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Abstract 

The flicker stimulus is a visual stimulus of intermittent illumination. A flicker stimulus can appear flickering or steady 
to a human subject, depending on the physical parameters associated with the stimulus. When the flickering light 
appears steady, flicker fusion is said to have occurred. This work aims to bridge the gap between the psychophysics 
of flicker fusion and the electrophysiology associated with flicker stimulus through a Deep Learning based computa-
tional model of flicker perception. Convolutional Recurrent Neural Networks (CRNNs) were trained with psychophysics 
data of flicker stimulus obtained from a human subject. We claim that many of the reported features of electrophysiol-
ogy of the flicker stimulus, including the presence of fundamentals and harmonics of the stimulus, can be explained 
as the result of a temporal convolution operation on the flicker stimulus. We further show that the convolution 
layer output of a CRNN trained with psychophysics data is more responsive to specific frequencies as in human EEG 
response to flicker, and the convolution layer of a trained CRNN can give a nearly sinusoidal output for 10 hertz flicker 
stimulus as reported for some human subjects.
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1  Introduction
Human visual psychophysics is a field of research that 
employs specialized methods, generating several estab-
lished findings [1]. The flicker stimulus, which is a 
stimulus with intermittent illumination, is one such stim-
ulus used in visual psychophysics. Under a given circum-
stance, a flicker stimulus may appear steady or flickering 
to a human subject depending on a number of param-
eters like size, shape, luminance, color composition, and 
the temporal waveform of the stimulus [2]. When a flick-
ering stimulus no longer appears flickering but appears 

steady, the flicker is said to be fused, or flicker fusion has 
occurred. The analysis of perceptual processes by study-
ing the effect on a subject’s experience or behavior by 
systematically varying the properties of a stimulus along 
one or more physical dimensions is termed psychophys-
ics [3]. The psychophysics of flicker perception has been 
studied for the last two and a half centuries [4]. A related 
domain in the study of flicker perception is the electro-
physiological signals of the cortical activities induced 
by the flicker stimulus. The electrophysiological signals 
can be the scalp EEG of humans or invasive recordings 
from the cortex of animals like cats [5, 6]. Although 
pyschophysics and EEG use completely different meth-
odologies to explain the processing of signals within the 
brain, there have not been many attempts to integrate, 
combine, or compliment these two behavioral (macro) 
and electrophysiological (micro) viewpoints in order to 
better understand brain signal processing. So far, there 
does not seem to be much of a relationship between the 
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electrophysiology and psychophysics of flicker stimuli 
[7]. The present work attempts to bridge this gap between 
the two domains through a Deep Neural Network (DNN) 
based computational model of flicker fusion that pro-
vides an explanation for some important features of the 
electrophysiological response to flicker stimuli. We have 
shown that the intermediate layers of the DNN  may 
show features of the electrophysiological response to the 
stimulus.

1.1 � Psychophysics of flicker perception
The flicker stimuli commonly used in psychophysics 
experiments on flicker perception are those of sinu-
soidal and rectangular waveforms [4]. For a sinusodial 
flicker, the intensity I(t) at time t is given by equation 
I(t) = I(1+msin(ωt)) , where 0 < m < 1 and ω = 2π f  
where f is the frequency of the stimulus [4]. The flicker 
stimulus of rectangular waveforms consists of photic 
pulses occurring in regular on-off patterns. A flicker 
stimulus of a rectangular waveform can be expressed by 
three parameters, which are its intensity or luminance, 
its frequency, and Pulse to Cycle Fraction(PCF) [8]. 
Pulse to Cycle Fraction is the ratio of time duration of 
a pulse to that of the total cycle. PCF is same duty cycle 
of a rectangular signal [8]. A rectangular waveform 
with PCF 1

2
 will be a square wave stimulus. A diagram-

matic representation of PCF is in Fig. 1. An important 
numerical parameter in the psychophysics of flicker 
fusion is the Critical Flicker Frequency(CFF). Critical 
flicker frequency is the number of photic pulses per 
second needed to eliminate the sensation of flicker [8].

1.2 � Electrophysiology of flicker perception
The electrophysiological response to flicker stimuli at 
areas 17 and 18 of the cat cortex has been recorded as 

Multi Unit Activities(MUAs) and Local Field Potentials 
(LFP) by Rager and Singer [6]. The anesthesized cats 
retinas were exposed to flicker stimuli in screen in front 
of them [6]. Both LFPs and MUAs thus recorded for 
a flicker stimulus of a particular frequency shows the 
fundamental amplitude associated with the flicker 
stimulus as well as its harmonics[6]. In contrast to mul-
tiunit activities components of lower frequencies were 
present in the LFPs though there is no evidence that 
they could be subharmonics [6]. Herrmann did a study 
with ten subjects in which the subjects were exposed 
to flicker stimulus using specially designed goggles, 
and their EEG responses to flicker were measured. The 
diagrammatic representation of the light pulse by Her-
rmann showed square waves. The human EEG response 
to flicker stimulus with ten subjects shows the funda-
mental, hamonics as well as the first subharmonic of 
the flicker stimulus [5]. The EEG response also shows 
resonances for stimuli around 10, 20, 40 and 80  hertz 
[5]. The oscillations are evoked up  to 90 hertz and are 
evoked even when there is no conscious perception of 
flicker [5]. The average of the fundamental frequency 
of the evoked EEG response in ten subjects showed a 
clear resonance for 10 hertz flicker stimulus [5]. van der 
Tweel had detected a clear sinusoidal response near 10 
hertz stimulus in some subjects [7]. In another study 
with ten subjects that used both square and sinusoi-
dal flicker, the subharmonic frequencies were hardly 
detectable in occipital electrodes but were instead 
detected in parietal electrodes [9]. In the same study, 
subharmonics were detected only in eight of the ten 
subjects [9].

