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Abstract 

This study investigates the correlation between brain age and chronological age in healthy individuals using brain 
MRI images, aiming to identify potential biomarkers for neurodegenerative diseases like Alzheimer’s. To achieve this, 
a novel attention-based ResNet method, 3D-Attention-Resent-SVR, is proposed to accurately estimate brain age 
and distinguish between Cognitively Normal (CN) and Alzheimer’s disease (AD) individuals by computing the brain 
age gap (BAG). Unlike conventional methods, which often rely on single datasets, our approach addresses poten-
tial biases by employing four datasets for training and testing. The results, based on a combined dataset from four 
public sources comprising 3844 data points, demonstrate the model’s efficacy with a mean absolute error (MAE) 
of 2.05 for brain age gap estimation. Moreover, the model’s generalizability is showcased by training on three datasets 
and testing on a separate one, yielding a remarkable MAE of 2.4. Furthermore, leveraging BAG as the sole biomarker, 
our method achieves an accuracy of 92% and an AUC of 0.87 in Alzheimer’s disease detection on the ADNI dataset. 
These findings underscore the potential of our approach in assisting with early detection and disease monitoring, 
emphasizing the strong correlation between BAG and AD.
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1  Introduction
The human brain experiences ongoing changes through-
out the lifetime, which are a normal aspect of the aging 
process and do not necessarily indicate any pathologi-
cal conditions [1]. As individuals age, various alterations 
manifest in the brain. The observed changes encom-
pass a reduction in the overall quantity of gray matter, 
enlargement of the ventricles, compromised integrity 
of the white matter resulting from factors such as mye-
lin sheath damage, a decrease in the number of cells 
involved in neurotransmission, and a reorganization of 
brain function. Furthermore, it is important to note that 

neurodegenerative diseases, such as dementia, have the 
potential to impact the structural integrity of the brain 
and expedite the aging process. Consequently, acquiring 
a more comprehensive understanding and representa-
tion of typical brain aging can facilitate the differentiation 
between normal aging and neurodegenerative processes. 
Therefore, a better understanding and modeling of the 
natural aging of the brain can help to disentangle these 
two processes and improve the diagnosis of neurode-
generation in the early stages. Within the field of neuro-
science, there is an emerging inclination to utilize brain 
MRI scans for the purpose of constructing age predic-
tion models [2–4]. In this case, the difference between 
the brain age and the chronological age, Brain Age Gap 
(BAG) is a highly reliable and heritable biomarker that 
reflects pathological processes in the brain.

The estimation of brain age can be achieved through 
the utilization of both traditional and machine learning 
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methodologies. This can be accomplished by considering 
the entire brain, specific regions of interest, or patches 
[5–7]. In a study conducted by researchers [8], a novel 
approach utilizing T1-weighted MRI images was intro-
duced. This approach aimed to predict brain age by 
analyzing metrics at both the region and voxel levels. 
Machine learning algorithms, including regression-based 
algorithms, have also been employed for the purpose of 
predicting brain age. In a previous study [9], conventional 
machine learning techniques such as kernel regression 
were utilized to forecast brain age based on whole-brain 
MRI images of individuals spanning different age groups, 
including children and adults. In a separate study [10], 
various machine learning algorithms, such as Support 
Vector Regression and Binary Decision Tree, were evalu-
ated to determine their efficacy in predicting brain age. 
Researchers have conducted investigations on multi-
ple regression algorithms, including Relevance Vector 
Regression and Twin Support Vector Regression, in order 
to estimate brain age using various imaging modalities [5, 
11, 12]. In another study, the Gaussian Process Regres-
sion algorithm is utilized for brain age estimation and 
mortality as well [13]. While traditional machine learn-
ing algorithms have demonstrated satisfactory outcomes 
in specific domains of medical image analysis, such as 
brain age estimation, they encounter difficulties related 
to manual feature extraction. On the other hand, deep 
learning methods possess the ability to automatically 
extract features, thereby allowing them to effectively han-
dle unstructured data and solve intricate problems. In the 
subsequent paragraph, we will examine methodologies 
rooted in deep learning that are utilized for the estima-
tion of brain age.

The development of deep learning methods for brain 
age estimation using T1-weighted structural MRI images 
has been undertaken by some researchers like [14–16]. 
A study conducted by researchers [17] has emphasized 
that conventional machine learning algorithms, such 
as Lasso regression and Support Vector Regression, are 
insufficient in capturing the intricate relationships pre-
sent within brain structure. Consequently, the utiliza-
tion of deep learning models becomes imperative. In 
[7], a Convolutional Neural Network (CNN) was used to 
make predictions on brain age using both raw and pre-
processed MRI data. A separate study [18] introduced 
a three-dimensional convolutional neural network (3D 
CNN) model for estimating brain age. The study show-
cased the model’s exceptional performance in compari-
son to 2D CNN models. In a previous study [3], a Fully 
Convolutional Network (SFCN) was proposed for brain 
age estimation. The SFCN was built upon the VGG Net 
model and utilized a comprehensive dataset. The results 
obtained from this approach were highly impressive. In 

addition to convolutional neural network (CNN) mod-
els, attention-based methodologies, such as transform-
ers, have been successfully employed for the purpose of 
estimating brain age. These models utilize their attention 
mechanisms to attain exceptional performance. In [19], 
researchers proposed a graph transformer that utilizes 
regions of interest. Additionally, another study [20] intro-
duced a global–local transformer, both of which demon-
strated remarkable outcomes.

