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Abstract 

Epileptic seizure (ES) detection is an active research area, that aims at patient-specific ES detection with high 
accuracy from electroencephalogram (EEG) signals. The early detection of seizure is crucial for timely medical 
intervention and prevention of further injuries of the patients. This work proposes a robust deep learning framework 
called HyEpiSeiD that extracts self-trained features from the pre-processed EEG signals using a hybrid combination 
of convolutional neural network followed by two gated recurrent unit layers and performs prediction based 
on those extracted features. The proposed HyEpiSeiD framework is evaluated on two public datasets, the UCI 
Epilepsy and Mendeley datasets. The proposed HyEpiSeiD model achieved 99.01% and 97.50% classification accuracy, 
respectively, outperforming most of the state-of-the-art methods in epilepsy detection domain.
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1  Introduction
Epilepsy is an abnormal brain condition caused by 
various factors, which has affected many people all over 
the world. It is a brain disease that causes frequent and 
unpredictable disruptions to normal brain activity. It 
leads to various symptoms like uncontrollable jerking, 

unconsciousness, etc. On the other hand, epilepsy seizure 
refers to a sudden, uncontrolled, and abnormal electrical 
disturbance in the brain that leads to a wide range of 
symptoms or behaviors. According to the World Health 
Organization (WHO), yearly, over 50 million people 
over different age groups and residential backgrounds 
are affected by epilepsy [1–3] disease, out of whom 
many people die for lack of proper treatment. A report 
shows that there is a significant shortage of neurologists 
[4] who can treat this kind of disease [5–7]. Therefore, 
automating the process of epilepsy seizure detection will 
help us to aid neurologists and allied health providers in 
the treatment of such diseases.

Electroencephalographic (EEG) [8] is a method that 
aims to measure the electrical activity of different regions 
in the human brain [9]. It was first introduced by Hans 
Berger, who aimed to study the human brain. EEG is 
beneficial in the diagnosis of different kinds of brain 
disorders. During epilepsy seizures, EEG data of patients’ 
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brains behaves differently than normal brain conditions. 
A detailed study of the EEG signals of different patients 
during epilepsy seizures helps us identify the specific 
characteristics of those signals that occur only during 
epilepsy seizures. In this literature, we have proposed a 
deep learning framework that can learn features from 
different EEG data of epilepsy patients by itself and 
accurately predict the epileptic activity of the brain from 
unknown EEG data. There are many other physiological 
methods [10–12] to get information about epilepsy 
other than EEG. However, EEG provides a noninvasive 
biophysical examination method for medical experts 
to study the characteristics of epilepsy. It gives us much 
more detailed information on the epilepsy condition of 
the patients. Most of the other physiological methods 
cannot offer as much detailed information about epilepsy 
as EEG can. Therefore, our study chose EEG signal data 
of patient’s brain activity for our epilepsy detection task.

Lately, Artificial Intelligence (AI), notably machine 
learning (ML) and deep learning (DL), have drawn 
considerable attention from researchers, spurring 
contributions across various fields and demanding 
research tasks including anomaly detection [13–15], 
signal analysis [16–28], neurodevelopmental disorder 
assessment and classification focusing on autism [29–
37], neurological disorder detection and management 
[38–44], supporting the detection and management of 
the COVID-19 pandemic [45–52], elderly monitoring 
and care [53], cyber security and trust management 
[54–59], ultrasound image [60], various disease detection 
and management [61–68], smart healthcare service 
delivery [69–71], text and social media mining [72–74], 
understanding student engagement [75, 76], etc. Epilepsy 
detection problem has been tackled mainly by traditional 
machine learning approaches [77–79], which consists 
of extracting quality features followed by classifying the 
feature set whether it is epileptic. Unlike deep learning, 
it requires manual intervention of feature engineering, 
which is subject to several rounds of trial and error for 
optimal performance. The performance of these methods 
varies with different datasets.

Therefore, we have proposed a deep learning 
framework [80, 81] for robust classification of EEG 
datasets. We have chosen the deep learning paradigm 
since it eliminates the trouble of hand-crafted feature 
extraction and automatically generates all informative 
self-learned feature sets [25, 82].

We have chosen one-dimensional convolutional neural 
networks (CNN) and a special kind of recurrent neural 
network (RNN) for our study. Our model framework 
consists of 4 1D convolutional layers, a fully connected 
layer, and 2 Gated Recurrent Units (GRU) [83]. The last 
layer is a Softmax layer, which does the final prediction. 

Our model pipeline is further evaluated on two different 
public datasets, i.e. (i) UCI Epilepsy Dataset [84], 
(ii) Mendeley Dataset by Renuka Khati [85]. which 
outperforms most of the state-of-the-arts. Initially, 
we ran our model excluding the GRU component. 
Including GRU in our model pipeline has improved the 
performance metrics results by a significant margin. 
Results of both model pipelines (including and excluding 
GRU) have been compared in the Results section.

2 � Related work
Several studies focused on epileptic seizure recognition 
from EEG signals, employing different techniques and 
approaches for accurately identifying and classifying 
seizures into their respective classes. This section has 
reviewed some recent state-of-the-art methods in 
this field. The problem of EEG-based epileptic seizure 
recognition has been broadly investigated over the past 
three decades. Initially, only traditional machine learning 
algorithms have been used in epilepsy detection [77–79]. 
Later, deep learning methods have also come into the 
picture. Most deep learning state-of-the-art methods 
[86–88] give more robust classification results than 
traditional ones. Some such state-of-the-art methods are 
reviewed and summarised here.