1.3 � Prevailing explanations for EEG response to flicker 
stimulus

There are two hypotheses on the origin of Steady State 
Visually Evoked Potentials (SSVEPs) to flicker stimulus: 
the entrainment of brain oscillators and the superposi-
tion of Event Related Potentials(ERPS) [10–12]. It has 
been assumed by many authors that the harmonics and 
subharmonics in electrophysiological responses to flicker 
are generated by nonlinearities in the visual system [9]. 
The source of these nonlinearities has never been dem-
onstrated conclusively [9]. Previous modeling of EEG 
response to human stimulus involved feeding periodic 
signals to models of cortex like the corticothlamic model 
and the  neural mass model [9, 13–15]. Labecki et  al. 
have shown that harmonics and subharmonic responses 
can be generated by feeding the representation of flicker 
stimulus to a neural mass model with inhibitory and 
excitatory neurons [9].
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Fig. 1  A diagrammatic representation of three photic pulses 
as variations of intensity with time. The photic pulses have the same 
frequency or time periods but three different PCFs
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1.4 � Deep learning
Machine learning denotes an algorithm that is able to 
learn from data [16]. Deep learning is a subset of machine 
learning [16] and Artificial Neural Networks(ANN) that 
has developed in recent times. While ANN and deep 
learning models are engineering systems inspired by 
the biological brain, they are not designed to be realistic 
models of biological function [16].

1.5 � Aim of the current paper
This work aims to connect the relation between pycho-
physics and electrophysiology of a human subject 
through a Deep Neural Network (DNN) based compu-
tational model that will be trained with pscychophysics 
data of flicker fusion of a human subject, and no charac-
teristics of EEG data obtained from human subjects will 
be taken into consideration while training the network. 
While the network will be trained by backpropagation, it 
does not imply that any equivalent computational mech-
anism in  the human visual system was similarly trained 
by backpropagation. The biological brains are instead 
the product of evolution by natural selection. The flicker 
stimuli with controlled waveforms used in laboratories 
are not something that occurs naturally but are instead 
artificial stimuli used to understand the human visual 
system which is a product of biological evolution.

1.6 � The methodology of the work
The first work to model the computational activity in the 
brain using Artificial Neural Networks (ANN) via back-
propagation was by Zipser and Andersen  [17], who mod-
eled the neuronal activity in the parietal cortex of monkey 
brain, used for calculating the head centered coordinates 
of the external objects from the position of their images 
in the retina and slope of the eyes [17]. The outputs of the 
internal hidden layers of an ANN trained to mimic the 
same task via supervised learning, gave outputs which 
were visually similar to the electrophysiological readings 
obtained from parietal neurons of the monkeys perform-
ing the same task. This was not the case with untrained 
ANNs with random weights [17]. The position of an 
external object in the world for the purpose of calculat-
ing its head-centered coordinates is static, and the task is 
a problem in static vision. But in experiments of flicker 
fusion the stimulus is kept fixed at a particular location, 
and the stimulus intensity varies with time. In a flicker 
fusion experiment, where the size, shape, and position of 
the stimulus are invariant with time and the only variant 
parameter is the intensity, the stimulus can be represented 
as a timeseries of intensities. Since a human subject clas-
sifies the stimulus as flickering or steady, the output can 
be represented as a binary classification. The input repre-
sentation will be in the form of a sequence of intensities 

sampled over time. Recurrent neural networks, which 
are a family of neural networks for processing sequential 
data [16], will be used to model flicker phenomena. The 
human visual system performs low pass and band opera-
tions on flicker stimulus [18]. The mammalian retina can 
also generate transient on and off responses to change in 
luminance [19]. Receptive field based convolution filters 
can also detect sudden changes in intensity as is their use 
for edge detection [20]. Low pass and band pass opera-
tions can be mathematically achieved using a linear filter 
through convolution sum [21]. This work will train Con-
volutional Recurrent Neural Networks (CRNNs), which 
consist of convolution layer followed by a recurrent and 
dense layer [22]. The output of convolution layer of the 
trained CRNN could be subjectively compared to the fea-
tures of the EEG response to flicker stimulus.

1.7 � Contributions

•	 The work shows that the fundamental and harmon-
ics of a flicker stimulus can be elicited by a temporal 
convolution operation on the stimulus.

•	 The convolution layer of a CRNN trained on psy-
chophsyics data will be more sensitive to particular 
frequencies, similar to the  human EEG response to 
flicker.

•	 A pure sinusoidal output can be elicited for a 10 hertz 
flicker stimulus from the convolution layer of CRNN 
trained on psychophysics data.

