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1 Introduction
Neural image data is primarily acquired using mod-
ern microscopy techniques, including light sheet fluo-
rescence microscopy (LSFM), wide-field fluorescence 
microscopy, confocal light sheet microscopy, multipho-
ton microscopy [1–5], etc. LSFM is a popular choice for 
obtaining high-resolution fluorescence neural images as 
it minimizes the photobleaching and phototoxicity of 
specimens [6, 7]. However, artifacts like stripes can exist 
in LSFM images and greatly degrade the image quality. 
Due to the complex nature of the tissue structure, there 
remains a significant refractive index mismatch among 
different tissue types even after clearing. This mismatch 

Brain Informatics

*Correspondence:
Liya Ding
dinglyosu@gmail.com
1Institute for Brain and Intelligence, Southeast University, Nanjing, China
2Department of Neurology, Beijing Tiantan Hospital, Capital Medical 
University, Beijing, China
3Academy for Advanced Interdisciplinary Studies, Peking University, 
Beijing, China
4Chinese Institute for Brain Research, Beijing, China

Abstract
Light Sheet Fluorescence Microscopy (LSFM) is increasingly popular in neuroimaging for its ability to capture high-
resolution 3D neural data. However, the presence of stripe noise significantly degrades image quality, particularly 
in complex 3D stripes with varying widths and brightness, posing challenges in neuroscience research. Existing 
stripe removal algorithms excel in suppressing noise and preserving details in 2D images with simple stripes but 
struggle with the complexity of 3D stripes. To address this, we propose a novel 3D U-net model for Stripe Removal 
in Light sheet fluorescence microscopy (USRL).  This approach directly learns and removes stripes in 3D space 
across different scales, employing a dual-resolution strategy to effectively handle stripes of varying complexities. 
Additionally, we integrate a nonlinear mapping technique to normalize high dynamic range and unevenly 
distributed data before applying the stripe removal algorithm. We validate our method on diverse datasets, 
demonstrating substantial improvements in peak signal-to-noise ratio (PSNR) compared to existing algorithms. 
Moreover, our algorithm exhibits robust performance when applied to real LSFM data. Through extensive validation 
experiments, both on test sets and real-world data, our approach outperforms traditional methods, affirming its 
effectiveness in enhancing image quality. Furthermore, the adaptability of our algorithm extends beyond LSFM 
applications to encompass other imaging modalities. This versatility underscores its potential to enhance image 
usability across various research disciplines.
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often results in the presence of numerous 3D stripes with 
varying widths and brightness in the images. The pres-
ence of these stripes poses challenges to data processing 
tasks such as image-stitching and automatic neuron mor-
phology reconstruction.

In LSFM images, typical hardware-based methodolo-
gies for stripe reduction involve structured illumination 
techniques. For example, a vertically scanned LSFM 
method was developed to reduce stripes in unidirectional 
LSFM and improve image quality [8]. Similarly, multi-
directional LSFM averages images from different light 
directions and eliminates stripes [9]. However, the stripes 
in the existing LSFM images cannot be eliminated using 
these approaches. Additionally, each neural sample uti-
lized for LSFM neuroimaging is highly valuable and is not 
reusable, making it essential to find alternative methods 
to remove stripes from existing LSFM images. Numer-
ous methods have been proposed for eliminating image 
stripes, which are primarily categorized into three cat-
egories: digital filtering, statistics-based techniques, and 
learning-based approaches [10]. Digital filtering is com-
monly used due to its simplicity [11]. In mBrainAligner 
[12], regular stripes caused by fluorescent bleaching dur-
ing knife cutting and imaging can be effectively removed 
by eliminating corresponding frequency domain infor-
mation through a Gaussian notch filter. Neverthe-
less, the diversity in width and brightness of stripes in 
LSFM images can complicate the application of direct 
filtering as it may negatively impact the original qual-
ity of the image. Midway histogram equalization (MHE) 
[13] is a statistics-based technique utilized for stripe 
noise removal. MHE mitigates stripe noise disturbance 
by introducing redundant information between adja-
cent columns. However, it is effective in removing only 
slight levels of stripe noise in the image. Furthermore, 
statistics-based methods are highly restricted due to 
their strong similarity assumptions [10]. Currently, deep 
learning-based methods have been widely explored in 
image processing applications and have shown remark-
able improvement in performance, including interactive 
segmentation [14], multi-scale segmentation [15–17] and 
other image segmentation methods, pattern recognition 
[18], and neuronal tracking in brain images [19]. Addi-
tionally, CNNs are widely used for image noise removal 
[20]. Motivated by the outstanding performance of deep 
learning, a three-layer stripe noise removal convolu-
tion neural network (SNRCNN) was proposed [21]. The 
network aims to remove stripes directly, serving as an 
image-denoising and super-resolution tool without tak-
ing into account the specific characteristics of the images. 
Therefore, it is hard to completely remove the stripe and 
retain the high-frequency textures perfectly. DnCNN 
[22] is one of the classical network models for removing 
noise, which involves teaching residual networks to noise 

points, thus replacing the need to look for a mapping cor-
relation between damaged and clean images. Guan et al. 
proposed a wavelet deep neural network (SNRWDNN) 
model for removing stripe noise [23], leveraging the 
properties of the wavelet domain and fusing the informa-
tion of the image itself to eliminate stripe noise without 
compromising image details [24]. Regrettably, this tech-
nique has lower performance in removing high-noise 
stripes with varying widths and brightness. In 2006, Hin-
ton et al. proposed and published the encoder-decoder 
structure [25]. The primary aim of this design was to 
attain image compression and denoising. Inspired by 
these techniques and recognizing that the U-net model 
can learn multiscale information effectively, an attention-
based residual network (Att-ResNet) with 2D U-net [26] 
as the backbone was proposed to effectively eliminate 
stripe artifacts in LSFM images [27]. This application 
verified the efficacy of the U-net model in addressing dif-
ferent stripe patterns, however 2D U-net presents incom-
petence in learning spatial information of stripes in 3D.