Chandaka et  al. [89] proposed a method where three 
statistical features were computed using EEG cross-
correlation coefficients and presented them in a feature 
vector in a support vector machine(SVM). This method 
has achieved a decent accuracy of 95.96% in detecting 
epilepsy seizures from EEG data. Furthermore, Aarabi 
et  al. [90] proposed a deep learning method in which 
features are extracted from the time, frequency, 
wavelet domain and fed into a back-propagation neural 
network. This method has achieved a classification 
accuracy of 93.00%. In their proposed method, Yuan 
et  al. [91] used Hursh exponent and entropy as a set 
of non-linear features and extreme learning machine 
(ELM) classifier. This method has led to good accuracy 
in epilepsy detection. Many authors have used wavelet 
transformation to extract representative features from 
EEG data. Subasi et  al. [92] proposed another method 
where spectral components are used as an input in a 
mixture of experts. Spectral components are derived 
from wavelet transformation. This proposed method 
achieved a classification accuracy of 94.50%. Khan et al. 
[93] also have used wavelet transformation where wavelet 
coefficients at lower frequency range are processed 
to compute the representative features from EEG 
signals. This method gives around 91.80% classification 
accuracy. Kumar et al. [94] also proposed another wavelet 
transformation method where EEG signals are divided 
into five different frequency bands, then extracting a set 
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of non-linear features and further feeding into a support 
vector machine (SVM) classifier. This method has 
achieved a moderate classification accuracy of 97.50%. 
Nicolaou et al. [95] used permutation entropy as a feature 
in epilepsy detection and employed a support vector 
machine (SVM). This method gives an average of 93.28% 
classification accuracy. In addition, Song et  al. [96] also 
employed weighed permutation entropy features along 
with SVM to obtain a better classification result. This 
method also achieves around 97.25% classification 
accuracy. Some of the most recent works on this domain 
used combination of different models or statistical feature 
selection methods to ensure robust classification results.
Rohan et al. [97] uses combination of an artificial neural 
network along with a XGBoost model for classification. 
It gives robust classification accuracy around 98.26%.
Later, Shankar et al. [98] proposed a new method where 
artificial neural network model had been combined with 
principal component analysis statistical method.This 
state-of-the-art also achieved pretty well classification 
results on EEG data, around 97.55% accuracy.Similarly, 
Rahman et  al. [99] also proposed a combination of 
Support Vector Machine and Multi-layer Perceptron 
classifier.This method achieves around 97.27% accuracy, 
96.93% precision, 94.53% recall.Prakash et al. [100] tried 
something new and introduced Gated Recurrent Unit 
in his state-of-the-art.This method achieves remarkable 
around 98.84% classification accuracy.Later, Raibag 
et  al. [101] used Support Vector Machine with Radial 
Basis Function kernel for epilepsy detection.In this 
method, firstly Principal Component Analysis has been 
performed for dimensionality reduction of EEG data, 
followed by employing a Support Vector Machine with 
Radial Basis Function kernel.This method gives around 
96% classification accuracy.Osman et  al. [102] proposed 
Self-organizing map along with Radial Basis Function 
kernel neural network for epilepsy detection.In this work, 
Self-organizing map(SOM) has been used for feature 
dimensionality reduction of raw EEG data.SOM converts 
high dimensional EEG data into a two dimentional map.
Further, a Radial Basis Function neural network has 
been employed for further classification.This method 
gives around 97.47% classification accuracy. Upadhyaya 
et  al. [103] introduced BAT algorithm on optimal 
feature selection from EEG data for epilepsy detection.
This proposed method performs well and gives around 
96.78% classification accuracy. Woodbright et  al. [104] 
used convolutional neural networks and pooling layer to 
capture spatial and temporal features characteristics from 
EEG data.This method gives around 98.65% classification 
accuracy. Wang et  al. [105] introduced rule-based 
classifier for epilepsy detection.In their work, firstly, noise 
reduction and signal normalization have been performed 

for preprocessing of EEG data, followed by employing a 
rule based classifier like Random Forest.Guha et al. [106] 
used artificial neural network for epilepsy detection.

We can see that most of the state-of-the-art methods 
currently present in the epilepsy recognition domain use 
either traditional machine learning algorithms or simple 
deep learning methods.There are very few recent works 
where hybrid combination of models or statistical feature 
selection methods have been used. Most state-of-the-
art methods’ main focus relies on robust preprocessing 
of raw EEG data and not on proper model selection. 
Here, in this study, we are more focused on including a 
correct combination of models in our model pipeline so 
that it can give optimal results on any dataset. Since EEG 
signal data is a special type of time series data, we have 
decided to include a 1D convolutional neural network 
in our model pipeline. We know that RNN models 
generally perform well on sequential data. Since EEG 
signal data is a special sequential data type, we have also 
included a RNN in our model architecture. After several 
experiments, we have developed a hybrid CNN+GRU 
model that can give robust classification results on any 
EEG dataset.We have benchmarked the performance 
of our model framework with some of the most recent 
state-of-the-arts.

