position on the bottom edge, as illustrated 
in Fig. 17. In this case, the memory instances are said to 
be compactly distributed on the MAS, with each instance 
being uploaded on consecutive edge agents of the graph.

The experiment was conducted in networks of sizes 
50 × 6, 100 × 6, and 200 × 6. Several groups of memory 
instances were randomly generated, each with vary-
ing numbers of instances. Instances were incrementally 
stored in the same MAS, group by group. The learning 
rate Lr was set at 10%, and each instance underwent 30 

Fig. 17 Compactly and randomly uploading memory instances to different positions on MAS

Fig. 18 Capacity of MAS networks with six layers of depth and different widths
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iterations of the memory process. The capacity testing 
rules were the same as in subsection  6.5, and the test 
results were as shown in Fig. 18a, indicating that as the 
network width increases, its capacity gradually improves, 
roughly linearly.

We also experimentally tested the memory capacity of 
the MAS when instances were uploaded in a dispersed 
distribution. In this case, A and D components were no 
longer continuously uploaded from a certain position to 
the top and bottom edges. Instead, bits of these compo-
nents were randomly mapped to different positions on 
the top and bottom edges. The corresponding agents of 
each memory instance were no longer concentrated in a 
continuous area, to test the memory capacity of the MAS 
when instances were stored randomly.

The experimental results of the dispersed distribu-
tion, as shown in Fig. 18b, indicate that except for the 
network with a width of 50, whose capacity remained 
largely unchanged compared with the compact dis-
tribution, the capacities of the other MAS networks 
showed a significant decrease and almost stopped 
increasing as the network widened.

To explore the reasons for this phenomenon, the 
resource occupation of individual instances was ana-
lyzed. The results, as shown in Table 5, indicate that in 
the case of a compact distribution, the resource occu-
pation of individual instances does not increase as the 

network widens. In a dispersed distribution, the hori-
zontal distance between activated agents is typically 
greater, requiring more resources to connect, lead-
ing to a linear increase in resource occupation per 
instance with increasing width. The resource occupa-
tion in a dispersed distribution at a width of 50 was 
still relatively close to that of a compact distribution, 
which may explain why the network capacity in a dis-
persed distribution remains close to that of a compact 

Table 5 Resource occupation of single instances in 6-layer depth MASs with compact and dispersed distribution of different widths

Network width Number of connections between agents in connected subgraph 
of instance

Average number of 
agents constituting 
path

Compact distribution

50 50.174 35.735

100 50.171 35.934

200 50.957 35.447

Dispersed distribution

50 63.042 53.373

100 90.687 73.097

200 131.151 101.649

Fig. 19 Uploading pairs of vectors as memory instances to non-overlapping positions on MAS

Fig. 20 Distribution of chain lengths in chain awakening across 1000 
experiments
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distribution at this width. Subsequently, as the gap in 
resource occupation widens and shows linear growth, 
the capacity becomes significantly lower than in a com-
pact distribution and almost stops growing with the 
widening of the network.

6.8  Chain awakening experiment with long chains
Many brain activities, such as sequential working mem-
ory, are related to temporal information [37]. A long-
chain sequential awakening experiment examined a 
series of instances with sequential associations, where 
the output component of a memory instance is the input 
for the following instance, i.e., it acts as an awakening 
cue. The experiment observed whether such a chain-
style awakening can be successful. Multiple vectors of the 
same length were randomly generated and combined in 
pairs to form memory instances, with the output vector 
(D component) of one instance serving as the input vec-
tor (A component) of the next. The method of upload-
ing memory instances is similar to Fig. 17 and illustrated 
in Fig. 19, the edge agents used by each instance do not 
overlap, indicating that the instances do not share input 
or output agents.