2 � Related work
2.1 � Entrainment
Entrainment is a phenomenon where two oscillators 
interact with each other to synchronize their oscilla-
tions [23]. These synchronizations can enhance or negate 
each other’s effects as well as synergize with each other 
to achieve amplitudes greater than the sum of amplitudes 
of both the oscillators [23]. The frequency of one or both 
the oscillating systems can be altered so that they become 
phase locked, or the phase difference between the oscil-
lating systems remains invariant in time, and robust to 
perturbations [23]. The interaction between the oscil-
lators can be linear or non-linear, and oscillations are 
merely superimposed with each other. Kirschfeld found 
that phase of alpha wave oscillations is not affected by 
flash evoked potentials, and the flash evoked poten-
tials are superimposed on alpha waves without reset-
ting their phase [24]. Schwab et  al. found evidence of 
entrainment to flicker stimulus in both EEG and mag-
netoencephelogram (MEG) with stronger frequency 
entrainment in MEG when compared to EEG [12]. 
Notbohm et  al. found evidence of entrainment in EEG 
response to flicker stimulus but not to the superposition 
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of event related potentials [11]. Gulbinaite et al. showed 
that flicker stimulus with frequencies near the alpha 
oscillation can impair stimulus processing in a selective 
attention task [25]. MEG study by Duecker et  al. found 
that gamma oscillations in the human brain and EEG 
response to flicker stimulus are evoked in different areas 
of the human visual cortex [26].

2.2 � Role of attention
Flicker stimulus elicits human EEG response in two sepa-
rate cortical networks depending on attention and tem-
poral frequency [27]. The effect of attention on resonance 
to flicker stimulus is negative for flicker stimulus with 
frequencies in the  alpha band and positive for stimulus 
with frequencies in the gamma band [28].

2.3 � Deep learning as modeling tool for biological vision
Deep Neural Networks have been put forward as a tool 
for modeling the brain, in addition to their ability to 
accurately solve engineering problems through a data-
driven approach [29]. Further, deep neural network 
models of cognition are able to make falsifiable predic-
tions [30]. The outputs from mid layers of deep neural 
networks, trained for object recognition tasks, are able 
to model spiking activities in area V1 of monkeys, and 
Deep Neural Network (DNN) models have been able to 
predict spiking activity in V1 area of monkeys better than 
the  previous models [31]. Earlier studies have indicated 
correlations between the output of hidden layers of a 
trained Alexnet and brain electrode readings from mon-
keys presented with the same stimulus [32]. The outputs 
of intermediate layers of a DNN trained on object clas-
sification, gives responses similar to neural responses of 
inferior temporal cortex and area V4 of rhesus macaques 
presented with the same task. This occurs in spite of the 
fact that the DNN was not constrained with neural data 
[33]. The fMRI data of human subjects who viewed natu-
ral images has shown that the early visual areas are best 
explained by shallow models whereas the ventral stream 
(for object recognition) is best explained by the higher 
layers of a deep convolutional network [34].

3 � Materials and methods
3.1 � Materials
The psychophysics data previously published in [35], 
but never used in training any neural network or any 
other brain computational model to the best of our 
knowledge, was used in training our proposed model. 
In this work [35], the CFF was established by the 
method of limits.  The published data for an observer 
S. H. seen in Table 1, was used for training the neural 
networks. The flickers in [35] were produced on an opal 
glass surface, and the subject classified the stimulus 

as either flickering or a steady after observing it for 
ten seconds. The stimulus target subtended a visual 
angle of 2 ◦ 5’ with the vertical and 4 ◦ 5’ with the hori-
zontal. The CFFs were obtained for PCFs 1

6
 , 2
3
 , 1
2
 , 2
3
 , 5
6
 . The 

CFFs for five different PCFs were obtained for intensi-
ties 5340 cd/ft2 , 534 cd/ft2 , 53.4 cd/ft2 , 5.34 cd/ft2 and 
0.53 cd/ft2  [35]. The CFFs can be seen in Table 1.

3.2 � Methods
3.2.1 � Model
A photic pulse can be represented as a timeseries array 
of intensities. The retina can have on pathways, off 
pathways as well as transient on and transient off cells 
[19]. The on pathways are activated when there is light 
falling on them, and off pathways are activated when 
there is no light falling on them. In addition to these, 
there are transient on and off pathways which are acti-
vated when there is a sudden change in the intensity of 
light falling on them. The transient on and off opera-
tions can be mathematically represented by linear fil-
tering operations. The machine could thus mimic the 
transient on and off pathways by performing a con-
volution operation on the signal. While the machine 
stores the whole representation of the photic pulse in 
memory while doing the convolution operation, that 
will not be the case in reality. Only the intensities in the 
immediate past will be necessary for the human visual 
system to perform transient on and off operations. The 
output of the convolution layer is fed into a recurrent 
layer. Recurrent neural networks are a family of neural 
networks for processing sequential data [16]. The final 
state of the recurrent layer is fed into a Multi Layer Per-
ceptron for classification.