2.1 � Motivation behind using this framework
In our model framework, we have used a hybrid 1D-CNN 
and GRU combination for epilepsy detection from EEG 
data. Although, there are many other approaches that we 
had considered to tackle this problem, but at the end, we 
had decided to move with this framework.Most of the 
works that had been carried out in this field of epilepsy 
detection, mostly revolves around traditional machine 
learning algorithms, wavelet transformations,statistical 
feature analysis etc.Here, we have come around 
something out of the box methodologies which gives 
much more robust classification results. Moreover, 
there are many state-of-the arts which were evaluated 
only on one dataset.Although, those state-of-the-arts 
perform very well on that particular dataset, there is 
still a question on generalized behavior of those state-
of-the-arts. Therefore, we have decided to evaluate our 
model framework on more than one dataset to ensure the 
acceptability of our model framework.

We know that EEG data is a special kind of time-series 
data.Since, we are working on time-series data, we have 
come up with an idea to use such models which gives 
better classification results with time-series data. We 
have experimented with several such models and finally, 
have decided to move with 1D CNN model as a part of 
our overall model framework.
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We have experimented with many models and later 
decided to use a hybrid combination of those models 
which had been performing very well on the datasets. 
Finally, we have come up with our model framework, 
named as HyEpiSeiD, a hybrid combination of CNN and 
GRU. More detail implementation of our model pipeline 
is described in Sect. 3.

3 � Proposed HyEpiSeiD framework
This section provides a detailed overview of our model 
pipeline for epilepsy detection from EEG signal data. Fig-
ure  1 gives an abstract overview of the different stages 
of our model pipeline and how each stage interacts with 
each other.

Our HyEpiSeiD model pipeline architecture consists of 
the following stages.

•	 Feeding the time series data in four consecutive 1D 
CNN.

•	 Self-learned features in 1D convolutional layers are 
then passed through a pooling layer.

•	 Further, a dropout layer is added after the pooling 
layer to prevent redundant features from propagating 
further.

•	 Now, to obtain better accuracy in our datasets, we 
have introduced GRU layers, a special type of RNN. 
It further improves our model’s performance in our 
model pipeline.

•	 Finally, a Softmax function is applied at the last layer 
in our model pipeline for final classification.

In our study, we have performed two types of 
classification: (i) 2-class classification, where we aim 
to check whether a seizure is epileptic, and (ii) 5-class 
classification, where the non-epileptic EEG signals are 
also further divided into different classes, leading the 
number to the classes becoming more than 2. We aim to 
classify all EEG signals into their respective classes.

Here, the datasets used in our study are already pre-
processed and converted to time-series data. We are 
directly feeding them in our model architecture.

The stages of our model pipeline mentioned above are 
explained in detail in the following subsections.

3.1 � Feed time series data into 1D convolution
In our study, the datasets we have used are already pre-
processed and converted into time-series data. We have 
used those time-series data directly as input into our 
model pipeline. The first stage of our model architecture 
consists of four 1D CNNs. These 1D CNNs extract self-
learning features from the input vector. These self-learning 
features are further used for accurate classification. The 
architectures of four 1D CNNs used in our study are 
explained below in subsections.

We have used four 1D CNNs in our model pipeline, all 
with different architectures, shown in Fig.  2. The input 
vector of the time-series dataset is directly fed into the 
first 1D CNN of our model architecture. The first 1D 
CNN consists of 64 kernels, each with a size of 3 × 1. This 
convolutional layer is followed by a Rectified Linear Unit 
(ReLU) activation function, which introduces non-linearity 
to our model pipeline. The mathematical definition of our 
1D convolutional network is explained below.

where, xl−1
i  represents the ith feature mapping inside 

the model’s (l-1) convolutional layer. ylj represents the 
jth feature mapping inside the model’s lth convolutional 
layer, Nl−1 represents the total number of feature maps in 
(l − 1)th layer, wl

i,j denotes the weight values of convolu-
tional kernels used in the model, blj denotes the bias of jth 
feature mapping inside model’s lth layer. In the equation 
(1), conv1D() represents one-dimensional convolutional 
operation on trainable parameters. Finally, ReLU repre-
sents the ReLU operation, which introduces non-linearity 
in our model. The mathematical definition of the ReLU 
activation function is defined as follows.

The ReLU function only activates when the input signal 
value is greater than 0; otherwise, it returns 0. Thus, it 
introduces non-linearity in our model and allows us to 

(1)ylj = ReLU





Nl−1
�

i=1

�

conv1D
�

wl
i,j, x

l−1
i

�

+ blj

�





(2)ReLU(x) =

{

0 if x ≤ 0,
x if x > 0.

Fig. 1  Pictorial Representation of different phases of our model pipeline for epilepsy seizure detection from raw EEG data
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understand the dataset’s non-linear patterns. After the 
convolution operation, it outputs 64 feature maps, which 
are again passed to the next CNN layer.

The second 1D convolutional layer takes these 64 
feature maps as input and performs the feature learning 
process again as the previous convolution layer. The 
second 1D convolution layer consists of 64 kernels, each 
with a size of 3 × 1. As before, the CNN layer is followed 
by a ReLU activation function. This layer outputs 64 
feature maps, further fed into the next convolutional 
layer.