To overcome this challenging problem, we propose 
a novel method USRL (3D U-net-based Stripe Removal 
for Light-sheet microscopy image). This method aims 
to effectively eliminate 3D stripes present in neural data 
while minimizing potential damage to biologically rel-
evant information. The process of stripe removal is 
depicted in Fig.  1 and consists of three main modules: 
data pre-processing, stripe removal, and data post-pro-
cessing. Neural images obtained through LSFM often 
exhibit optical distortion, large dynamic variation ranges 
and uneven distribution. In the pre-processing stage, as 
described in Sect. 3.3, flat field correction and nonlinear 
mapping are employed to transform the images, ensuring 
performance of subsequent model application, as illus-
trated in Fig.  1A. Additionally, we pad the sides of the 
image volume and dissect it into overlapping tiles, pre-
paring them for next step. Stripe removal module serves 
as the core component of our proposed method. As illus-
trated in Fig. 1B and C, USRL utilizes a dual-resolution 
approach to remove stripes across a wide range of scales. 
Thin and wide stripes are removed separately from 
USRL S1 and USRL S2, respectively. This dual-resolution 
approach is inspired by the observation of varying stripe 
widths in neural data and represents the key innovation 
of our method. The details are explained in Sect. 3.1 and 
Sect. 3.2. Lastly, the data post-processing stage (Sect. 3.4) 
involves stitching the tiles together to reconstruction 
the whole volume and reversal processing of nonlinear 
mapping to restore the images to their original grayscale 
characteristic space.

The main contributions of this paper are summarized 
as follows:
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1. Introducing the 3D U-net network model to 
effectively remove 3D stripe noise. Notably, our 
proposed method, USRL, pioneers the use of a 
3D model for stripe noise removal in microscopy 
images. This advancement further substantiates 
the feasibility of employing a 3D encoder-decoder 
structure for noise removal.

2. The proposed dual-resolution approach 
demonstrates improvement of the performance 
of stripe removal from LSFM images, promoting 
the study of the anatomical structure and internal 
working of the brain and the use of LSFM.

3. Nonlinear mapping is employed to address the 
challenge of balancing the performance of stripe 
removal and the preservation of both details and 
light area information.

2 Data observation
To accurately estimate stripe noise in LSFM images, 
it is essential to learn the characteristics of such data. 
The Transparent Embedding Solvent System (TESOS) 
[28] neuroimaging data acquired by Inverted Selec-
tive Plane Illumination Microscopy, which we refer to 
as TESOS in this paper, is a representative LSFM data-
set. The transparent embedding of cleared samples and 
imaging of adult mouse whole body sample using light 
sheet microscope for the acquisition of the original data 
is described in detail as in [28]. Stripes in LSFM images 

exhibit significant directional characteristics, as noted in 
[29]. Stripes in LSFM images are similar to other kinds 
of stripe noise, as visually illustrated in Fig.  2A, where 
stripe direction is within a minor deviation angle of 1 
degree from the vertical. These stripes yield 3D nega-
tive light pillars, which are consistent with the artifacts 
generated in LSFM due to the high-absorption or scat-
tering structures along the imaging light’s pathway. We 
present a zoomed-in section of an image block mostly 
composed of stripes, displayed with intensity-inverted to 
offer a view of the 3D light pillars as presented in Fig. 2B. 
Stripe noise in LSFM images is diverse, as can be seen 
from the statistical analysis of a large number of TESOS 
data. This diversity primarily manifests in stripe width 
and brightness. In terms of width, we categorize stripes 
into thin stripes, which have strong characteristic infor-
mation, and wide stripes, which have low characteris-
tics and are contaminated with other stripes. Figure  2C 
depicts the distribution of stripe width in TESOS (voxel 
size at 0.58 × 0.58 × 1 µ m3), where the minimum width 
ranges from 1 to 2 pixels (as in X  axis) and the maxi-
mum width exceeds 80 pixels. Most of the stripes are 
concentrated in 1 to 22 pixels (87.5 percentile of stripe 
width). Although the proportion of wide stripes is less, 
their impact cannot be ignored due to the broad coverage 
width. In terms of brightness, the range of intensity devi-
ation from background is vast, ranging from − 210 to -8 
(negative due to dark stripes). Taking 95 percentile of the 
data intensity as reference IR , they range up to 45% of IR

Fig. 1 Algorithm framework for removing stripe from mouse neural imaging data containing brain and surrounding tissue
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, and the majority within 27% of IR , as shown in Fig. 2D. 
In summary, the stripes in LSFM images take place in the 
form of 3D negative light pillars with varying width and 
brightness.

3 Methods
This section first outlines the network structure and the 
model targets and loss functions, as well as model train-
ing process. Then the data pre-processing including 

flat-field correction, nonlinear intensity mapping and 
padding and dissection are described in details.

3.1 USRL network architecture
The network structure employed for stripe noise removal 
is U-net [30, 31], which is a deep convolutional neural 
network with skip connections that has demonstrated its 
power in biomedical image processing tasks. The specific 
architecture of the model in proposed USRL is shown in 
Fig. 3. In contrast to existing deep learning-based stripe 
noise removal methods, USRL learns different scales of 

Fig. 3 Model architecture for removing stripe noise

 

Fig. 2 Stripe statistics based on neural data observation. (A) Mouse neural data from TESOS (one Z slice). (B) 3D view of small volume displayed with 
inverted intensity. (C) Stripe width histogram. The box is the width ranges where the stripe is concentrated. (D) Stripe intensity deviation histogram
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stripes directly in 3D space. Furthermore, it includes an 
activation function in the output layer to improve the 
convergence speed.