Deep learning models have been shown to improve 
decision-making performance, however, it is important 
to note that they typically require a significant amount 
of data in order to achieve optimal results. The issue of 
data leakage poses a substantial challenge within the 
field of medical image processing. In order to tackle this 
challenge, researchers have proposed the utilization of 
transfer learning approaches. These approaches involve 
fine-tuning pre-trained models such as ResNet, which 
is a highly advanced method in the field of classification 
[21, 22]. The application of transfer learning has also been 
extended to the estimation and prediction of brain age. A 
deep transfer learning model was proposed for brain age 
estimation using MRI data in reference [23]. In a separate 
study [24], a ResNet-based transformer was proposed for 
the purpose of brain age estimation and Alzheimer’s dis-
ease classification.

The investigation of progressive disorders has led to 
increased interest in brain age estimation methods. 
These methods are focused on the early diagnosis of 
Alzheimer’s disease and predicting the conversion from 
mild cognitive impairment to Alzheimer’s disease [24]. 
As mentioned before, one well-established biomarker 
for evaluating brain pathology is the brain age gap. This 
refers to the disparity between an individual’s estimated 
brain age, as determined by a model, and their actual 
chronological age [25]. Consequently, there have been 
several studies in the scientific literature focused on 
detecting Alzheimer’s disease using brain age as a diag-
nostic indicator. In [26], the concept of brain age was 
proposed as an index for Alzheimer’s disease, utiliz-
ing MRI imaging techniques. The research conducted 
aimed to create a comprehensive automated framework 
for the estimation of brain age in both healthy individu-
als and those diagnosed with mild cognitive impairment 
and Alzheimer’s disease. This framework utilized MRI 
scans as the primary data source. An assessment was 
conducted to examine the correlation between brain age 
and anatomical MRI measurements, including gray mat-
ter volume, white matter volume, cerebrospinal fluid vol-
ume, cortical thickness, and hippocampal volume. The 
findings revealed a clear correlation between brain age 
and conventional Alzheimer’s screening tools, as well as 
anatomical MRI measurements. In study [27], the brain 
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age of patients with Alzheimer’s disease and patients 
with Parkinson’s disease was assessed and compared. 
support vector regression (SVR) is used on T1-weighted 
MRI images, along with measurements of gray and white 
matter volumes. The study revealed notable variations in 
average age-related disparities in gray matter (9.29 ± 6.43) 
and white matter (8.85 ± 6.62) among individuals diag-
nosed with Alzheimer’s disease.

Given that the majority of the aforementioned meth-
ods are classification-based, necessitating labeled MRI 
images for each age group, there is a constraint on the 
estimation to the age groups encompassed in the training 
set. Consequently, the models will exhibit a bias towards 
the particular training set employed. In addition, another 
issue that causes model bias is the use of one dataset as 
training dataset and test dataset. using several datasets as 
training datasets instead of one dataset makes the model 
not biased on one of them and increases its generalizabil-
ity. Since the main purpose of proposing the method in 
the articles is to be able to use it in real data, if the model 

is biased on that dataset, it usually does not give a good 
answer. Additionally, existing literature demonstrates that 
attention-based models are currently considered state-
of-the-art techniques in brain age estimation [19, 20]. 
The comparison of the introduced methos is shown in 
Table 1. Some of these methods use traditional Machine 
Learning approaches. In these methods, features are 
extracted handcrafted and then a regression algorithm is 
applied to brain age estimation from these features. The 
deep learning methods dived on three main approaches: 
Deep Neural Network, CNN, and Transformer. For Deep 
Neural Networks which did not use CNN, features are 
still extracted manually and then fed into a deep neural 
network. Since CNN extract features automatically, using 
CNN may increase performance. One of the CNN meth-
ods is Residual Convolutional Neural Network (ResNet). 
A ResNet architecture has a feed-forward signal which 
skips the CNN block and directly affects the outputs. In 
this paper, instead of simple CNN, we used Resnet, which 
is a combination of residual blocks. Also, transformers 

Table 1  The comparison of the related works

References Modality Dataset Brain working Region Method Error

[8] T1 IXI, OASIS Region and voxel level Regression MAE = 5.75
4.97

[9] T1 NIH MRI Whole Brain Conventional ML MAE = 1.1

[10] T1 IXI, OASIS Gray Matter (GM), White Matter 
(WM), cerebrospinal fluid (CSF)

Quadratic SVR
Decision tree

MAE = 4.63 to 7.14

[5] T1 IXI Whole brain relevance vector machine (RVM) MAE = 5

[11] T1 Custom dataset
(954 MRI)

Voxel Level post-hoc linear regression MAE = 5.1

[12] T1 (IXI) IXI GM, WM, CSF Improved twin SVR MAE = 2.69

[13] T1 LBC1936 GM, WM Gaussian process MAE = 5.02

[15] T1 Cam-CAN Whole Brain CNN MAE = 4.06

[16] T1 MGHBCH
NIH-PD,
ABIDE,
BeijingEN,
IXI, DLBS, OASIS

Whole Brain CNN + Transformer MAE = 2.38

[16] T1 ABIDE,
BeijingEN,
IXI, ICBM, ADNI

Patch-based Deep neural network MAE = 4.7

[7] T1 BANC GM, WM CNN MAE = 4.16

[18] T1 Custom (over 1000 MRI) Voxel-Level 3DCNN MAE = 3.67

[3] T1 UK Biobank, PAC 2019 Whole Brain, GM, WM Simple fully convolutional network 
(SFCN)

MAE = 2.9

[20] T1 BGSP, OASIS, NIH-PD, 
ABIDE, IXI, DLBS, CMI, 
CoRR

Patch-based Global–local transformer MAE = 2.7

[20] Multi-Modal MRI UK Biobank ROI-based Graph-transformet MAE = 2.71

[23] T1
Blood Parameteres

ADNI, IXI, OASIS GM Deep transfer learning MAE = 3.96

[26] T1 IXI, OASIS GM, WM, CSF SVR MAE = 4.02

[27] T1 IXI, ADNI, OASIS, PPMI GM, WM SVR MAE = 4.38
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have performed very well in image processing due to 
their attention-based nature, however, they require a lot 
of data to get good results. We took advantage of this 
nature of attenuation and increased efficiency by add-
ing attenuation layers between residual blocks. If we had 
more data, probably the use of transformer methods 
would have given us better results.