The third convolutional layer takes 64 feature maps 
as input from the previous layer and performs the same 
operation as the previous one. This 1D CNN layer 
consists of 64 kernels, each kernel of size 3 × 1. This layer 
extracts useful features from input and outputs 64 feature 
maps. As with other previous CNN layers, this CNN 
layer is also followed by a ReLU activation function. 
This ReLU portion helps to identify non-linear patterns 
of data, which leads to more accurate classification. The 
outputted feature maps are again fed into the next CNN 
layer.

The fourth CNN layer consists of 64 kernels, each with 
a size of 3 × 1. This is the last convolution layer used in our 
model framework. It takes 64 feature maps as input and 
outputs 64 feature maps. This layer is also followed by a 
ReLU activation function.

These are the model architectures of all 1D 
convolutional layers used in our framework. Using four 
1D CNNs leads our model to extract the most insightful 
features, training them properly and propagating them 
throughout the rest of the layers of our model. Since we 

have converted our dataset into time-series data, we have 
decided to use 1D CNN since it generally gives good 
accuracy performance measures on time-series data. 
Finally, 64 feature maps, which the last CNN layers have 
outputted, are passed to the pooling layer for further 
operation.

3.2 � Feed CNN layer output into pooling layer
Finally, after four 1D CNN layers, the features are fed 
into the pooling layer. In our model framework, we have 
only used one pooling layer, which uses the Max pooling 
method. The 64 features from the last one-dimensional 
convolutional layer are directly passed into this pooling 
layer. The mathematical explanation of max pooling can 
be defined as below.

where, pai  denotes the value carried by a th neuron inside 
i th feature obtained from the previous layer after the max 
pooling operation. pa1i  denotes the value carried by a1 th 
neuron inside i th feature. max() denotes the maximum 
neuron value within the pooling window. Here, s is the 
size of the pooling window. In our model, the size of the 
pooling window is set to 2, and the stride of the pooling 
window is also set to 2. This layer reduces the number 
of training parameters of the features, accelerates 
the training process and reduces the probability of 
overfitting.

After the Maxpooling operation, 64 feature mappings 
are outputted with reduced dimensions and further 
propagated throughout the model pipeline.

(3)pai = max
(

p
a1
i : a1 ≤ a1 < a1 + s

)

Fig. 2  Detailed Architecture of our proposed HyEpiSeiD framework for Epilepsy seizure detection from EEG signals
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3.3 � Feed output features into a fully connected layer 
and dropout layer

After Maxpooling, we obtain 64 highly insightful feature 
maps as output. These output feature maps are passed 
through a fully connected layer (FC) followed by a 
dropout layer. The FC layer has 128 nodes, each with a 
ReLU activation function. All the nodes forward the 
input to the next layer. This FC layer is followed by a 
dropout layer where the dropout rate is 50%. This means 
that half of the features will not be propagated further 
and will be discarded. This layer maintains the number 
of quality features in the model and the discard of 
redundant features. It reduces the chances of overfitting 
problems in the model. After the dropout layer, half of 
the total features are further propagated to the next layer.

3.4 � Feed output features into gated recurrent units
After the dropout layer, half of the total features are fed 
into two GRUs. We have integrated RNN [107] with 
CNN in our model framework. Since RNN and CNN 
both give better performance results with time-series 
data, we have integrated them to optimise their perfor-
mance. Here, we have used a special type of RNN, i.e. 
GRU. Two layers of GRU have been used next to the 
dropout layer in our model framework. The architecture 
of a GRU network is presented in Fig.  3. The first GRU 
layer consists of 64 nodes and returns a full sequence of 
outputs for each time stamp for our time series dataset. 
The second GRU layer has 128 nodes and also returns 
a full sequence of outputs for each time stamp. GRU is 
a special type of RNN that aims to perform better on 
sequential data, text and time-series data classification. 
We know that RNN can store the previously generated 
output in its hidden state and again use those stored out-
puts as input, allowing the network to capture sequential 
dependencies. Here, we have used GRU, a special type of 
RNN which uses gating mechanisms to perform different 
state operations inside the network selectively at different 
timestamps. These gating mechanisms control the flow 
of information in and out of the network. The GRU con-
sists of three gating mechanisms: (i) reset gate, (ii) update 
gate, and (iii) current memory gate.

The reset gate checks how much of the past data, 
stored in the hidden state, needs to be discarded in the 
next iteration. This gate discards all the unnecessary past 
information stored in the hidden state memory.

The update gate checks how much past data needs to 
be reused in the next iteration. It also updates the hidden 
state with new input data. This gate finally determines 
the output of GRU.

Current memory gate is a subpart of the reset gate. This 
gate transforms the original input into zero mean non-
linear input.

The mathematical representation for each gate of GRU 
is given below.

3.4.1 � Reset gate

where, rt denotes the state after the reset gate operation, 
wr denotes the learnable weight matrix, xt represents the 
input at the timestamp t and ht−1 represents the hidden 
state value at timestamp (t − 1).

3.4.2 � Update gate

where, zt denotes the state after the update gate 
operation, wz denotes the learnable weight matrix, xt 
represents the input value at the timestamp t and ht−1 
represents the hidden state value at timestamp (t − 1).