In order to ensure that the parameters are reduced 
under the same sensing field, and the complexity of the 
model is reduced [32], the size of the convolution filter 
is set to 3 × 3 × 3. In the encoding structure, we have 
5 layers with each layer consisting of two 3 × 3 × 3 
convolutions and a rectified linear unit (ReLu), similar 
to general 3D U-net structure [30]. At the end of each 
layer, there is a 2 × 2 × 2  max pooling with a stride of 
two in each dimension. The number of channels are dou-
bled before the pooling process to avoid bottleneck [32, 
33]. The input to the network is a 64 × 128 × 128 vox-
els tile of the image with 1 channel. Our output in the 
final encoding layer is 4 × 8 × 8 voxels in Z × X × Y 
directions respectively. In the decoding structure, each 
layer consists of 3 × 3 × 3 up-convolution with a stride 
of two, followed by two 3 × 3 × 3 convolutions, each 
of which is followed by a ReLu. In the decoding pro-
cess, high-resolution features of the model at different 
scales are directly combined. The final layer consists of a 
3 × 3 × 3  convolution that reduces the number of out-
put channels to the number of labels.

3.2 USRL training methods
Model training is the key to the performance of the 
model, this session systematically expounds the model 
training from the aspects of dataset generation, loss func-
tion and training strategy. Finally for optimal application 
in stripe removal, a concise explanation of the specific 
details involved in utilizing the trained model is provided.

3.2.1 Generate training set
Stripe noise in LSFM images is often understood as addi-
tive noise resulting from uneven illumination that is 
shown in Fig. 4. Degraded data (Fig. 4A) can be regarded 
as the sum of clean data (Fig. 4B) and stripe component 

(negative) (Fig.  4C), and the corresponding degradation 
model can be expressed as follows:

 Y = X + S  (1)

where,Y ∈ CD× M× N  represents image containing stripe 
noise, with D, M, N  representing slice, row and column 
of the degraded data, respectively. The goal is to estimate 
the stripe component S  from Y  and subtract it from Y  
to obtain the desired clean data X , that is, X = Y − S .

To train a network model for stripe removal, we need 
training data containing the noisy data and also the clean 
data or the stripes. There is no 3D data set publicly avail-
able for such training tasks. Since stripe noise in LSFM 
images is additive noise that exhibits negative 3D pil-
lars, our approach is to generate various pillar-shaped 
stripes and impose them to clean data to form the train-
ing and validation sets. The LSFM images from Osten lab 
[34] (the data set is referred to as OLST in this paper) is 
used as the clean data. To synthesize 3D light pillar as we 
observed, the first step is to synthesize the 2D section 
with uneven illumination using ellipses of varying shapes. 
The center locations and long and short axes are ran-
domly generated for a variety of ellipses. Different cen-
ters are chosen to ensure the stripes to be spaced across 
our data set. The lengths of the long and short axis are 
randomly selected from 1 to 22 pixels. This range is cho-
sen for two reasons. Firstly, stripe width is concentrated 
in this range (as shown in Fig. 2C). With model trained 
using synthetic data of this width range, thin stripes can 
be removed directly in the USRL S1 process. Addition-
ally, the width of the wide stripes will also be transformed 
into the range of 1 to 22 after downsampling, so we can 
remove the wide stripes in the USRL S2 after removing 
the thin stripes. Secondly, the input to the network is 
64 × 128 × 128 voxels in Z × X × Y  directions dur-
ing training, so if stripes with larger width are used for 

Fig. 4 (A) Degraded data. (B) Clean data. (C) Stripe component. A can be regarded as the sum of B and C
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training, the portion of wide stripes occupation in the 
image is quite large, and also, we noticed the trained 
model may mistakenly classify a narrow clean area as 
a stripe.The intensity of the synthetic ellipses deviates 
from the background at the ranges from − 72 to 0. With 
the intensity lower than 188 (95 percentile of the data) in 
general, this range is up to about 40% of the intensity. This 
is in analog to the data observation of TESOS data. Note 
that for both TESOS data and OLST, pre-processing is 
done before images being input to the network, as shown 
in Fig. 1. Intensity piecewise linear mapping changes the 
data distribution without changing the portion of stripe 
value in general signal. The principle and function of 
nonlinear mapping will be described in Sect. 3.3.2.

The preliminary 3D stripe component is constructed 
by duplicating the above 2D sections as Y  slices so that 
the stacked 3D volume reaches the same Y  slice count 
as the samples of neural data from OLST. To better con-
form to the characteristics of actual stripe noise, we apply 
Gaussian smoothing filters to generate the final reference 
stripes. Figure 4 displays sample stripes and the resulting 
degraded data in 2D Z  slice form.

3.2.2 Model target and loss function
Clean data imposed with generated stripes gives the 
degraded data Y , which serves as the input of the net-
work model. Instead of predicting the underlying clean 
image as other denoising models [35], USRL learns the 
stripe noise by training the residual mapping R (Y ) ≈ S
, and hence obtain denoised image by X = Y − R (Y )
. This approach has the advantage of focusing directly 
on the stripe information, including stripes that deviate 
only slightly from the background intensity. On the other 
hand, LSFM with sparse labelling has foreground signals 
which are much brighter than the rest of the regions, 
hence learning directly the clean data degrades model’s 
ability to learn from darker regions due to brighter areas 
being relatively more influential than darker regions. 
Learning the clean data also results in limited perfor-
mance in the removal of the stripes with small deviation 
from background intensity.