The contributions of the paper are as follows:

•	 We have designed a new model which is a combina-
tion of 3D Residual blocks, Attention blocks, and lin-
ear regression to accurately forecast brain age.

•	 In order to optimize performance, we have integrated 
our deep learning approach with SVR, a conventional 
machine learning method.

•	 In order to enhance the generalizability and address 
concerns related to data leakage, we have integrated 
multiple datasets into our training set.

Additionally, we conducted an evaluation of the esti-
mated brain age as a sole biomarker for Alzheimer’s dis-
ease classification, yielding favorable outcomes.

The subsequent sections of the paper are structured as 
follows: In Sect.  2, a comprehensive explanation of our 
proposed method is presented. Section 3 showcases the 
experimental findings, while Sect.4 offers an extensive 
analysis and discussion of the research paper.

2 � Method
In this section, we explore the methodology and data-
sets employed. Section  2.1 introduces the datasets used 
for training and testing the proposed model. Subse-
quently, the proposed method is discussed across four 
sub-sections. Section  2.2 offers an overview of the pro-
posed method, while Sect.  2.3 explains the image pre-
processing steps taken to prepare the data for the model. 
Section2.4 delves into a detailed explanation of the 
proposed network, which combines Regression-based 
3D-Attention-ResNet and SVR. Finally, Sect. 2.5 outlines 
the process of Alzheimer’s disease classification using the 
estimated brain ages.

2.1 � Datasets
In this paper, four famous datasets, which are ADNI (Alz-
heimer’s Disease Neuroimaging Initiative) [28], Autism 
Brain Image Training Data (ABID) [29], Brain Genom-
ics Support Project (BGSP) [30], and Cambridge Centre 
for Ageing and Neuroscience (cam-CAN) [30] are used. 
A combination of these four datasets is used as a train-
ing and test set for evaluation of the proposed method. 
The details of these datasets are shown in Table 2. A brief 
explanation of each of these datasets is as follows.

2.1.1 � ADNI
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
is a research study focused on the diagnosis, predic-
tion, and detection of progression in individuals with 
Alzheimer’s disease. The datasets encompass four dis-
tinct collections, namely ADNI-1, ADNI-2, ADNI-Go, 
and ADNI-3, which have been systematically gathered 
since 2004. This study incorporates various biomarkers, 
including MRI, PET, fMRI, as well as genetic and biologi-
cal data, collected at regular intervals of approximately 
six months. These biomarkers are obtained from indi-
viduals classified as Cognitively Normal (CN), Mild Cog-
nitive Impairment (MCI), and Alzheimer’s disease (AD). 
This paper utilizes a sample of 203 healthy subjects from 
the study to train the proposed brain age model. Due to 
the availability of multiple MRI images captured at differ-
ent time points for each subject, the total count of MRI 
volumes has now reached 998.

2.1.2 � GSP‑harvard
The Brain Genomics Support Project (BGSP) is a com-
prehensive collection of neuroimaging, behaviour, 
cognitive, and personality data. This large-scale imag-
ing dataset includes information on over 1,500 healthy 
subjects, encompassing variables such as age, BMI, and 
gender. The dataset comprises a single high-resolution 
structured MRI image along with several resting state 
fMRI scans. This study utilizes structured MRI images in 
conjunction with the subjects’ gender.

Table 2  The demographic information of the introduced datasets

Dataset Number of data Number of train data Number of test data Age range Age average

ADNI 998 748 250 50–90 77.2 ± 5

BGSP-Harvard 1571 1179 392 19–30 21.5 ± 2.8

ABIDE 621 466 155 7–64 16.8 ± 7.5

Cam-CAN 654 490 164 18–90 54.3 ± 18.5

total 3844 2883 961 7–90 42.4
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2.1.3 � ABIDE
The Autism Brain Imaging Data Exchange (ABIDE), 
which comprises ABIDE1 and ABIDE2, was released in 
2012. Each dataset contains data collected from over 24 
laboratories. The dataset comprises functional magnetic 
resonance imaging (fMRI) and structural magnetic reso-
nance imaging (sMRI) data from a total of 539 individu-
als diagnosed with autism spectrum disorder (ASD) and 
573 control participants classified as cognitively normal. 
The age range of the subjects spans from 7 to 64  years, 
with an average age of 14.7 years. The dataset utilized in 
this study comprises data obtained from control subjects.

2.1.4 � Cam‑CAN
The Cambridge Centre for Ageing and Neuroscience 
(Cam-CAN) was established in October 2010. The Cam-
CAN project comprises a cohort of approximately 3000 
individuals ranging in age from 18 to 90  years. Within 
this cohort, there are approximately 700 individuals who 
have undergone structural Magnetic Resonance Imag-
ing (sMRI), magnetoencephalography (MEG), functional 
Magnetic Resonance Imaging (fMRI) both during rest-
ing state and task-based conditions, as well as completed 
cognitive experiments.

2.2 � An overview of the proposed method
As depicted in the Fig.  1, the first step of the proposed 
method is pre-processing, which is described in Sect. 2.3 
in details. In the second step, the pre-processed 3D vol-
umes are inputted into the deep learning model, which 
consists of three Res Blocks and two Attention Blocks. 
In this article, we have used the combination of two 
mechanisms used in the ResNet [31] and self-attenuation 
[32]. When the network becomes deep, the gradients of 
the loss function during the backpropagation become 
extremely small, and this causes patterns not to be 
learned in the final layers. Residual blocks help prevent 
this by adding an input layer to some convolution layer 
during the network. Also, attention layers help model 
learns the relationship between parts of the input data to 
better decision making. The features extracted from the 
proposed 3D_Att_ResNet model are combined with the 
patient’s gender as metadata. These combined features 
are then passed into the fully connected block. The fea-
tures extracted from our proposed deep neural network 
are utilized as input for the Support Vector Regression 
(SVR) model, which is employed to estimate the brain 
age. This step is explained in Sect. 2.4. To Alzheime’s dis-
ease detection, the model is tested on both healthy indi-
viduals and those diagnosed with Alzheimer’s disease. 