3.4.3 � Candidate hidden state

where, ht−1 represents the candidate’s hidden state. wh 
represents the learnable weight matrix, xt represents the 
input at timestamp t, ht−1 represents the hidden state at 
timestamp (t − 1) and rt represents the state after reset 
gate operation.

(4)rt = σ(wr ∗ (ht−1, xt))

(5)zt = σ(wz ∗ (ht−1, xt))

(6)ht1 = tanh (wh ∗ (rt ∗ ht−1, xt))

Fig. 3  General architecture of an GRU recurrent neural network.The boxes denote nodes, the upward arrow indicate the previous input 
and the forward arrow indicates passing the output to the next node
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3.4.4 � Hidden state

where, ht represents the candidate hidden state, ht−1 
represents the hidden state at the timestamp (t − 1) , and 
zt represents the state after the update gate operation. 
In all the above equations, sig() denotes the sigmoid 
activation function and tanh() denotes the hyperbolic 
tangent activation function.

3.5 � Final classification
The outputs obtained from two GRU layers are further 
passed into three fully connected layers and a dropout 
layer, followed by a softmax activation function that 
performs the final classification. The architectures of all 
FC layers used in the final layer of our model framework 
are described in the following subsections. The first FC 
layer consists of 64 nodes, each with a ReLU activation 
function. This layer forwards the features to the next FC 
layer. The second FC layer also consists of 64 nodes, each 
with ReLU as its activation function. This layer takes 
input from the previous FC layer and forwards it to the 
next FC layer. The third and final FC layer consists of 128 
nodes with a ReLU activation function. From this layer, 
128 feature maps are fed into a dropout layer where 
50% of these features are discarded to avoid overfitting 
problems. Finally, the rest of the features are passed into 
Softmax activation function, which performs the final 
classification.

4 � Experimental design
Here, we explain the experimental design of our pipeline, 
the datasets that we used to evaluate our proposed model 
framework, and also the performance results we obtained 
on those datasets while evaluating our model. Finally, 
we list some comparisons of our model framework with 
existing state-of-the-art methods in epilepsy detection.

4.1 � Datasets
Our proposed HyEpiSeiD framework is evaluated on two 
publicly available datasets. The two datasets used in our 
model evaluation are listed below. 

1.	 UCI Epilepsy dataset
2.	 Mendeley dataset by Renuka Khati

4.1.1 � UCI Epilepsy dataset
This dataset consists of 5 folders, each containing 100 
files. Each file consists of the recording of the brain 
activity of one person. The brain activity for each person 
has been recorded for 23.6  s. These raw data files have 

(7)ht = (1− zt) ∗ ht−1 + zt ∗ ht1

already been pre-processed for our study. Each person’s 
brain activity data has been sampled into 4097 data 
points. The data points are further divided for each 
individual second timestamp. Therefore, for each second 
timestamp, only 178 data points are present. Hence, in 
the already pre-processed.csv file, there are 178 columns, 
each representing a particular feature value of EEG data 
at a specific timestamp. This dataset has five classes in 
total. The meaning of each class label is mentioned below.

Class 5—Label 5 indicates that the person’s eyes are 
open, meaning the patient had their eyes open when the 
brain’s EEG signal was being recorded.

Class 4—Label 4 indicates that the person’s eyes are 
closed, which means the patient had their eyes closed 
when the EEG signal had been recorded.

Class 3—Label 3 indicates that the region of the 
tumour in the brain was identified after recording the 
EEG activity from the healthy brain area.

Class 2—Label 2 indicates that the EEG signal was 
recorded from where the tumour was located.

Class 1—This label indicates the recording of seizure 
activity.

Class-wise data distribution in this UCI Epilepsy 
dataset is tabulated in Table 1. Here, we have performed 
two kinds of classification:

2-class classification—In our UCI epilepsy dataset, 
only class 1 represents epilepsy seizure, and the rest do 
not. Therefore, in the 2-class classification, we have only 
classified whether a set of data points at a particular 
timestamp represents an epileptic seizure. Hence, classes 
2,3,4,5 of the original dataset are merged here and 
transformed into one class. Class-wise distribution of 
data in this UCI Epilepsy dataset for 2 class classification 
is tabulated in Table 1.

5-class classification—Here, the number of classes 
for the classification task is 5. We are not only limited 
to performing the classification of EEG signals into 
epileptic and non-epileptic. Here, non-epileptic EEG 
signal data are further classified into four classes. Class-
wise distribution of data in this UCI Epilepsy dataset for 
5-class classification is tabulated in Table 2.

Table 1  Class-wise distribution of the datasets we have 
considered for evaluating our model’s performance for 2 class 
classifications

Dataset Class Label No. of samples

UCI Epilepsy 0 Epileptic 2300

1 Non-Epileptic 9200

Mendeley dataset 
by Renuka Khati

0 Epileptic 100

1 Non-Epileptic 100
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4.1.2 � Mendeley dataset by renuka khati
This dataset consists of 3 folders named (i) set b, (ii) set d, 
(iii) set e. Each folder contains text (.txt) files containing 
EEG signal time series data for different persons. Set b 
folder contains all those normal EEG signal data. Set d 
folder contains all preictal EEG signal data. Set e contains 
all epileptic EEG signal time-series data. This dataset 
has been pre-processed and converted into a comma-
separated value (CSV) file. Each CSV file row gives the 
data point at a particular timestamp. This pre-processed 
CSV contains 11 features. Unlike the UCI Epilepsy 
dataset, there are only two classes in the pre-processed 
version of the Mendeley dataset. Therefore, we have only 
performed 2-way classification for this dataset.