The average mean squared error (MSE) between 
the expected S  and the estimated dataR (Y ) from 
the noisy input can be calculated as follows: 
l (θ ) =

1
N2

∑
N
i=1||R (Yi; θ ) − Si||2  (2)

whereN  represents the number of pairs of stripe-clean 
data in the training data set, which is the amount of data 
inputted into the network in each batch. This MSE is 
used as the loss function to learn the trainable parame-
ters θ  in the model.

3.2.3 Training strategies
The training data consists of 40 sets of data generated as 
above, and the validation data consists of 10 sets of data. 
Each set of data has dimensions of Z × X × Y  corre-
sponding to 64 × 512 × 512 voxels. During training, the 
data directly input into the model has 64 × 128 × 128 
voxels. We perform data augmentation, including rota-
tion and flipping, to enhance the generalization ability of 
model, which results in 25,000 patches . The batch_size  
is set to 10. For each training iteration, we select a ran-
dom set of ten pairs of stripe and clean data to input 
into the model. We conduct 50 epochs  of training, with 
an initial learning rate of 0.001 that is reduced to 0.0001 
after the first ten epochs. The training process, completed 
on a single 3090 GPU, lasted approximately 1.5 days.

3.2.4 Model application
In our proposed algorithm, the trained 3D U-net model 
is applied to data with the dual-resolution approach. 
The data with a size of 64 × 512 × 512 is input to the 
model. The thin stripes and wide stripes in the data will 
be sequentially removed in USRL S1 and USRL S2. As 
shown in Fig. 1, USRL S1 outputs an intermediate result 
with thin stripes removed and wide stripes remains. 
In USRL S2, the data is downsampled by a factor of 4, 
resulting in the transformation of the width of remain-
ing stripes to a range of 1 to 22. Subsequently, the U-net 
model estimates the wide stripes accordingly, which are 
then upsampled to match the original input size and 
removed from the outputs of USRL S1 to generate the 
final clean LSFM image.

3.3 Data pre-processing
The significance of data pre-processing is evident in shap-
ing the features of the Unet model within USRL. This sec-
tion systematically explains the principles and specifics 
of key techniques, including flat-field correction, nonlin-
ear intensity mapping, as well as padding and dissection, 
employed in the data pre-processing stage.

3.3.1 Flat field correction
Vignetting [36] is a phenomenon that commonly occurs 
with LSFM images resulting from the large angle between 
the optical axis of the lens and imaging light in the corner. 
It is commonly accompanied by stripes and degrades the 
image quality by causing darker corner brightness com-
pared to the center [37]. Figure 5A shows the impact of 
vignetting on TESOS data. To ensure accurate training of 
the network model, it is important to correct the contrast 
imbalance of data before removing stripe noise. Vignett-
ing can lead to the loss of stripe feature information in 
the vignetting region due to lower intensity deviation, 
while the variation in stripe widths may cause the net-
work model to mistakenly learn vignetting as a potential 
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source of wide stripes [38]. The LSFM data has diverse 
distribution, hence if each image goes through vignett-
ing removal independently with different parameters, the 
resulting adjacent image tiles could inconsistency and the 
performance on sample corners might be poor. To solve 
this problem, we selected a set of typical samples and 
compute the unique reference pattern image R  by aver-
aging their Gaussian smooth filtering results, as shown in 
Fig. 5B. It can be expressed by the following:

 
R =

1
M

∑
M
i=1G(I ′ i, K, σ ) (3)

where G  is a Gaussian smoothing function. K and σ
are Gaussian kernel and the standard deviation, which 
are taken as 255 and 64 respectively, to ensure a strong 
smoothing effect. M  is the total number of typical 
samples, which we set as 10. Ii  represent the 2D center 
z-slice image of the mouse neural data and the size of 
Ii  is 2048 × 1024 . Furthermore, data intensity distribu-
tion is uneven, with very bright voxels in the sparsely 
labeled signal regions (which will be described in detail in 
Sect. 3.3.2), flat field correction causes excessive sharpen-
ing of data due to the influence of large intensity regions. 
Therefore, Ii  is adapted into I ′ i , where voxels with 
intensity greater than 95 percentile of the data is assigned 
new intensity as the mode intensity of the data. With ref-
erence pattern image calculated, flat-field correction was 
performed with a division for all 2D slices of the image 
volumes. Figure  5C shows example result of flat field 
correction.

3.3.2 Nonlinear intensity mapping
The neural data collected from TESOS demonstrates a 
wide range of dynamic changes and an uneven distribu-
tion. Figure  6A illustrates the extensive dynamic range 
of brightness levels, spanning from a minimum value of 
140 to a maximum value of 13,917. However, the majority 
of brightness values fall within the range of 146 to 460. 
Consequently, this concentration of low values dimin-
ishes the feature information of the stripes after linear 
normalization and redirects the focus of learning towards 
the brighter regions, rather than the noise present in the 
stripes. Additionally, the wide range of dynamic changes 
in the data contributes to the significant variations in 
stripe brightness, thus further exacerbating the challenge 
of training models for the analysis of stripes.