Python based Keras library was used to train and run 
the model. Loss function sparse_categorical_crossen-
tropy with Adam optimizer was used to train the model. 
Cross entropy is a loss function which is used in classifi-
cation problems. The cross entropy H for a datapoint is 
given by equation H(p, q) = −

∑
x∈classes p(x)log(q(x)) 

where p(x) is the true probability distribution of the 

Table 1  The CFFs for photic pulses for five different intensities 
and five PCFs for an observer S.H. (in hertz) pulished by Nelson 
et al. [35]

Intensity
(cd/ft2)

PCF 1
6

PCF 1
3

PCF 1
2

PCF 2
3

PCF 5
6

5340 58.17 51.83 59.17 52.5 47.00

534 48.0 50.0 50.83 48.7 46.17

53.4 34.67 36.17 36.33 35.2 32.67

5.34 23.17 27. 25.67 25.2 20.83

0.53 17.17 19.0 17.83 19.0 15.67
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classes and q(x) is the probability distrbution of the 
classes predicted by the model [36]. Sparse categorical 
cross entropy was used to provide labels as integers. Time 
series representation of flicker stimulus with desired PCF 
and intensity can be generated as one dimensional arrays. 
These could be assigned the labels flickering or fused 
based on psychophysics data.

3.2.2 � Minibatch generation
The time series data with a desired PCF and frequency 
were generated with the  Python library function 
scipy.signal.square(). The square waves so generated will 
have two values -1 and 1 in them. By adding the value 1 to 
that wave, and then multiplying by 0.5, followed by fur-
ther multiplication by the intensity value of the wave we 
get the sampled representation of a wave with the desired 
intensity.

We have interpolated the data based on the assumption 
that for a frequency above CFF for a particular PCF, the 
photic pulse will appear as fused to the subject, and for 
frequencies below that CFF, it will appear as flickering. 
Waves with frequencies just below CFF were assigned the 
label of flickering. Training data and validation data were 
generated from scratch in each iteration during the train-
ing process. Waves with frequencies between CFF−1.3 
and CFF−2.5 were assigned the label flickering for each 
PCF. The frequency interval in which photic pulses were 
assigned the label flickering was kept small, as a photic 
pulse of long duration is indistinguishable from a steady 
source of light. We had no way to estimate that dura-
tion. Waves with frequencies between CFF+1.3 and 
CFF+10 were assigned the label non-flickering. This was 
done as any stimulus above the CFF will be perceived as 
non-flickering or fused. A constant non-flickering stimu-
lus is indistinguishable from a fused flicker stimulus. So 
constant stimuli with amplitude between intensity of 
the flicker stimulus and 0 cd/ft2,  as well as a  complete 
dark  stimuli with 0 cd/ft2 throughout it, were used in 
training  dataset with the label fused. A diagrammatic 
representation of data ranges used for training for inten-
sity 53.4 cd/ft2 is seen in Fig. 2.

For validation, waves with frequencies of CFF+1.3 to 
CFF+100 were assigned the label fused. This was because 
photic pulses with frequencies above the CFF should be 
labeled as fused or steady by a subject. Waves with fre-
quencies between CFF−1.3 and CFF−2.5 were used with 
label flickering for validation as well. The trained neural 
network should detect a time series of constant ampli-
tudes as fused. Since we did not know the minimum 
time period for which the neural network will classify a 
constant amplitude series as fused, the frequency  range 
of photic pulses used in validating the neural network 
was kept the  same as that was used for training the 

neural network. For a training minibatch, ten photic 
pulses each    for both flicker and fused, were gener-
ated for all PCFs. For five PCFs and two labels, it pro-
vided 100 samples. Similarly, 50 photic pulses with label 
flicker and fused were generated for each PCF in valida-
tion minibatch. It provided 500 photic pulses for valida-
tion minibatch in each iteration. New minibatches were 
generated for each iteration by randomly sampling from 
the frequency range  in both Experiment 1 and Experi-
ment2 described in the next sections. The training and 
validation data for each iteration is shown in Table 2. In 
Table  2, n is the number of photic pulses generated for 
a class with a particular PCF in a minibatch. The total 
number of samples in the minibatch will be 10 times n, as 
there are 5 PCFs and two classes.

4 � Experiments and results
4.1 � Experiment 1
Only the photic pulses with the  middlemost intensity 
of 53.4 cd/ft2 were used for training and testing in this 
experiment. Photic pulses of desired frequency and 
PCF with intensity 53.4 cd/ft2 were generated with the 
method mentioned before for 12  seconds duration and 
sampled at 1 milliseconds. From this array, a smaller 
array of 7168 elements was selected from one of the first 
3000 elements chosen at random. This was done to make 
the last element in  the photic pulse irrelevant during 
the training process. The classification of a photic pulse 
is independent of the fact whether the last element is of 
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Fig. 2  The frequency ranges used to select the flickering and fused 
datapoints for photic pulses with intensity 53.4 cd/ft2 , for training 
the network. The photic pulses with a particular frequency and PCF 
lying in the blue line were assigned the label ’flickering’. Those 
in the red line were assigned the label ’fused’. The corresponding CFFs 
for the five PCFs have been marked in green
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intensity 0 cd/ft2 or some other intensity. From this rep-
resentation of a photic pulse with 7168 elements, one of 
the first 500 elements was chosen at random. The ele-
ments in the array from index 0 to that of the chosen ele-
ment were filled with random intensity between 0 and 
the intensity of the photic pulse, which is 53.4 cd/ft2 . This 
was done under the assumption that for a photic pulse of 
a finite enough time duration, some small perturbations 
at the start of the photic pulse will not have any effect on 
the final classification after a prolonged time period.