4.2 � Hyperparameters values and train‑test split details 
of our model framework

Our proposed HyEpiSeiD model pipeline has been 
implemented using the TensorFlow toolbox [108] in 
Python. UCI Epilepsy dataset is split into an 80:20 train-
test split ratio for training. Our model has been trained 
for 20 epochs in this dataset with a mini-batch descent 
optimiser and a learning rate of 0.001. The batch size is 
set here as 32.

Like the UCI Epilepsy dataset, Renuka Khati’s 
Mendeley dataset is also split into an 80:20 train-test 
ratio. Our model has been trained for 20 epochs in 
this dataset with a mini-batch descent optimiser and a 
learning rate of 0.001. The batch size is set here as 32.

4.3 � Performance evaluation metrics
Here, four metrics are used to determine the evaluation 
performance of our model framework on these datasets. 
These metrics are (i) Accuracy, (ii) Precision, (iii) 
Recall, and (iv) F1-score, respectively. Mathematical 
representations of these evaluation metrics are 
mentioned below.

(8)Precision =
Cii

∑N
j=1 Cji

× 100

where, N denotes the total number of classes in the 
dataset, and Cij denotes the matching value of ith 
datapoint, which belongs to the jth class. We have 
evaluated all these metric values of our proposed model 
on these datasets.

5 � Results and discussion
We have evaluated our proposed HyEpiSeiD framework 
on two publicly available datasets, namely UCI Epilepsy 
and the Mendeley dataset by Renuka Khati. We have 
calculated all of the evaluation metrics, i.e., accuracy, 
precision, recall, and f1-score on these datasets. Later, 
we compared these results with some existing state-of-
the-art results. The results we have obtained on these 
two datasets are briefly explained in the following two 
sections.

5.1 � Results on UCI epilepsy dataset
Our HyEpiSeiD model framework has been run on 
this dataset for 30 epochs with an 80:20 train-test split 
ratio. We have performed two types of classification 
as mentioned in the section  4.1.1 in this dataset. The 
evaluation results for both kinds of classification are 
tabulated in Table 3.

In our model framework, we have actually integrated 
GRU with a 1D convolutional neural network. To bet-
ter understand the effect of using GRU and whether it is 
improving the model’s performance, we have also com-
pared the results of our model with GRU and without 
GRU. It means that we once evaluated our model on this 

(9)Accuracy =

∑N
i=1 Cii

∑N
i=1

∑N
j=1 Cij

× 100

(10)Recall =
Cii

∑N
j=1 Cij

× 100

(11)F1-score =
2 · Precision · Recall

Precision+ Recall
× 100

Table 2  Class-wise distribution of the UCI Epilepsy dataset we 
have considered for evaluating our model’s performance for 
5-class classification

Dataset Class Label No. of samples

1 Epileptic 2300

2 tumour 2300

UCI Epilepsy 3 tumour Healthy 2300

4 Eyes Closed 2300

5 Eyes Opened 2300

Table 3  Classification results (considering 2-class and 5-class 
labels) of our proposed HyEpiSeiD framework in UCI Epilepsy 
dataset

Dataset Metric Performance

2-Class 5-Class

UCI Accuracy (%) 99.01 78.74

Precision (%) 99.01 79.38

Recall (%) 99.04 78.73

F1-Score (%) 99.02 78.52
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dataset using the GRU layers along with 1D CNN layers, 
and later, we removed the GRU layer from our model 
pipeline and again evaluated the model in the same 
dataset.

The results obtained from both cases are compared in 
Table 4. While evaluating our model, we have split 20% of 
our total training data as validation data. We can see that, 
for 2-class classification, our model framework shows 
99.05% accuracy on training data and 98.87% accuracy 
on validation data. Finally, our proposed framework 
shows 99.01% accuracy, 99.01% precision, 99.04% recall 
and 99.02% f1-score on test data in 2-class classification. 
The confusion matrix gives the overall performance of 
our proposed framework on the dataset by showing the 
model’s true positive, true negative, false positive and 
false negative values. For both classifications, either 
2-class or 5-class, we can observe that the true positive 
and true negative values are very high, leading our model 
framework to give robust classification results regarding 
every possible evaluation metric, i.e. precision, recall, 
f1-score, and accuracy.

Figure  4 shows the confusion matrix obtained in 
2-class classification, whereas Fig. 5 shows the confusion 
matrix obtained in 5-class classification. Similarly, for 
5-class classification, we observe that training data shows 
79.57% accuracy and the validation data shows 77.39% 

accuracy. In the end, our framework gives 78.74% accu-
racy, 79.34% precision, 78.73% recall, and 78.52% f1-score 
value on the test dataset. Figure 6 shows the loss versus 
epoch and accuracy versus epoch curves during train-
ing for 2-class classification on the UCI Epilepsy dataset. 
Figure 7 shows the loss vs epoch and accuracy vs epoch 
curve during training in 5-class classification. We observe 
that the training curves in Figs. 6 and 7 converge prop-
erly with increasing epochs. Therefore, we conclude that 
our trained model is free from overfitting issues in both 
classifications.