Hence, it is essential to perform nonlinear mapping 
subsequent to flat field correction in order to ensure the 
preservation of complete stripe characteristic informa-
tion after normalization. This approach not only enhances 
the learning process of information from relatively dark 
regions but also ensures the preservation of intricate 
details. As depicted in Fig.  6B, nonlinear mapping is 
accomplished by utilizing piecewise linear mapping. This 
mapping technique assigns the first 95 percentile of the 
voxel intensity T  to the range of [0,255 × 0.95], while the 
remaining 5% of the voxel intensities are mapped to the 
range of [255 × 0.95,255]. The range cutoff of 95 percen-
tile is selected due to the observation that the majority of 
sparsely labeled neural data tends to have a constrained 
amount of bright signal. This transformation serves the 
purpose of converting the uneven distribution of the data 
to a more even normal distribution without causing any 
harm to the original data. The outcome of this process 

Fig. 5 The process of flat field correction. (A) Neural data. The blue boxes show the main area of vignetting influence. (B) Reference pattern image is 
constructed from 10 typical samples. (C) The data after flat field correction
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is the generation of mostly normally distributed nonlin-
ear mapped data, which can be observed in Fig. 6C. The 
inverse nonlinear mapping procedure can be employed 
to restore the data within the aforementioned intervals 
back to the original data interval, which is achieved by 
applying the inverse nonlinear mapping function. The 
specific mathematical formula for the nonlinear mapping 
is presented below:

 

Ti′ =






Ti−Tmin
Tp−Tmin

× (255 × 0.95) , Tmin ≤ Ti ≤ Tp

Ti−Tp

Tmax−Tp
× (255 × 0.05)

+ (255 × 0.95)
, Tp < Ti ≤ Tmax

 (4)

where T ′  is the mapped neural data and T  is neural data 
from TESOS. Tmin, Tmax, Tp  correspond to the small-
est brightness, largest brightness, and the 95 percentiles 
of all brightness in T . It is noteworthy that the applica-
tion of nonlinear mapping expands the versatility of our 
method, making it applicable to LSFM images with dif-
ferent variations.

3.3.3 Padding and dissection
When the trained 3D U-net is utilized to process large 
3D volumes as TESOS data, two additional processes 
are required. Convolutional operations on input images 
often lead to a reduced number of voxeloperations at 
the boundary region, resulting in decreased recognition 
performance in that area. This limitation is particularly 

pronounced in top and bottom Z  slices. To improve the 
removal of stripes in boundary regions, images are pre-
processed using a filling technique prior to the actual 
processing [39]. This technique, as depicted in Fig.  7A, 
involvessymmetrically padding boundary voxels of the 
volumes. Although convolution reduces the resolution of 
feature maps, it is expected that the boundary points of 
the data can be preserved until the final layer of feature 
maps. Taking into account the number of pooling opera-
tions in the model, computational performance, and the 
effect of padding size on improving the performance of 
removing boundary stripes in practical operations, pad-
ding using mirroring with width of 128 voxels are sym-
metrically made in the X and Y  direction, followed by 
padding with width of 32 voxels in the Z  direction. Fig-
ure  7A displays the padding used to obtain additional 
voxel values outside of the original data in the grey box.

Additionally, considering the efficiency of data process-
ing and the available memory capacity for computing, the 
neural data is processed in tiles of 64 × 512 × 512. Since 
the voxel of the boundary region generated by partition-
ing will face the same problem as the original data as 
stated above, the method of overlapping tiles is adopted 
to solve this problem. Padding and dissection with over-
lapping tiles in the X  axis is demonstrated in Fig. 7A and 
B. With the Z  axis stride  set as 32, and X/Y  axis stride  
set as 256, the whole volume is dissected and the result-
ing tiles have 50% overlap in each direction. The tiles are 
put through USRL and the center region of the prediction 

Fig. 6 Nonlinear mapping process. (A) The data after flat field correction and its brightness histogram. (B) The description of nonlinear mapping, which 
is realized by piecewise linear mapping methods. (C) Nonlinearly mapped data and its brightness histogram
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(50% in the center in all directions and within the origi-
nal volume region) are kept and are sequentially seam-
lessly stitched together into the whole output volume, as 
depicted in Fig. 7C.

3.4 Data post-processing
The data post-processing module encompasses two 
key steps: image stitching and the reversal of nonlinear 
mapping.

Image stitching involves reassembling the image, which 
has undergone stripe removal, to match the original data 
alignment. This is done by following the same dissec-
tion sequence used during pre-processing. Because of 
the carefully designed padding and dissection strategy, 
simple stitching without blending techniques suffices to 
achieve accurate alignment.Then the inverse of the non-
linear mapping applied during pre-processing is applied 
to the stitched images. This step is crucial for restoring 
the image to its original intensity distribution. Together, 
these post-processing steps complete the algorithmic 
process.

4 Experiments
4.1 Analysis of feasibility
Prior to comparing the proposed method USRL with 
other classical algorithms, the feasibility of USRL is first 
assessed on the validation set. Specifically, the consis-
tency of the data before and after stripe removal is ana-
lyzed, as well as the amount of stripe remaining in the 
results. These evaluations provide an intuitive assessment 
of the performance of the proposed algorithm.

From the results obtained on the validation set, we 
can see that the removal of stripes by USRL leads to a 
satisfactory improvement in the quality of the images. 
Figure  8AB show two sets of visual examples of the 
data passing through the dual-resolution stripe removal 
framework. After the application of USRL S1, the major-
ity of the thin stripes are removed, with some residue 
stripes primarily associated with wide stripes, especially 
ones with high magnitude, as shown in the red boxes in 
Fig.  8AB. With the subsequent application of USRL S2, 
the remaining stripes are eliminated in the final results. 
The results provided visual evidence for the effectiveness 
of the proposed dual-resolution approach.

In quantitative evaluation and analysis, data distribu-
tion similarity and changes are investigated. Figure  8C 
provides the comparison of USRL S1 and USRL S2 pro-
cesses in terms of how they affected the average bright-
ness of the stripy image. With the USRL S1 and USRL 
S2 process, the processed data’s average brightness con-
verges toward that of the clean most of the samples (9 out 
of 10, with the exception of validation 10 data). As shown 
in Fig.  8D, the standard deviation of most of data after 
the removal of stripes also gets much closer to that of the 
clean data when compared to the degraded data, which 
suggests that the data after USRL is remarkably similar to 
the clean data distribution. These quantifications suggest 
that the damage sustained from full USRL is at an accept-
able level. Processing thin and wide stripes sequentially 
has proven to be credible.