The neural network model used in the experiment is 
shown in Table  3. Eight convolution filters of 120 ele-
ments were used in layer 1. Biases were used in each 
layer. Activation function Leaky ReLU with default 
parameters (alpha=0.3) from the TensorFlow library was 
used for convolution operation (layer 1). Valid convolu-
tion was performed in the convolution layer.

4.2 � Results of experiment 1
For testing, photic pulses of desired frequency, inten-
sity 53.4 cd/ft2 and PCF 1

2
 generated for a duration of 

7.168  seconds, sampled at a frequency of 1 millisecond, 
were generated by scipy.signal.square function from the 
Python library. They were fed to the input layer (Layer 0). 

For a neural network with random weights, no noticeable 
differences could be observed for convolution outputs for 
10 hertz or 20 hertz stimuli and stimuli of other frequen-
cies. The set of weights for iteration with the lowest loss 
was chosen. The weights after iteration 1582, with a loss 
of 0.1153 and an accuracy of 0.972 for validation dataset 
were loaded into the network.

4.2.1 � Output for 10 hertz signal
The output of a convolution layer for an untrained neu-
ral network can be seen in Figs. 3a, 3c, and 3e for input 
stimuli of frequencies 8.5, 10, and 11.5 hertz. No particu-
lar resonance can be seen for a stimulus of frequency 10 
hertz.

The outputs of a convolution layer for a trained neural 
network can be seen in Fig. 3b, d, and f for input stimuli 
of frequencies 8.5, 10, and 11.5 hertz. Sinusoidal ouputs 
can be observed for 10 hertz input in Fig. 3d which cannot 
be seen for 8.5 hertz input and 11.5 hertz input in Fig. 3b 
and f. The outputs of neurons that gave sinusoidal outputs 
at ten hertz have been plotted with red and green lines. 
For a pure sinusoidal signal, its fourier transform will have 
amplitudes at the frequency of the signal alone. It can be 
seen that for a ten hertz signal, the six neurons whose 

Table 2  Frequency ranges or constant amplitudes associated with the photic pulses in a minibatch for training and validation for a 
particular label and PCF

Label Fused Label Flickering

Validation data (n=50) n waves with frequency between CFF+1.3 to 100 Hz n waves 
with frequency 
between CFF−2.5 
to CFF−1.3 Hz

Training data (n=10) 50% probability of waves with frequency CFF+1.3 to CFF+10 Hz n waves 
with frequency 
between CFF−2.5 
to CFF-1.3Hz

25% probability of a continuous signal with with value between intensity of wave 
and zero

25% probability of a continuous signal with value 0

Table 3  Structure of neural network used in Experiment 1

Layer Dimension Dropout Activation function Number of 
paramenters

Layer 0
(Input Layer)

[None, 7168, 1]

Layer 1
(1 dimensional convolution)

[None, 7049, 8 ] leaky ReLU 968

Layer 2
(RNN Basic Cell Final State)

[None, 8] 0.5 sigmoid 136

Layer 3 (Dense Layer)
(Dense Layer)

[None, 8] 0.5 sigmoid 72

Layer 4 (output Layer)
(output Layer)

[None, 2] softmax 18
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(a) For an untrained neural net-
work

(b) For a trained neural network

(c) For an untrained neural net-
work

(d) For a trained neural network

(e) For an untrained neural net-
work

(f) For a trained neural network

Fig. 3  Convolution layer outputs of the eight different neurons for input stimulus representations for 8.5, 10, and 11.5 hertz square waves are 
shown in the figure. The left side images show the output of an untrained neural network and the right side images show the output for the trained 
neural network. Sinusoidal outputs can be seen in the output to 10 hertz square wave inputs for the trained network for neurons 3 and 6, marked 
by red and green colors
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Fig. 4  The amplitudes of the Fourier transform in the convolution output of the trained neural network for the six neurons whose convolution 
outputs did not show clear sinusoidal patterns for the 10 hertz signal. The Fourier amplitudes for 8.5, 10, and 11.5 hertz have been plotted in blue, 
red, and green, respectively. We can see that multiple peaks can be observed for the 10 hertz signal at subharmonics of 10 hertz
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Fourier amplitudes have been plotted in Fig.  4 are not 
sinusoidal. For the two neurons that showed sinusoidal 
output at ten hertz stimulus, the neurons showed a prom-
inent peak at 10 hertz in fourier transform compared to 
subharmonics, as can be seen in Fig. 5. The The output of 
two neurons for which the sinusoidal response at 10 hertz 
is prominent can be observed from Fig. 6a, b, c.

4.2.2 � Profile of fundamental frequency
The amplitude associated with the fundamental frequency 
of a subject as plotted by Herrmann showed clear reso-
nance peaks around 10, 20, and 40 hertz [5]. The ampli-
tude of fundamentals associated with neurons 3 and 6, 
which showed sinusoidal responses for ten hertz, can be 
seen in Fig. 7. The profile of the trained network shown in 
Fig. 7b shows four distinct peaks around 10, 20, 40, and 80 
hertz for the neurons. This is in contrast with the profile 
for an untrained network in Fig. 7a, which shows numer-
ous peaks but no distinct resonance peaks. Previous works 
on human EEG response to flicker stimulus have shown 
that the average of the  fundamental frequency across 10 
subjects exhibited strong resonance peaks around 10 hertz 
and weaker peaks in the  20–30 hertz and 40-50 hertz 
ranges [5]. The data for a single subject consisted of only 
one peak in the mentioned three ranges [5] (Fig. 8).