Fig. 1  An overview of the proposed method
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The proposed method is utilized to estimate the brain age 
of these subjects. The proposed method demonstrates its 
performance by utilizing the brain age gap, which is the 
discrepancy between chronological age and estimated 
brain age, as the only biomarker for classifying Alzhei-
mer’s disease. Further details regarding the classification 
of Alzheimer’s disease can be found in Sects. 2.5.

2.3 � Pre‑processing
For brain age estimation using sMRI, it is impera-
tive to extract the brain from MRI images. Hence, 
the brain is extracted from the scalp and skull utiliz-
ing DeepBrain tools, which is a customized U-Net 
model. The brain extraction outcome is depicted in 
Fig.  2b. Also, Intensity Non-Uniformity (INU) is a 

Fig. 2  preprocessing of the images. The results on the sagittal side of one image from ABIDE dataset. (To show the results better, we show some 
slices of the 3D volume). a; the original image, b: after brain extraction using the brain mask, c: After N4 bias field correction

Fig. 3  the distribution of the chronological age of the combination of the introduced datasets. The horizontal axis is the age group and the vertical 
axis is the count of each age group a: the distribution of the chronological age of 2883 training data and b the distribution of the chronological age 
of 961 test data
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significant artifact observed in brain MRI images. 
To mitigate this artifact, the N4 bias field correc-
tion method [33] is employed for image processing. 
The outcomes of the bias correction are depicted in 
Fig.  2.c. Furthermore, it is imperative to ensure that 
the size of the images used in this paper’s training and 
test datasets are appropriately aligned, given that mul-
tiple datasets are employed. In order to achieve this 
objective, the MRI volumes are resized to a specified 
dimension. The size of ADNI, ABIDE, Cam-CAN, and 
BGSP-Harvard datasets are ADNI: 256× 256× 256 , 
176× 256× 256 , 256× 256× 192 and 192× 192× 144 
respectively, they are resized to 64 × 64 × 32.

2.4 � Proposed model
This section provides a comprehensive description of 
the proposed method. Regarding to Fig. 1, the proposed 
model is a fusion of Support Vector Regression (SVR) and 
the 3D_Attention_ResNet regression model. Appendix 1 
shows the details of architecture blocks of Fig. 1 consists 
of number of 3D convolution layers, the size of the out-
put feature maps, and the parameters of each layer.

The architecture comprises an Input Layer responsible for 
receiving the input data. It is followed by three Resnet and 
two Attention blocks. Each Resnet block comprises of 3D 
convolutional layers, Batch Normalization, residual layer, a 
shortcut between the Input Layer (x) and the last BN Layer 
(F(x)), ELU activation function, and Max-pooling. The short-
cut is represented by a pointwise sum of the output feature 
map from these two layers, as denoted by Eq. 1.

Each of the blocks in the architecture includes the 
following steps: extraction the feature maps using 3D 
convolutional layers, applying an activation function 
to introduce non-linearity, normalizing the activations 
using batch normalization to enhance training stabil-
ity, and down-sampling through max-pooling to reduce 
complexity. Also, the proposed model consists of two 
Attention blocks. Each block includes 3D convolutional 
layers, Batch Normalization, ELU activation function 
with alpha equal to 1.0, Attention layer, and Max-pool-
ing. The structure of each block is shown in Eq. 2, 3, and 
4.

(1)H(x) = CNN (x)+ F(x)

(2)
Q = query_embedding = 3DCNN

V = value_embedding = 3DCNN

att = Attention(Q,V )

(3)
Con = Q⊕ att

BN = BatchNorm(Con)

where Q (Query embedding) and V(value embedding) 
are a 3DCNN layer. An attention layer is calculated using 
Q and V according to Eq.  3. After that, attention layer 
and Q are concatenated and fed into a Batch Normaliza-
tion layer. Finally, ELU activation function is applied to 
the output of the Batch Normalization layer and fed into 
max-pooling to reduce the dimension. If the number of 
attention block is i, the output of the ith attention block is 
obtained by Eq. 4.

The proposed model concludes with a Fully Connected 
Block, which comprises a Flatten layer, a Dense layer, an ELU 
activation function, and a Dropout layer. First, the output 
is flattened to transform it into a one-dimensional vector. 
Next, the flattened output is passed through a fully con-
nected dense layer. An ELU activation function, and Drop-
out is applied to the model. Additionally, in the proposed 
model, the gender of the subject is utilized as metadata. A 
one-dimensional array is added to the model as gender of 
the subjects. It is concatenated to the image feature map. 
The two feature maps were combined and utilized in a lin-
ear regression model to estimate brain age. Once the training 
model has been completed, the feature maps extracted from 
the model are fed into the SVR model to estimate the final 
brain age based on Eq. 5, where Fl is the feature map of the 
last of the proposed method and G is Gender of the subject. 
Alg.1 depicts the process of predicting brain age using pro-
posed method.