Furthermore, a direct comparison is conducted 
between the remaining stripe information before and 

Fig. 7 The padding and dissection process. The 3D volume (in light grey box) is padded on all boundaries (shown in the XY -slice  here). (A) The block 
in the blue box is cropped out for stripe removal in the center region (in the red box). (B) Another block adjacent to the block in A is dissected out for 
model application. (C) The outputs are stitched together to form the complete USRL results

 



Page 10 of 17Li et al. Brain Informatics           (2024) 11:24 

after stripe removal. The average value of the stripe 
information is calculated and present in Fig.  8E. Before 
removal, the average value of the stripe information is 
significantly negative, due to the strong negative light pil-
lars. Theoretically, successful stripe removal would result 
in the value of the stripes approaching zero. As depicted 
in Fig. 8E, the value of residue in the USRL S2 results is 
very close to the theoretical value, 0. Across all test sets, 
the overall average value of the residual in the USRL S2 
results is closer to zero than the residue in the USRL S1 

results. Figure 8F provides a more distinct illustration of 
the residue in the USRL S2 results, where the standard 
deviation of stripes is closer to 0 than in the USRL S1 
results. The standard deviation of the stripe decreases 
progressively through the processes, and the direct 
depiction of the stripe information confirms the feasibil-
ity of sequentially removal of thin and wide stripes.

Fig. 8 The similarity and progress of the data before and after stripe removal on validation set. (A, B) are visual examples. The first column is clean valida-
tion data, the second column is degraded data, the third column is the processing result of USRL S1, and the fourth column is the processing result of 
USRL S2. The red boxes are wide stripes contaminated with other thin stripes. (C) Average brightness before and after stripe removal. (D) Standard devia-
tion before and after stripe removal. (E) Average value of stripe information. (F) Standard deviation of stripe information
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4.2 Analysis of USRL structure
There are generally two perspectives for analyzing the 
rationality of an algorithm. One approach involves con-
ducting ablation experiments [22, 23], while the other 
entails feature analysis, as exemplified in [40]. For USRL, 
image pre-processing procedures introduce alterations to 
the features in the U-net model. The analysis of the USRL 
structure incorporates the effects of these pre-processing 
procedures, coupled with a standard ablation experiment 
focusing on the skip connection within themodel struc-
ture. This dual-perspective analysis is discussed in-depth 
and assessed through experiments to ascertain the opti-
mal preprocessing steps and model structure.

4.2.1 Effectiveness of nonlinear mapping
Performing direct linear normalization on LSFM images 
with a large dynamic variation range and uneven distri-
bution causes the model to focus on brighter areas dur-
ing the learning process. A notable observation is the 
increase in damage of useful information while remov-
ing stripe noise, particularly in the detailed structure of 
bright or dark areas. Bright areas tend to spread out after 
stripes removal, and due to reduced stripe characteris-
tics, whereas dark structural areas are blurred or even 
removed as potential stripes. To further substantiate the 
necessity of non-linear mapping, we make a comparison 
of the reconstruction results with and without nonlinear 
mapping.

As depicted in Fig. 9, we present a comparison between 
the local structure of the data from TESOS and the out-
comes of stripe removal with and without nonlinear 
mapping processing. Specifically, when examining the 
zoomed-in 3D tri-views of the region within the blue box, 

it can be observed that the data after stripe removal with 
nonlinear mapping exhibits a high resemblance in terms 
of 3D spatial characteristics to the bright areas in the 
original TESOS data. Conversely, stripe removal without 
mapping leads to significant damage to the bright areas, 
exhibiting a diffusion, which can potentially adversely 
impact subsequent image processing tasks, such as image 
segmentation and data collection evaluation. Addition-
ally, as shown in the red boxes in Fig. 9, nonlinear map-
ping not only promotes the uniform distribution of data 
and reduces the attention of model to bright areas, but 
also enhances model’s ability to learn information from 
relatively dark regions and effectively preserves image 
detail information.

4.2.2 Effectiveness of padding and dissection
The inclusion of padding and dissection plays a crucial 
role in improving the performance of boundary stripe 
removal. To examine the effectiveness of this mod-
ule, a comparison is conducted between modules with 
and without padding and overlapping tile. As described 
in Sect.  2, stripes exhibit distinct directional charac-
teristics, primarily appearing as vertical stripes in the 
XY  plane and elliptical-shaped dark areas in the XZ  
plane. When using unpadded data, the stripe noise in 
the boundary areas is not removed entirely, as indicated 
by Fig.  10A. More specifically, the striped area within 
the red region still exhibits degraded image quality, and 
in the blue region, the remaining stripes create distinct 
shadows in the XZ  plane, resulting in irregular local 
brightness variations. Conversely, when utilizing padded 
data, the performance of stripe removal in the boundary 
area is markedly enhanced, as depicted in Fig.  10B.This 

Fig. 9 Comparison of processed data obtained by model with and without nonlinear mapping. The red boxes are for several areas where the data struc-
ture is damaged. The blue box is for region with detailed and bright structure. Images in blue box are displayed in zoom-ins with 3D tri-views
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improvement has successfully reduced the interference 
caused by stripes, seen both in the XY  and XZ  planes.