4.2.3 � Output for 80 hertz signal
An 80 hertz flicker stimulus is known to invoke clear 
ten hertz response in human EEG which is not present 
at adjacent frequencies [5]. The output of the convolu-
tion layer for an untrained neural network for frequen-
cies 79, 80 and 81 hertz can be seen in Fig. 8a, c, and e. 
The output of the convolution layer for an trained neural 
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(a) Neuron 3
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(b) Neuron 6
Fig. 5  The amplitudes of the Fourier transform of the convolution output from the trained neural network for the six neurons whose convolution 
outputs did showed sinusoidal patterns for the ten hertz signal. The fourier amplitudes for 8.5,10, and 11 hertz have been plotted in blue, red, 
and green. The peaks at subharmonics for 10 hertz are much lower than the fundamental frequency for the output of a ten hertz signal

(a) Convolution layer output of two selected neurons for 8.5 hertz input signal

(b) Convolution layer output of two selected neurons for 10 hertz input signal

(c) Convolution layer output of two selected neurons for 11.5 hertz input signal

Fig. 6  The convolution layer output of the trained neural network 
used in Experiment 1 for two selected neurons for 8.5, 10, and 11.5 
hertz signals. A clear sinusoidal output could be observed for the 10 
hertz signal which is not the case with 8.5 or 11.5 hertz signals
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network for frequencies 79, 80 and 81 hertz can be seen 
in Fig. 8b, d, and f. We could not obtain a sinusoidal 10 
hertz response to 80 hertz stimulus as reported in litera-
ture. But an envelope which is not observed at 79 and 81 
hertz stimulus could be observed for 80 hertz stimulus 
for some neurons of a trained neural network as can be 
seen in Fig. 9. The envelopes of a signal can be obtained 
by extrema sampling followed by signal reconstruction 
using sampled extrema with methods like Cubic Spline 
[37]. The envelopes were constructed by the method of 
sampling the maxima with a sample window of 25 points 
and signal reconstruction using cubic spline. The ampli-
tudes of the evoked frequencies for stimulus of 79, 80 and 

81 hertz for both trained and untrained neural networks 
can be seen in Fig. 10. A clear subharmonic of 40 hertz 
can be seen in output of trained network for 80 hertz as 
can be seen in Fig. 10d while the subharmonic is absent 
for output of stimulus of 79 and 81 hertz of the same net-
work as can be seen in Fig. 10b and f.

4.3 � Experiment 2 and results
The data was trained with a different neural network, 
having ReLU activation function in the convolution layer. 
The outputs of convolution layer were added together in 
a dense layer before going to the recurrent layer. It was 
done under the assumption that different cells in human 
visual system can have different temporal responses to a 
flickering stimulus and they might be present in the same 
biological layers in the visual system. In human retina the 
midget and parasol gangellion cells, have different tem-
poral responses [38].

The photic pulse trains were sampled at 0.5 millisec-
onds to create a representation of waveforms. Square 
Wave arrays of 22384 elements with desired frequencies 
were generated. From these an array of length 16384 ele-
ments were selected, starting with one of the first 3000 
elements chosen at random. The initial elements of this 
array were chosen at random from a number between 0 
and 700. The initial elements of photic pulse represen-
tation so generated, was filled with a random intensity 
between 0 and intensity of the wave. The reason for this 
randomizations were same as in Experiment 1. These 
perturbations augment the training data. The whole train 
represented a photic pulse of duration 8.192 s.

The structure of neural network used in the experiment 
can be seen in Table 4. Bias were used for both dense lay-
ers, convolution layer and RNN basic cell. In the dense 
layer after convolution (layer 2), kernel constraint Recti-
fied Linear Output was applied to the kernel parameters. 
A convolution layer with a convolution operator length 
of 280 weights was used in the first layer. It corresponded 
with a time period of 140 ms.

The loss and accuracy for each iteration was tabulated 
after training. The losses and accuracies for validation set 
over iterations were filtered with a gaussian filter of sigma 
11. The selected iterations have been listed in Table 5.

For testing, the model waves of intensities 5340 cd/ft2 
and 534 cd/ft2 were not considered due to low train-
ing accuracies. The difference in maximum and mini-
mum values from layer 2, for one second interval for an 
untrained neural network for various stimulus frequen-
cies for photic pulses of intensity 53.4 cd/ft2 , can be be 
seen in Fig. 11. The differences from the layer 2 output 
of the  neural network trained again, with 53.4 hertz 
stimuli can be seen in Figs.  12 and 13. A peak can be 
observed at 10 hertz in both Figures. Peaks could also 

(a) Profile of untrained network

(b) Profile of a trained network
Fig. 7  Profile of the fundamental for the two neurons that gave 
sinusoidal output for 10 hertz stimulus. Previous studies have shown 
that the human EEG output of individual subjects gave three distinct 
peaks around 10 hertz and in 20–30 hertz and 40–50 hertz ranges 
[5]. The subjective comparisons show that the profile of fundamental 
frequency for a trained network is closer to that of human EEG 
when compared to that of an untrained network, which is having 
a lesser number of peaks
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(a) For an untrained neural net-
work