2.5 � Alzheimer’s disease detection
As previously stated in the introduction, the disparity 
in age between the estimated age determined by ana-
lyzing brain MRI images and the actual chronological 
age is a significant biomarker in the diagnosis of Alz-
heimer’s disease. Hence, the brain age gap serves as the 
only biomarker utilized for the classification of Alzhei-
mer’s disease. We employ two class classifiers to clas-
sify individuals with Alzheimer’s disease and individuals 
without any cognitive impairments. In order to achieve 
improved outcomes, classifiers are employed for the pur-
pose of classification. The utilized classifiers consist of 
Logistic regression [34], Support Vector Machine (SVM) 
[35], which is widely recognized, as well as two Ensem-
ble learning models: Adaboost [36], and XGBoost [37]. In 
order to achieve improved outcomes, an Ensemble learn-
ing approach is employed to combine the results of these 
three classifiers through major voting. We show the AD 
detection using the proposed method and BAG in Alg.2.

(4)Outputi = Max_Pooling(ELU(BN ))

(5)y = SVR(Fl ⊕ G)
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Algorithm 1  Brain age prediction using attention based 3DResNet and SVR
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Algorithm 2  Alzheimer’s disease detection using brain age gap

3 � Results
3.1 � Implementation details
The proposed model for brain age estimation comprises 
three Residual Blocks and two Attention Blocks. Each 
Res Block consists of two 3D convolution layers with a 
kernel size of 3 × 3 × 3, Batch Normalization, Elu activa-
tion function with an alpha value of 1, one 3D convolu-
tion layer with a kernel size of 1 × 1 × 1, a concatenation 
layer, and Maxpooling with a size of 2 × 2 × 2 and stride 2. 
The number of features in the first, second, and third Res 
Blocks are eight, 32, and 128, respectively. Each Attention 

Block is composed of three 3D convolution layers with a 
kernel size of 3 × 3 × 3, Batch Normalization, Elu activa-
tion function with an alpha value of 1, an attention layer, 
and Maxpooling with a size of 2 × 2 × 2 and a stride of 
2. Additionally, the number of features for the first and 
second Attention Blocks are 16 and 64, respectively. At 
the conclusion of the network architecture, there is a flat-
tening layer, followed by a Dense layer with a size of 128 
and a l2 regularization term. Additionally, there is a drop-
out layer with a rate of 0.2, an input layer for capturing 
the gender of the subjects, and a concatenation layer for 
combining the features of MRI images with the gender 
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information of the subjects. The Adam optimization 
algorithm is employed with a learning rate of 0.0007, in 
conjunction with the Mean Squared Error loss function. 
The convergence is achieved after 100 epochs. The net-
work has been implemented utilizing the GPU Tesla T4 
and Intel(R) Xeon(R) CPU @ 2.20 GHz within the Keras 
library in Python 3.9.

3.2 � Analysis of results obtained from the proposed 
method

In this section, the proposed method is evaluated using 
a combination of the four datasets that have been previ-
ously introduced. We used subject leave out approach to 
evaluate our proposed method. The datasets that have 
been introduced are consolidated with 25 percent of the 
subjects designated as the test set. The remaining data is 
allocated for the training and validation sets. The num-
ber of training and test data are illustrated in Table  2. 
Also, the distribution of the training and test sets can be 
observed in Figs. 3a, b, respectively. The proposed model 

is subjected to training and validation processes utilizing 
specific datasets. After the model has achieved conver-
gence, it is subsequently evaluated using an independent 
test set. The Support Vector Regression (SVR) is utilized 
on the feature map of the last layer, yielding the ultimate 
results.

As explained in the introduction section, with aging, 
some changes in the brain including a decrease in the 
total amount of gray matter, enlargement of the ventricles 
[38, 39], changes in the white matter, including damage 
to the myelin sheath, a decrease in the number of cells 
involved in neurotransmission and reorganization of the 
brain can be seen [40]. Also, at younger ages, age detec-
tion is done through other parts, including the parietal 
lobe [20]. Figure 4 is the heatmap obtained from our pro-
posed model using Grad-CAM algorithm [41]. The parts 
of the brain that were more important in our model for 
age estimation are shown in dark red and we have cir-
cled them. As shown in the figure, the proposed model 
for ages over 60 years Fig. 4(a) and (b) made the diagno-
sis based on the temporal lobe including the hippocam-
pus and ventricles, and for ages younger than 40  years 
Fig.  4(c) the parietal lobe sections as well. Is taken into 
consideration.

3.2.1 � Ablation study
In this section, we have added a complete ablation 
study. We have used some other methods instead of 
ResNet blocks and the results are shown in Table 3 In 
the first row, the model is 3D-Resnet and Attention lay-
ers have been removed. In the third and fourth rows, 
we replace 3D-Resnet with 3D-CNN, in the fourth 

Fig. 4  The Heatmap (The most important parts of the brain which are involved in brain age estimation in our proposed method) of the brain 
of three different subjects, which the age of subject a and b are more than 60 and subject c is between 30 and 40 years old. The most important 
parts for brain age estimation are marked with a circle which are ventricles, hippocampus, and some parts of parietal lobe

Table 3  The comparison of the proposed method with some 
other models

Row Model MAE PCC SRCC​ CI

1 3D-resnet 2.53 0.989 0.96 [1.71,3.67]

2 3D-Resnet-Attention 2.13 0.993 0.961 [0.13,0.47]

3 3D CNN 3.7 0.98 0.89 [1.16,1.66]

4 Attention-3D CNN 4.7 0.97 0.84 [-0.66,0.14]

5 Transformer 3.6 0.97 0.88 [1.21,1.80]

6 3D-resnet-Atten-
tion + SVR (proposed)

2.05 0.993 0.961 [0.03,0.37]
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row the attention layers are added and the method is 
the combination of 3D-CNN and one attention lay-
ers. In the last row, we replace the whole network with 
transformer. It is worth noting that although trans-
former is one of the best models for image processing, 
in this work, since there is not enough data to train 
transformer, 3D-Resnet-Attention has better results. 
Based on the results of the models in Table 3, it can be 
seen that 3D-Resnet-Attention has achieved the best 
results compared with the other models on our data-
set. According to these results, we choose this model 

and combine it with a conventional model (SVR), the 
results show the performance of the model is better 
when we use SVR for brain age estimation.