4.2.3 Effectiveness of skip connection
The skip connection merges feature maps at correspond-
ing positions in the channel. By fusing the low-level and 
high-level feature maps, the network preserves more 
high-resolution details contained in the high-level feature 
maps, which helps to extract features of various resolu-
tions. To evaluate the effectiveness of the skip connec-
tion, we made a version with skip connection removed 
from the proposed model [41]. Then, the same stripe 
noise removal task was performed on the same test 

dataset to compare the performance of the models with 
and without skip connection. To access the stripe noise 
removal performance, a number of metrics are calcu-
lated to evaluate image quality. Commonly used metrics 
include mean square error (MSE) [42], peak signal-to-
noise ratio (PSNR) [43] and structured similarity index-
ing method (SSIM) [44], among which PSNR is the 
most common and widely used objective measurement 
method to evaluate image quality after noise removal. 
The curves of PSNR for the two models are used as the 
performance evaluation metric. Figure  11 presents a 
comparison of the learning curves for each epoch. As 
can be observed, the model without skip connection 
has greater fluctuation in learning performance and 
converges at a slower rate compared to the model with 
skip connection, which converges ore stably and faster. 
Furthermore, the model with the connection structure 
demonstrates a 10dB improvement in the corresponding 
evaluation metric throughout the entire training process. 
In conclusion, skip connection is a powerful and effective 
way to achieve stable convergence.

To further demonstrate the necessity of the skip con-
nection, we test the stripe noise removal ability of the two 
models on the validation set. As shown in Table  1, the 
stripe removal performance of the model with skip con-
nection is better than the model without skip connection 
for each test data, with the minimum PSNR improve-
ment of 6dB, demonstrating the significant impact of the 

Table 1 PSNR values of stripe noise removal results in validation set obtained by model with and without skip connection
test_1 test_2 test_3 test_4 test_5 test_6 test_7 test_8 test_9 test_10

USRL 44.45 37.00 39.93 41.30 42.64 45.75 43.62 45.19 41.02 34.33
w/o connection 33.70 26.88 25.92 35.08 28.29 34.32 34.43 34.89 27.65 24.60

Fig. 11 Effectiveness of skip connection. The PSNR of the models with 
stripe removal in each epoch are plotted. The red line for the model with 
skip connection and green line for model without skip connection

 

Fig. 10 Padding and overlapping tiles improve the performance of removing boundary stripes. (A) Stripe removal results without padding. (B) Stripe 
removal results without padding. The red boxes are for the regions influenced by stripes on the bottom z-slices as shown in the XY  view. The blue 
circles centered at locations for regions with obvious phenomenon of stripe projected on the XZ  view
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skip connection module in improving the performance of 
stripe noise removal.

4.3 Comparison with previous methods
In this section, quantitative and qualitative evaluations 
of the performance of the proposed model and existing 
methods are presented.

4.3.1 Comparison on synthetic dataset
In this study, we evaluated the effectiveness of using 
USRL for removing synthetic stripe noise in the neu-
ral data and compared it with the performance of vari-
ous algorithms, including mBrainAligner [12], SNRCNN 
[21], DNCNN [22], SNRWDNN [23], and 2D U-net 
[26]. The PSNR values of the results obtained by apply-
ing these algorithms to the validation set are presented 
in Table  2. In general, the performance of deep learn-
ing-based methods is better than that of digital filtering 
technique(mBrainAligner). The performance SNRCNN 
sometimes is lower than that of digital filtering due 
to its limited learning ability for complex and variable 

stripes. DnCNN performs better than SNRWDNN and 
SNRCNN. The stripe removal outcomes obtained by the 
U-net network frameworks outperformed all other algo-
rithms, indicated by being highlighted in bold. It is worth 
noting that in two test cases, the performance of the 3D 
USRL model was slightly lower than that of 2D U-net-
based methods. This variation can be attributed to the 
complexity of the spatial structure in certain instances. 
However, overall, the performance of USRL in stripe 
removal generally surpasses that of 2D methods.

A set of visual examples illustrating the outcomes 
achieved by different stripe removal algorithms is 
depicted in Fig.  12. Clean data (Fig.  12A) imposed with 
generated stripes gives the degraded data (Fig.  12B), 
which serves as the input of the network model. The digi-
tal filtering employed in mBrainAligner reduces image 
information that shares the same frequency as the stripes 
when eliminating irregular stripes in LSFM images. This 
reduction in structure is evident in the red boxes dis-
played in Fig.  12C, thereby diminishing the similarity 
between the cleaned data and the original clean data. 

Table 2 PSNR of the results of different stripe removal methods for the validation set
mBA* SNRCNN SNRWDNN DnCNN 2D U-net USRL

test_1 26.87 27.54 27.81 35.41 42.02 44.45
test_2 20.30 26.87 30.27 33.65 39.43 37.00
test_3 21.72 27.58 32.32 35.79 39.31 39.93
test_4 21.13 30.60 32.03 34.84 39.67 41.30
test_5 23.76 28.60 32.29 36.44 38.97 42.64
test_6 25.07 27.04 30.71 35.31 41.02 45.75
test_7 23.03 31.72 32.72 37.71 26.90 43.62
test_8 25.57 30.90 29.81 33.51 40.58 45.19
test_9 24.60 29.05 33.81 34.90 42.94 41.02
test_10 23.99 22.70 24.16 24.28 27.02 34.33
*: mBA is short for mBrainAligner

Fig. 12 Effectiveness of different striping methods in validation data. (A) Clean data. (B) Degraded data. (C) Result of notch filter. Image information in the 
red boxes is reduced. (D) Result of SNRCNN. (E) Result of SNRWDNN. (F) Result of DnCNN. (G) Result of 2D U-net. (H) Result of USRL
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SNRCNN exhibits a limited capacity for generaliza-
tion and is only capable of removing simple thin stripes, 
as illustrated in Fig.  12D. It struggles to handle stripes 
with diverse morphology and brightness. SNRWDNN 
shows good recognition of stripes; however, a closer 
examination of Fig.  12B and E reveals that its perfor-
mance degrades when faced with denser and wider 
stripes. DnCNN exhibits less effective recognition of the 
directional characteristics of stripes, resulting in nota-
ble smoothing in the vertical direction, as illustrated in 
Fig. 12F.