(b) For a trained neural network

(c) For an untrained neural net-
work

(d) For a trained neural network

(e) For an untrained neural net-
work

(f) For a trained neural network

Fig. 8  Convolution layer outputs for input stimulus representations for 79, 80, and 81 hertz. Previous studies have found a 10 hertz component 
in human EEG reponse to 80 hertz flicker [5]. Two envelopes with a low frequency can be seen in output of the trained network for 80 hertz 
stimulus
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(a) For an untrained neural net-
work

(b) For a trained neural network

(c) For an untrained neural net-
work

(d) For a trained neural network

(e) For an untrained neural net-
work

(f) For a trained neural network

Fig. 9  The convolution layer output of the trained neural network used in Experiment 1 for two selected neurons 1 and 2 have been plotted 
in cyan and yellow for 79, 80 and 81 hertz. An envelope with low frequency can be seen in the convolution output for 80 hertz signal. The envelops 
have been constructed using maxima sampling and reconstruction of signal using cubic spline interpolation
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be seen near 20 hertz and 40 hertz. Some extra peaks 
including those at 30 hertz were obtained in both the 
Figures. The output for a neural network trained with 
5.34 cd/ft2 for same operation can be seen in Fig.  14. 
The output did not show peaks at 10, 20, 40 or 80 hertz.

The stimulus frequencies for square waves that 
invokes responses for frequencies from 2 to 100 hertz 
for this neural network for photic pulse of intensity 53.4 
cd/ft2 have been plotted in Figs. 15a, b and 16a, b. The 
present model corresponding to Experiment 2 (refered 

Fig. 10  The amplitudes associated with various frequencies in the convolution output for square wave stimulus of frequencies 79, 80 and 81 
hertz for both trained and untrained neural network. A clear subharmonic with frequency 40 hertz can be seen in output of 80 hertz stimulus 
for the trained neural network
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to as Model 2) predicts fundamental frequencies as well 
as harmonics in the output of the neural network as can 
be seen in Figs. 15b and 16b. Even a convolution filter 
with random weight can generate harmonic frequencies 

in output of a periodic stimulus as is evident from 16a. 
It can be seen from the figures that the convolution 
output of a trained neural network is more sensitive 
to specific frequencies than an untrained neural net-
work. The output of a trained neural network is similar 
to human EEG response to flicker in being sensitive to 
certain frequencies. Further as can be seen in Fig.  17 
the fundamental as well as harmonics are evoked even 
in the sinusoidal response to flicker stimulus.

5 � Discussion
The findings from the present work indicate that 
CRNNs can be used to train pyschophysics data of 
photic pulses for a particular intensity that varies in 
PCF and frequency. The present work shows that it 
is possible to obtain a  clear sinusoidal response at 10 

Table 4  Structure of neural network used in Experiment 2

Layer Dimension Dropout Kernel constraint Activation function Number of 
paramenters

Layer 0
(Input Layer)

[None, 16384, 1]

Layer 1
(Convolution Layer)

[None, 16245, 8 ] ReLU 2248

Layer 2
(Dense Layer)

[None, 16245, 4] ReLU ReLU 36

Layer 3
(RNN Basic Cell Final State)

[None, 5] 0.5 Sigmoid 50

Layer 4
(Dense Layer)

[None, 5] 0.5 Sigmoid 30

Layer 5
(Output Layer)

[None, 2] Softmax 12

Table 5  The iteration whose corresponding weights were 
chosen for neural network

Intensity cd/ft2 Total iterations Least loss Selected 
iteration

Accuracy

5340 4000 0.649 1893 0.6040

534 4000 0.3298 3411 0.89

53.4 4000 0.1065 2128 0.968

5.34 2000 0.0448 1938 0.998

0.53 4000 0.043 3953 0.994

Fig. 11  The differences in maximum and minimum amplitudes 
in a 1 s interval from the output of layer 2 of an untrained neural 
network used in Experiment 2

Fig. 12  The differences in maximum and minimum amplitudes from 
the output of layer 2 for 1 s intervals for a neural network trained 
and tested with 53.4 cd/ft2 photic pulses
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hertz from a neural network trained with psychophys-
ics data, in spite of the fact that no 10 hertz photic 
pulse signal or EEG data were used in training the 
neural network. Clear sinusoidal responses have been 
previously obtained near 10 hertz for EEG response to 
flicker [7]. It also shows that the convolution layers of 
such a CRNN are more likely to show resonant output 
at some particular frequencies, similar to the  human 
EEG response to flicker. The similarities in output 
between the convolution layer of the CRNN and the 
EEG response to the stimulus can be explained by the 

assumption that a small region in a cortical layer with 
thousands of neurons in it acts in a manner similar 
to  that of an artificial neuron in an ANN. When neu-
rons present in a cortical layer fire in unison, the elec-
tric fields generated by the neurons can be measured 
outside the brain via EEG. The model put forth in this 
work that human EEG response to flicker stimulus is a 
convolution operation on the stimulus is in line with 
the hypothesis that the response is the superposition of 
event related potentials as opposed to the entrainment 
hypothesis.