Furthermore, the scatter plot of the relationship 
between the chronological age and the predicted brain 
age for the proposed model is demonstrated in Fig. 5a, 
b depict the scatter plot both with and without Support 
Vector Regression (SVR). The data presented in the Fig-
ure demonstrates that the proposed model accurately 
predicts the age of the majority of healthy subjects in 
the test dataset. Furthermore, the comparison of the 
two Figures demonstrates that the utilization of Sup-
port Vector Regression (SVR) leads to an enhancement 
in performance.

We have changed the number of attention layers from 
1 to three layers, and have shifted attention layer from 
second to third and fourth to fifth layer, the results are 
shown in Table 4. The results show that two Attention 
layers in Second and fourth layers have obtained better 
results.

We compare some learning rates from 0.01to 0.00001 
in Table 5. Based on the results obtained from validation 
set which are shown in the second column of Table 5, the 
best Learning Rate is 0.0007.

Moreover, to select the best activation function for hid-
den layers, we train our model using both ELU and ReLU 
activation function. We show the train and validation loss 
per epoch activation function in Fig. 6. The Figure shows 
that the proposed model converged better using ELU 
activation function. Also, we test the model obtained 
from both ELU and ReLU activation function and the 
results are demonstrated in Table 6. The results show that 
ELU activation function outperforms ReLU.

Fig. 5  the scatter plot of the chronological age and the brain age estimated using the proposed method on 961 test data. a the results 
without the SVR and b the results using the SVR model

Table 4  Comparison the results of different numbers of 
attention layers

#Attention Layers Shift Attention 
layer

Validation MAE

1 layer – 4.38

2 layers – 3.71

3 layers – 5.28

2 layers ✔ 5.27

3 layers ✔ 6.21

Table 5  The comparison of the results of the different Learning 
Rates for optimization function on validation data

Learning Rate Validation MAE

0.00001 8.65

0.0001 3.73

0.001 4.17

0.01 10.82

0.0007 3.71
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Finally, to understand the effect of the pre-processing 
(extracting brain from skull and scalp and N4 bias correc-
tion) removed this part and results have been compared 
in Table 7. As Table 7 shows using the pre-processing is 
needed to improve results.

3.3 � Alzheimer’s detection
In this paper, the proposed method is utilized to predict 
the brain age of cognitively normal (CN) and Alzheimer’s 
disease (AD) subjects from the ADNI dataset. The dataset 
used in this section is the combination of test data of brain 
age estimation (for CN subjects) and a random subset of 
AD subjects. In other words, 25% of CN subjects of ADNI 
dataset (250 MRI images) which are used for brain age 
estimation test, together with 250 randomly selected MRI 
images of AD subjects are utilized for Alzheimer’s disease 
classification. This is significant as the brain age gap, which 
refers to the disparity between brain age and chronologi-
cal age, serves as a valuable biomarker for the detection 
of Alzheimer’s disease. The data is presented in Table  8, 
which provides a comprehensive overview of the details.

The estimated brain age gap between the AD and 
CN groups is determined by calculating the difference 
between the predicted brain age, using the proposed 
method, and the chronological age of the subjects. Fig-
ure 7a, b depict the scatter plots illustrating the relation-
ship between the chronological age and the predicted 
brain age of the CN and AD subjects, respectively. The 
disparity in brain age between subjects with normal cog-
nitive function (CN) and those with Alzheimer’s disease 
(AD) is similar. The disparity in brain age between the 

Fig. 6  Comparison of FLU and ReLU activation function. a: ELU, b: ReLU

Table 6  Comparison the results of ReLU and ELU activation 
function in hidden layers

Method Activation Function MAE

3D-Attention-ResNet- ReLU 3.73

3D-Attention-ResNet ELU 2.05

Table 7  Comparison the results of the proposed method with 
and without pre-processing

Method Pre-processing MAE PCC RMSE

3D-attention-resnet ✔ 2.05 0.99 3.44

3D-attention-resnet – 9.68 0.67 12.3

Table 8  Demographic information of cognitively normal and Alzheimer’s disease subjects from the ADNI dataset

Group Number of 
scans

Number of training 
scans

Number of test 
scans

Age range Average age Male % Female %

CN 250 212 38 62–88 75 ± 7.2 51 49

AD 250 212 38 55–93 74.8 ± 7.5 45 55
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two groups is illustrated in Fig. 8. The observed brain age 
gap among CN subjects is 2.6 ± 1.8, while the brain age 
gap among AD subjects is 6.5 ± 2.8.

The brain age gap that was acquired was inputted into 
four binary classifiers, namely Logistic Regression, SVM, 
AdaBoost, and XGBoost. We consider 15% of the data 
(76 scans) as test and the others are applied to the model 
as training set. In order to enhance the outcomes, the 
combination of these models is acquired through major-
ity voting. The performance of the proposed method is 
assessed using Precision, Recall, F1 score, and accuracy, 
as defined in Eqs. 6, 7, 8, respectively.