We have also conducted an experiment to analyze 
whether the GRU layers give any extra performance ben-
efits. Therefore, we have removed the GRU layers from 
our model pipeline and again evaluated our model using 
the same dataset. The comparisons of both results are 
tabulated in Table  4. We observe that all of the perfor-
mance metrics have improved significantly while GRU 
layers are added. Without GRU layers, our model pipe-
line gives 98.00% accuracy in 2-class classification and 
73.13% accuracy in 5-class classification. Therefore, we 
can see that there is a significant improvement in classifi-
cation results when GRU layers are used.

Table 4  2-class and 5-class classification comparison of our HyEpiSeiD model pipeline with GRU and without GRU for the UCI Epilepsy 
dataset

Class Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

2-class With GRU​ 99.01 99.01 99.04 99.02

Without GRU​ 98.00 97.91 98.00 97.98

5-class With GRU​ 78.34 79.38 78.73 78.52

Without GRU​ 73.13 73.26 73.13 72.79

Fig. 4  Confusion matrix of our proposed HyEpiSeiD model on UCI 
Epilepsy dataset for 2-class classification problem

Fig. 5  Confusion matrix of our proposed HyEpiSeiD model on UCI 
Epilepsy dataset for 5-class classification problem



Page 10 of 16Bhadra et al. Brain Informatics           (2024) 11:21 

Figures  8 and  9 show class-wise evaluation metric 
scores considering 2-class and 5-class classification 
on the UCI Epilepsy dataset, respectively. We observe 
that for a 2-class classification, all the metric values, i.e. 

precision, recall, f1-score, and accuracy for each indi-
vidual epileptic class, are around 98% to 99%. It means, 
our HyEpiSeiD model is not biased towards classifying 
a particular class. On the other hand, in case of 5-class 
classification, the metric values of class ’1’ are the high-
est. It means that our model can predict class ’1’ most 
accurately. But, the metric values for the remaining 

Fig. 6  loss vs epoch and accuracy vs epoch curve of our proposed HyEpiSeiD model for UCI Epilepsy dataset in 2-class classification problem

Fig. 7  Loss vs epoch and accuracy vs epoch curve of our proposed HyEpiSeiD model on UCI Epilepsy dataset for 5-class classification problem

Fig. 8  Bar chart showing the class-wise metric scores of our 
proposed HyEpiSeiD model for 2-class classification on UCI Epilepsy 
dataset

Fig. 9  Bar chart showing the class-wise metric scores of our 
proposed HyEpiSeiD model for 5-class classification on UCI Epilepsy 
dataset
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epileptic classes ’2’, ’3’, ’4’ and ’5’ are decent but less by 
a significant margin than class ’1’. Finally, we can con-
clude that our model framework performs very well on 
this dataset.

5.1.1 � Results on mendeley dataset (Renuka Khati)
We have also evaluated our proposed HyEpiSeiD model 
pipeline on the Mendeley dataset (Renuka Khati). For 
this dataset, we split it into an 80: 20 train-test ratio and 
trained our model for 20 epochs. The batch size has been 
set to 32. In our case, 20% of the total training data is 
kept for validation. Unlike the UCI Epilepsy dataset, we 
have only performed 2-class classification here since the 
dataset consists of only 2 classes: healthy and seizures. 
Therefore, 5-class classification is not possible here.

We observe that our model achieves 99.22% training 
accuracy and 99.97% validation accuracy. Finally, our 
model gives 97.50% accuracy, 97.61% precision, 97.5% 
recall, and 97.49% f1-score on the test dataset. The evalu-
ation metric results which we have obtained in this data-
set are shown in Table 5. The confusion matrix gives the 
overall performance of our proposed framework on the 
dataset by showing the model’s true positive, true nega-
tive, false positive and false negative values. In our obser-
vation, the counts of positive and true negative entries 
are much higher than those of false positive and false 
negative entries. It indicates that our model performs 
very well regarding all possible evaluation metrics i.e. 
precision, recall, f1-score, accuracy. Figure 10 shows the 
confusion matrix we obtained for our proposed model 
evaluation on the Mendeley dataset. We also observe that 
both training curves, i.e. loss vs epoch and accuracy vs 
epoch in Fig. 11 converge properly at the end. This shows 
that the model is free from overfitting issues.

Like the UCI Epilepsy dataset, we have also conducted 
the same experiment to identify whether the GRU lay-
ers significantly enhance our model’s performance in the 
Mendeley dataset (Renuka Khati). We have first evalu-
ated our model, including the GRU layers on the data-
set. Then, we removed the GRU layers from our model 
pipeline and again evaluated them on the same dataset. 
Lastly, we have made a comparison between these two 
evaluation results. The comparison is shown in Table 6. 