The main sources of light in the natural world, viz., sun 
and moon, emit steady light with no sudden change in 

Fig. 13  The differences in maximum and minimum amplitudes from 
the output of layer 2 for 1 s intervals for a neural network trained 
and tested with 53.4 cd/ft2 photic pulses. The neural network 
was trained with same method for a second time

Fig. 14  The differences in maximum and minimum amplitudes from 
the output of layer 2 for 1 s intervals for a neural network trained 
and tested with 5.34 cd/ft2 photic pulses

(a) For a untrained neural network (b) For a trained neural network

Fig. 15  The response frequencies vs stimulus frequencies in output 
of neural network in Neuron 3 for Layer2

(a) For an untrained neural network.
This shows that harmonics of funda-
mental frequencies of the square waves
will be present in the output of a ran-
dom convolution operation on it.

(b) For a trained neural network. It
can be seen that response frequencies
are more for some specific frequencies
unlike a random convolution opera-
tion.

Fig. 16  The response frequencies vs stimulus frequencies in output 
of Neuron 0 of Layer1 of neural network used in Experiment 2
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intensity. The only way the intensity of light emitted from 
any point in the natural world would change is when 
there is some motion at that point. The cell assemblies 
that lead to characteristic response in EEG, to flicker 
stimuli may have evolved in order to detect motion at 
particular points.

Flicker fusion can happen at various stages of informa-
tion processing, beginning with the retina. Here, only one 
stage of differentiation in the brain was considered. This 
can be the reason why only one intensity was able to pro-
duce an EEG-like response in the intermediate layers of 
CRNN, trained to imitate the human brain. It could also 
be a reason why the neural network could not be trained 
with photic pulses of intensities greater than 53.4 cd/ft2 . 
The intermediate outputs of neural networks trained 
with intensities lesser than 53.4 cd/ft2 did not show 
resonances near the reported frequencies where human 
EEG shows resonant response to flicker stimulus. Also, 
harmonics and sub-harmonic oscillations, in addition to 
the fundamental frequency of flicker stimulus have been 
detected in the human EEG response to flicker stimulus. 
The sub-harmonic oscillations,  unlike harmonic oscilla-
tions, were reported to come from the parietal electrodes 
instead of the occipital electrodes [9]. No clear evidence 
of sub-harmonic oscillations were reported in local field 
potentials and multi unit activities of cat visual cortex 
stimulated with flicker stimulus [6]. The present work has 
been unable to detect sub-harmonic oscillations in the 
itenrmediate convolution layers. Digital circuits with flip 
flops are can be used as frequency doublers to generate a 
pulse with doubled frequency of the clock pulse [39]. A 

similar mechanism might be happening in the generation 
of the sub-harmonics of the fundamental frequencies of 
the flicker stimulus, with the flicker stimulus acting as a 
clock signal.

5.1 � Limitation and future work
The present work was trained only on the data of a 
single subject, which is a limitation of this study. But 
the work does provides support for the methodology 
that can be tested with psychophysics and EEG data 
acquired for the purpose in future. The amplitudes 
of the  fundamental and the first and second harmon-
ics in SSVEPs are not stable over time in some human 
subjects [40]. The present model has been unable to 
explain this phenomenon. Moreover, we generated 
training and validation data on the assumption that, for 
a particular PCF and intensity, the human visual system 
will perceive all photic pulses with frequencies above 
the CFF as flickering. However, outliers exist above 
and below CFF [41]. Also, in the present work, no EEG 
recordings were made at the time of acquisition of psy-
chophysics data used in training the neural network. A 
future experiment with both psychophysics data and 
EEG data collected from the same subject in identical 
circumstances will possibly be able to ascertain more 
correlations between the two. The classification for data 
points represented by intensity, PCF and frequency 
can be measured for the subject by the method of con-
stant stimulus. A large set of data points for a particular 
intensity with two parameters, viz. frequency and PCF, 
labeled into two classes, could be used to train a simi-
lar neural network. In spite of some of these limitations 
mentioned above, the present work provides the first 
such computational framework that involves training 
a deep neural network with psychophysics data to pre-
dict brain activity at the electrophysiological level.

6 � Conclusion
The present work used a recurrent neural network 
based framework to model flicker, a time dependent 
psychophysics data. We have shown that the interme-
diate layers of the network could show features of the 
electrophysiological response to the stimulus. Clear 
sinusoidal responses could be obtained from inter-
mediate layers of the network for a ten hertz stimulus 
input although no electrophysiological data was used 
to train the model. The presence of the fundamental 
frequency of the flicker stimulus as well as the har-
monics can be explained as a temporal convolution 
operation of the stimulus. We have further shown that 
the output from convolution layer of a CRNN trained 
with psychophysics data will be more responsive at 
particular frequencies, similar to the  human EEG 

(a) For neuron 0 in Layer 1 (b) For neuron 0 in Layer 2

Fig. 17  The response frequencies vs stimulus frequencies 
for a sinusodial stimulus of waveform I = Io(1+msin(ωt)) 
for the neurons for a neural network of Model 2 trained with photic 
pulse representations of 54.3cd/ft2 . Here Io = 54.3 , m = 0.1 
and ω = 2π f  where f is the the frequency of the stimulus. The 
subharmonics are present in the output of the sinusoidal stimulus
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response to flicker. The proposed CRNN model could 
be used to test the relationship between the  psycho-
physics of flicker fusion and the  electrophysiology of 
flicker from a same subject.
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