The values of these criteria are presented in Table  9. 
According to the Table, it is evident that Adaboost and 
XGBoost outperformed the SVM and Logistic Regres-
sion. Additionally, the combination of classifier results 
through major voting, known as Ensemble learning, 
yielded the most favorable outcome, which are men-
tioned with bold values in Table 9. Based on the obtained 
results, the method demonstrates an accuracy rate of 
92%. Moreover, the ROC curve of Alzheimer’s disease 

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F1 = 2×
Precision× Recall

Precision+ Recall

(9)

Accuracy =
TPR+ TNR

2
=

TP + TN

TP + FN + TN + FP

Fig. 7  the scatter plot of the chronological age and the brain age estimated using the proposed method on 500 test data of ADNI dataset. a 
the results on Cognitively 250 Normal subjects and b the results on 250 Alzheimer’s disease patients

Fig. 8  Brain Age Gap of the 250 Cognitively Normal (CN) and 250 
Alzheimer’s disease (AD) subjects

Table 9  The average of Accuracy, Precision, Recall, and F1 score 
of the proposed method on 76 test data 38 CN and 38 AD)

Model Precision Recall F1 score Accuracy

SVM 0.75 0.81 0.78 0.90

Logistic regression 0.70 0.86 0.77 0.89

AdaBoost 0.80 0.77 0.79 0.91

XGBoost 0.85 0.77 0.80 0.92

Ensemble 0.85 0.76 0.81 0.92
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classification is illustrated in Fig. 9. As shown in the Fig-
ure, the Area Under the Curve (AUC) of the ROC curve 
is 0.87. The results indicates that the considered bio-
marker exhibits strong performance in effectively classi-
fying subjects with Alzheimer’s disease (AD) from those 
without cognitive impairment (CN).

3.4 � Comparison with state‑of‑the‑art
To show the performance of our proposed method, 
we compared the results of the proposed methods 
with the results of some state-of-the-art methods in 
Table  10. We have compared our results with other 
state-of-the-art methods using some metrics such as 
r (Pearson Correlation Coefficient), R2 (Coefficient of 
Determination), RMSE, and MAE. As we have already 

Fig. 9  The ROC curve of Alzheimer’s disease classification using Logistic Regression, Adaboost, XGboost, SVM and Ensemble learning

Table 10  Comparison of the proposed model with the state-of-the-art methods

Row Method Train dataset Test dataset MAE RMSE r R2

1 Proposed Harvard, ADNI, ABIDE CamCAN 2.4 3.46 0.98 0.93

2 3D CNN [15] nine datasets CamCAN 4.21 – 0.96 –

3 CNN-MLP [42] Five datasets CamCAN 4.91 6.14 – 0.89

4 XGBoost [44] IXI IXI – 15.2 0.45 0.14

5 Proposed IXI IXI 8.9 11.87 0.67 0.36

6 Deep NN [43] ABIDE ABIDE 2.19 – 0.89 –

7 Proposed Harvard, ADNI, Cam-CAN ABIDE 2.73 4.01 0.98 0.93

8 Proposed Harvard, ADNI, Cam-CAN, ABIDE Harvard, ADNI, Cam-
CAN, ABIDE

2.05 3.17 0.99 0.94
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stated, one of the advantages of our method is that 
due to the use of several different datasets with dif-
ferent distributions as training set, the generalizabil-
ity of the model to new data is high. This claim can be 
seen in the first, fifth and seventh rows of the Table. 
We separate Cam-CAN dataset once and use the rest 
of the datasets for training the model, and then we 
test the model on Cam-CAN dataset the results are in 
the first row of the Table. Comparing the results with 
the method introduced in [15, 42], which used a 3D 
CNN, and a combination of CNN and MLP respec-
tively, shows that our model has a much better perfor-
mance. Also, we separate the ABIDE dataset once and 
perform the training with the rest of the datasets and 
then teste on ABIDE dataset, and compare with the 
method proposed in [43] as shown in fifth and sixth 
rows on Table 10. The results show that although the 
MAE of this method is slightly better, our method has 
also achieved a very good results and the difference of 
MAE rate between the two methods is very small and 
insignificant. Also, to show that the model works well 
even with a small amount of data, we have trained and 
tested the model once on the IXI dataset and com-
pared it with the results of the method that calculated 
brain age by using XG Boost classification method 
[44], which these two methods have been showed in 
the fourth and fifth rows. Comparing the results shows 
that our proposed method has performed much bet-
ter than that method. In the last row of the Table, the 
results of the proposed method which is trained and 
test on whole selected datasets (Harvard, ADNI, Cam-
CAN, ABIDE) are shown. The results demonstrated 
that our proposed method performs well in these data.

4 � Discussion
This section comprises two subsections dedicated to the 
analysis and discussion of the paper. Section 4.1 provides 
a comprehensive analysis of the significance of brain age 
estimation, the proposed methodology, and the dataset 
employed. Additionally, Sect. 4.2 discusses about the uti-
lization of the brain age gap as a potential biomarker for 
Alzheimer’s disease detection.

4.1 � Estimation of brain age
As mentioned in the introduction, the aging process 
induces alterations in several areas of the brain, including 
grey matter and white matter. The accurate prediction 
and estimation of brain age through imaging techniques 
are of crucial significance in diagnosing neurodegenera-
tive diseases. Gaining access to extensive datasets poses 
a significant challenge, thereby impeding the effective 
training of models. In order to mitigate potential biases 

and enhance the robustness of our model, we have inte-
grated four distinct datasets (ADNI, GSP-Harvard, 
ABIDE, and Cam-can) in this study. This approach 
allows us to augment the data volume and avoid over-
reliance on any single dataset. Attention-based models 
have shown promising outcomes in various domains. 
Therefore, we have utilized a 3D ResNet approach that 
incorporates the attention mechanism. Furthermore, 
our examination of the available literature has indicated 
that the Support Vector Regression (SVR) algorithm has 
demonstrated promising results in the field of brain age 
estimation. As a result, our methodology integrates two 
machine learning techniques, namely attention-based 
ResNet and SVR, in order to accurately estimate brain 
age. In addition, the results were further enhanced by 
incorporating gender information of the subjects. The 
network architecture comprises three 3D ResNet blocks 
and two 3D attention blocks, which are responsible 
for extracting feature maps. The feature maps, in addi-
tion to the gender information, are subsequently input-
ted into the Support Vector Regression (SVR) model to 
acquire the ultimate prediction. The proposed model was 
evaluated on a test set consisting of 961 samples, which 
represents 25% of the combined four datasets. The eval-
uation resulted in Mean Absolute Error (MAE) of 2.05, 
RMSE of 3.17, Pearson Correlation Coefficient (PCC) of 
0.99, R2 of 0.94 Spearman’s Rank Correlation Coefficient 
(SRCC) of 0.96 and 95% Confidence Intervals (CI 0.03–
0.37). The obtained results showcase the efficacy of our 
model in accurately forecasting brain age. Furthermore, 
a comparative analysis was conducted between our pro-
posed method and some other methods like 3D CNN 
and transformer. The findings unequivocally demonstrate 
the superior performance of our approach. In addition, 
Grad-Cam method is used to show interpretability of the 
proposed method to detect the most important regions 
of the brain in determining the age. The results of Grad-
Cam demonstrate that decision making of the proposed 
method is based on the regions which are mentioned in 
the literature.