We can see that GRU layers improve the model’s accu-
racy by 1.1%, precision by 1%, recall by 1.12% and 
f1-score by 0.98%. We can claim that GRU layers have 
improved our model’s performance for both datasets. 
Finally, we have performed a class-wise metric evalua-
tion on the Mendeley dataset. A visual representation of 
these class-wise evaluation metric values for the Mende-
ley dataset is shown in Fig. 12. We can see that the values 
of each evaluation metric, i.e. precision, recall, accuracy, 
and f1-score for each individual class, are in the range 
from 95% to 100%. Each metric value is very high, indi-
cating that the trained model has no strong bias towards 
classifying a particular class. Therefore, we can claim that 
our proposed HyEpiSeiD model is robust and will give 
high classification accuracy for any unknown dataset.

5.2 � Comparison with existing methods
After evaluating our HyEpiSeiD model framework 
against two publicly available datasets, i.e., the UCI 
Epilepsy dataset and the Mendeley dataset (Renuka 
Khati), we have compared our model framework with 
some state-of-the-art methods which are used in epilepsy 
recognition tasks. Here, we have compared our proposed 
model with popular existing methods in Tables 7 and 8.

In Table 7, we have included only those articles where 
a 2-class classification has been performed on the UCI 
Epilepsy dataset. We have only compared the 2-class 
classification results of our model with theirs. Similarly, 
in Table  8, we have included only those articles where 
5-class classification has been performed on the UCI Epi-
lepsy dataset. We have only compared the 5-class classi-
fication results of our model with theirs. The comparison 

Table 5  2-class classification results of our proposed HyEpiSeiD 
framework on Mendeley dataset

Dataset Evaluation metric Value

Accuracy (%) 97.50

Precision (%) 97.61

Mendeley dataset Recall (%) 97.50

F1-score (%) 97.49

Fig. 10  Confusion matrix of our proposed HyEpiSeiD model 
on Mendeley dataset for 2-class classification
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values for GoogleNet, AlexNet, and VGG16 are taken 
from [115].

Unfortunately, there is no such kind of epilepsy detection 
work currently available on the Mendeley dataset(Renuka 
Khati). Therefore, we could not put any comparison table 
for the Mendeley dataset like the UCI Epilepsy dataset. As 
a recent work on the Mendeley dataset, we can say that our 
model has performed pretty well, giving a decent 97.50% 
classification accuracy on this dataset.

6 � Conclusion
In this study, we have proposed a 1D CNN-GRU hybrid 
deep learning methodology, named as HyEpiSeiD, for auto-
matically recognising epilepsy seizures from EEG data. We 
have evaluated our proposed HyEpiSeiD framework on (i) 
the UCI Epilepsy dataset and (ii) the Mendeley dataset by 
Renuka Khati. Our proposed hybrid model gives an over-
all 99.01% accuracy, 99.01% precision, 99.04% recall and 
99.02% f1-score for the 2-class classification of the UCI 
dataset. Similarly, it also gives 78.34% accuracy, 79.38% pre-
cision, 78.73% recall, and 78.52% f1-score while considering 
the 5-class classification of the UCI dataset. Therefore, we 
can conclude that our proposed hybrid model framework 
has given robust classification results on the UCI data-
set. Upon analysing the individual class-wise evaluation 
metric scores, it can be said that our model is not biased 
towards classifying a particular class. Like the UCI data-
set, our proposed hybrid model has also been evaluated on 
the Mendeley dataset as well. It gives 97.50% classification 
accuracy on the Mendeley dataset. We can see that all indi-
vidual class-wise evaluation metric scores for the Mendeley 
dataset are also very high. Therefore, our model is also not 
biased towards classifying a particular class. Upon observ-
ing the evaluation results obtained from these two datasets, 
we can conclude that our model framework has a robust 
classification ability for any general epilepsy dataset. More-
over, it has no strong bias towards classifying any particu-
lar class, making it a perfect model framework for epilepsy 
classification. For the betterment of the research commu-
nity, the source code of our proposed model is made pub-
lic, which can be downloaded from https://​github.​com/​
rajco​dex/​Epile​psy-​Detec​tion. In this study, we focus more 
on selecting a combination of models rather than the pre-
processing procedure of raw EEG signal data.The datasets 
that have been used in this study, are already pre-processed.
Therefore, in future, we aim work on a robust pre-process-
ing framework for raw EEG signals. A robust and optimal 
pre-processing methodology can help us to extract proper 

Fig. 11  Loss vs epoch and accuracy vs epoch curve of our proposed HyEpiSeiD model on Mendeley dataset for 2-class classification

Table 6  2-class classification comparison of our HyEpiSeiD 
model pipeline with GRU and without GRU on Mendeley dataset

Model Accuracy Precision Recall F1-score

With GRU​ 97.50% 97.61% 97.50% 97.49%

Without GRU​ 95.40% 96.61% 96.42% 96.51%

Fig. 12  Bar chart of class-wise metric scores of our proposed 
HyEpiSeiD model for 2-class classification on Mendeley dataset

https://github.com/rajcodex/Epilepsy-Detection
https://github.com/rajcodex/Epilepsy-Detection
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features which can be further used in any model for epi-
lepsy classification task.We can further explore recent 
state-of-the-arts computer vision models in epilepsy deec-
tion tasks.In that case, first, we have to pre-process EEG 
time-series data into images followed by employing a com-
puter vision model.
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