The experiment was conducted in a 200 × 6 network. 
Sixteen vectors of length 10 were randomly generated, 
with adjacent vectors paired to form memory instances, 
totaling 15 pairs. In this setup, the output of one pair of 
instances served as the awakening cue for the next pair. 
The instances were incrementally stored in the same 
MAS in sequential order, with the learning rate Lr set 
at 10%, and each instance underwent 30 iterations of 
the memory process. After memory, each instance was 
sequentially retrieved in order. Retrieval of the next 
instance proceeded only if the previous retrieval was suc-
cessful; otherwise, the retrieval chain was broken, and 
subsequent instances were not retrieved. In this experi-
ment, α ≥ 80% was considered successful memory, and 
other capacity testing rules were the same as in sub-
section  6.5. The experiment was repeated 1000 times. 
The test results are shown in Fig.  20 and indicate that 
the model can successfully chain-awaken sequentially 
stored memory instances, but the probability of success-
ful awakening decreases for instances closer to the end 
of the chain. This is because the failure to retrieve any 
instance leads to the failure of all subsequent instances in 
the chain.

7  Conclusion
We modeled the memory mechanism of the cerebral 
cortex by leveraging the known principles of synap-
tic plasticity and the behavior of engram cells, which 
have been extensively studied in neurobiology. Specifi-
cally, the model simulates the strengthening of synaptic 

connections based on Hebbian plasticity and the dynam-
ics of neuron activation patterns as described in the 
engram theory of memory storage. Additionally, the 
electrophysiological principles guiding our model are 
grounded in the propagation of action potentials and syn-
aptic transmission laws, such as Ohm’s and Kirchhoff’s 
laws, which have been validated through computer simu-
lations. These simulations align with empirical observa-
tions of neuron activation and memory recall dynamics 
in biological neural networks, such as those demon-
strated in Kitamura et al.’s work on memory engram cells 
[14].

The MAS model in the algorithm is active, with each 
agent capable of personalized adaptive learning based on 
local neighborhood information, modeling the memory 
system of biological neural networks. This breaks away 
from the reliance of the traditional graph model on a 
global view for operation, lacking autonomous paral-
lel distributed processing capabilities, and is closer to 
actual biological neural networks. Inspired by the capa-
bility of biological neurons to transmit electrical signals, 
this adaptive learning behavior was simulated through 
microcircuits centered on variable resistors, success-
fully realizing the simulation of the memory and retrieval 
processes in the entire MAS network on a computer. 
In simulations, the model could distribute memory 
instances across the MAS, transforming them into con-
nected paths, and achieving path memory and retrieval 
within the network. The model’s generalizability was 
verified, and it was shown to be capable of achieving 
memory functions in different topological structures of 
MASs. Tests determine the capacity of networks of vari-
ous scales, verifying factors influencing capacity size, as 
network scales, edge agent activation ratios, and disper-
sion of memory instances all affect network capacity. Par-
ticularly, referencing the structure of the cerebral cortex 
in higher primates, the memory capabilities of networks 
with six layers of depth were verified, exploring the rela-
tionship between the capacity of six-layer networks and 
their width.

The process of memorizing and retrieving instances 
simulates the biological processes of memory and 
recall. Experimental results showed certain similarities 
between the model and biological neural networks. For 
example, the number of iterations required for a MAS 
network to memory different instances and achieve 
the same retrieval effectiveness varies, as does the time 
required for humans to remember different content. 
Furthermore, our model universally possesses memory 
functions in MASs of different sizes and topological 
structures, similar to how the microscopic differences 
in people’s brain networks do not affect the effective-
ness of memory functions. Our model performed 
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better and had a larger capacity in networks with 
smaller depths, with capacity increasing linearly with 
width, resembling the flat morphology and horizon-
tally expansive cortical structure of the brains of higher 
primates.

In summary, we proposed a self-learning MAS model 
that does not require a global perspective, based on 
the simulation of biological neural networks. The 
MAS achieves memory functionality while decentral-
ized, based on local information and adaptive learn-
ing capabilities. The model demonstrates biological 
plausibility by aligning its simulated memory processes 
with known neural activity patterns, the activation of 
engram cells during memory recall. It also serves as 
an inspiration for further research into memory neural 
mechanisms, enriches neural computational models, 
and offers new perspectives and ideas for neural com-
putation research.
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