Since the distribution of data in each dataset is the 
same, and if a dataset is used as a training dataset, no 
matter how big the dataset is, the model will be biased 
on that dataset and will have less generalizability. One of 
the advantages of our proposed method is using several 

Table 11  The results obtained from CamCAN dataset using one 
and the combination of three datasets

Train Test MAE

BSGP CamCAN 9.8

BSGP, ADNI, ABIDE CamCAN 2.4
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datasets as training datasets instead of one dataset that 
made the model not biased on one dataset and increased 
its generalizability. Because the main purpose of propos-
ing the method in the articles is to be able to use it in real 
data, if the model is biased on a dataset, it usually does not 
give a good answer in real situation. In order to prove this 
claim, once, we use our biggest dataset (BSGP) as train-
ing set and test the model on CamCAN dataset, and also, 
we separated the Cam-CAN dataset from the training 
data and trained the model on ADNI, ABIDE, and BSGP 
datasets, and then we tested it on the Cam-CAN dataset. 
The results are shown in Table 11. Based on the Table, the 
MAE of the model in this situation has been 2.4 and if we 
train the model only on BSGP-Harvard dataset and test in 
on Cam-CAN dataset, MAE has been 9.8.

Time and required memory of the proposed method 
is also computed and the results are shown in Table  12 
in compare to one of the state-of-the-art methods. Since 
used hardware are not the same, we have added the 
details of used hardware as a column.

4.2 � Alzheimer’s disease detection
The disparity in brain age, which refers to the variance 
between an individual’s chronological age and their esti-
mated brain age, is a dependable biomarker utilized in 
the identification of neurodegenerative conditions like 
Alzheimer’s disease. To Show the efficiency of BAG for 
Alzheimer’s Disease detection, we used this biomarker 
to classify healthy people from Alzheimer’s patients. 
To this aim, first, we selected some data from ADNI 
as a Cognitively Normal (CN) dataset and an Alzhei-
mer’s Disease (AD) dataset. Then, we calculated BAG of 
each of these data, and finally, the binary classification 
to classify CN and AD subjects is applied on data. Fol-
lowing that, we utilized four widely recognized classifier 
algorithms, namely Logistic Regression (LR), Support 
Vector Machine (SVM), AdaBoost, and XGBoost. We 
then employed a majority voting approach to combine 
the outcomes of these algorithms as Ensemble learning. 
The precision, recall, F1 score, and accuracy metrics for 
our model were computed as 0.85, 0.76, 0.81, and 0.92, 
respectively. The results indicate that the proposed 
method not only estimate age of healthy subjects with 
high performance but the estimated age can also detect 
Alzheimer’s disease as well.

5 � Conclusion and future works
The brain age gap is regarded as an effective biomarker 
for the diagnosis of Alzheimer’s disease due to its direct 
association with neurodegenerative diseases which are 
characterized by an unconventional acceleration in brain 
ageing. This article utilizes a combination of four datasets 
to enhance generalizability and mitigate potential biases 
in the model. This article introduces an approach that 
combines attention-based ResNet with the traditional 
Support Vector Regression (SVR) method to achieve 
improved outcomes. By employing this methodology, we 
have successfully obtained a Mean Absolute Error (MAE) 
value of 2.05. This result is considered beneficial com-
pared to previous research studies’ findings. Interpret-
ability of the proposed method using Grad-Cam is also 
showed to identify the specific regions of the brain that 
play a significant role in determining the age of the brain. 
The results of Grad-Cam demonstrate that the method 
decides based on the regions that are mentioned in the 
literature. In order to demonstrate the efficacy of the pro-
posed approach, the BAG has been utilized as the only 
biomarker for diagnosing Alzheimer’s disease, resulting 
in an accuracy rate of 92% and AUC equal to 0.87. The 
results indicate that this particular methodology is an 
appropriate approach for determining brain age. This 
article utilizes individuals’ gender as metadata, while also 
considering the potential use of other metadata for future 
works.

One of the limitations of the proposed method is that 
it is not resistant to noise and artifacts, and noise and 
artifacts must be removed before entering data into the 
model. Therefore, in future works, we will try to propose 
a method that is resistant to noise and artifacts. Also, the 
proposed method has only been used to classify healthy 
people from Alzheimer’s disease and has not been used 
to predict Alzheimer’s disease, that is, to classify MCI 
patients. In the future, we will try to check the effective-
ness of the model for predicting Alzheimer’s disease.

Appendix 1
See Table 13

Table 12  Training and Test time and required memory of the proposed method compared to one of the state-of-the-art methods

Model GPU Training Time Test Time (per Image) Memory

Proposed NVIDIA Tesla T4 GPU with 12 GB 
memory

2.06 h 28 ms 8.98 GB

CNN-MLP [42] Two NVIDIA Titan Xp GPUs 
with 12 GB memory

5.28 h Not Reported Not reported
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