U-net models have shown excellent performance 
in removing stripes in both 2D and 3D domains as in 
Table 2 and Fig. 12GH. When selecting the dimensional-
ity of the model for the stripe removal task, we consid-
ered two essential factors. Firstly, LSFM captures neural 
data and stripes in a three-dimensional format. There-
fore, the inclusion of 3D spatial information is critical 
for the model to effectively learn and comprehend the 
characteristics of the stripes within the data. Secondly, 
attempting to learn and remove three-dimensional 
stripes using 2D slices can result in the loss of important 
spatial information. To ensure the preservation of spatial 
details, it is imperative to employ a three-dimensional 
approach for efficiently addressing stripe removal.

To compare the performance of 2D and 3D U-net 
models directly, an investigation into the local spatial 
information of the data and an assessment of the result-
ing structure’s continuity in the XZ  views were con-
ducted, as shown in Fig.  13A. When comparing the 
results obtained using 3D USRL for stripe removal with 
the clean data, a high level of resemblance was observed. 
The intensity consistency and continuity between adja-
cent slices were also evident. Conversely, the differences 

between the results of the 2D U-net-based stripe removal 
and the clean data were more pronounced in the XZ  
views. Notably, abrupt changes occurred between adja-
cent Z  slices as highlighted by the blue circles in Fig. 13B. 
This discrepancy can be attributed to the fact that the 2D 
U-net model lacks training with 3D spatial information. 
As a result, while the 2D U-net model may achieve simi-
lar PSNR to the 3D U-net model during validation, it det-
rimentally affects the spatial structure of the data.

4.3.2 Validations on real mouse neural data
To assess the practical effectiveness of USRL, we per-
formed evaluations on real neural data and compared 
its performance with other stripe removal methods. 
Figure  14 provides a visual comparison of the results 
obtained from various stripe removal techniques. Note 
that Table 2 indicates that deep learning-based methods 
outperform digital filtering techniques, hence our focus 
in this experiment centered exclusively on comparing 
deep learning-based methods. In Fig. 14A-E, we present 
the original data and the results of stripe removal using 
SNRCNN, SNRWDNN, DnCNN, and our USRL method, 
respectively. It is evident that SNRCNN, SNRWDNN, 
and DnCNN are capable of identifying stripes within the 
data. However, SNRCNN’s recognition capabilities are 
limited due to its shallow architecture as it can only learn 
thin stripes, as illustrated in Fig. 14B. While SNRWDNN 
exhibits strong suppression of stripes with accurate local-
ization, the visual effects of its results are poor. This is 
attributed to its unfavorable learning of stripe intensities, 
resulting in increased brightness within the stripe areas 
beyond the background brightness, as shown in Fig. 14C. 
DnCNN performs better than SNRCNN and SNRWDNN 
but still tends to smooth the vertical direction and exhibit 

Fig. 13 Comparison of spatial information between the USRL result and the 2D U-net-based stripe removal result. (A) Tri-view of an image tile. Three y 
locations are selected to be viewed in (B). (B) XZ  views of the clean data, the result of USRL, and the 2D U-net-based stripe removal result at the three 
y locations indicated in (A). The blue circles are for regions that display spatial information incoherence in the 2D U-net-based stripe removal result
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pixelated artifacts, as shown in Fig. 14D. This is primar-
ily due to its design as a Gaussian noise removal model, 
lacking directionality in stripe removal. In contrast, our 
proposed USRL method directly learns and captures 3D 
stripes of varying scales and intensities, leading to supe-
rior reconstruction results. By utilizing this approach, we 
achieve optimal performance in stripe removal while pre-
serving the quality of the image.

Hence, it can be concluded that the 3D U-net model is 
superior to the 2D U-net model in effectively removing 
3D stripes from mouse neural data.

5 Conclusion
In this study, a novel dual-resolution approach based on 
the 3D-Unet model is proposed to effectively remove 
stripes in LSFM images. Unlike existing methods, the 
proposed method USRL directly learns and addresses 
stripes in the 3D space. Moreover, the approach utilizes 
pooling operations to model stripes at various resolu-
tions. The sequential concatenation of two models at 
two resolutions boosted the usability of the removal for 

stripes with big range of width. Our method incorpo-
rates a nonlinear mapping technique to normalize data 
with high dynamic range and uneven distribution. This 
pre-processing step expanded the applicability of the 
USRL. Experimental results demonstrated the efficacy 
of our proposed method in effectively removing stripe 
noise and enhancing visual perception. Considering the 
promising outcomes, the proposed algorithm framework 
can serve as a valuable preprocessing tool to improve the 
performance of various subsequent applications such as 
neuron reconstruction, image classification, and signal 
processing [45, 46].

Currently, the limitation of the model is that the thin 
and wide stripes must be removed separately due to con-
straints posed by a restricted training dataset and lim-
ited model input data sizes. In addition, the performance 
of the stripe removal model decreases when applied 
to darker images. In the future, the research team will 
enhance the performance of the model for wide stripes 
and dark images by increasing the diversity of train-
ing data and incorporating additional normalization 

Fig. 14 Effectiveness of different striping methods in real data. (A) Neural data from OSLT_TESOS. (B) Result of SNRCNN. (C) Result of SNRWDNN. (D) 
Result of DnCNN. (E) Result of USRL
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and masking techniques. On the other hand, the pro-
posed USRL model’s utility can be extended beyond 
stripe removal in LSFM. It could be adopted to remove 
noise from various types of microscopic images, such as 
fMOST, and remove stripes from images in other fields, 
such as infrared images and medical images. USRL can 
thus facilitate biological research on a broader range of 
data.
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