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with optimized channels
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Abstract 

The hand motor activity can be identified and converted into commands for controlling machines through a brain-
computer interface (BCI) system. Electroencephalography (EEG) based BCI systems employ electrodes to measure 
the electrical brain activity projected at the scalp and discern patterns. However, the volume conduction problem 
attenuates the electric potential from the brain to the scalp and introduces spatial mixing to the signals. EEG source 
imaging (ESI) techniques can be applied to alleviate these issues and enhance the spatial segregation of information. 
Despite this potential solution, the use of ESI has not been extensively applied in BCI systems, largely due to accuracy 
concerns over reconstruction accuracy when using low-density EEG (ldEEG), which is commonly used in BCIs. To 
overcome these accuracy issues in low channel counts, recent studies have proposed reducing the number of EEG 
channels based on optimized channel selection. This work presents an evaluation of the spatial and temporal accu-
racy of ESI when applying optimized channel selection towards ldEEG number of channels. For this, a simulation study 
of source activity related to hand movement has been performed using as a starting point an EEG system with 339 
channels. The results obtained after optimization show that the activity in the concerned areas can be retrieved 
with a spatial accuracy of 3.99, 10.69, and 14.29 mm (localization error) when using 32, 16, and 8 channel counts 
respectively. In addition, the use of optimally selected electrodes has been validated in a motor imagery classifica-
tion task, obtaining a higher classification performance when using 16 optimally selected channels than 32 typical 
electrode distributions under 10–10 system, and obtaining higher classification performance when combining ESI 
methods with the optimal selected channels.
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1  Introduction
The human primary motor cortex (M1) has been identi-
fied as the area responsible for commanding the execu-
tion of hand movements [23]. This area is characterized 
for exhibiting mainly a mu rhythm (frequencies around 
8–12  Hz) at rest. An attenuation of the power of this 
rhythm, also called event-related desynchronization 
(ERD), in the contralateral cortex is presented during 
the execution/imagination of hand movements [22, 23]. 
This particular phenomenon in the mu rhythm has been 
exploited by brain-computer-interfaces (BCIs) to discern 
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the hand that was executing an actual or imagined move-
ment and convert those motor events into commands for 
a human peripheral system [9, 10, 24].

Most of the BCIs are based on the analysis performed 
using the information registered by the electrodes on 
the scalp (electrode space) [15], which is characterized 
by the low spatial resolution due to the volume conduc-
tion effect. In this, the potential generated by the electri-
cal activity in the brain gets mixed and attenuated due to 
the different layers and their different conductivity prop-
erties before reaching the scalp. EEG Source imaging 
(ESI) methods can accurately retrieve the source activ-
ity and unmix the signals registered at the scalp; result-
ing in a better spatial discrimination of the underlying 
activity [10]. However, ESI requires high-density EEG 
(hdEEG) and a volume conduction model of the head, to 
perform accurate estimations [17]. Those requirements, 
in addition to computational concerns, might have con-
tributed to fewer implementations of BCI systems based 
on source activity. Despite this concern, multiple studies 
have demonstrated that source-centered BCIs are fea-
sible in online scenarios [2, 16] and can outperform the 
electrode only based BCIs [3, 7, 28]. However, ldEEG is 
still preferable in BCIs due to its lower cost, increased 
wearability, and ease of use.

Regarding the use of ldEEG in ESI, a recent study [26], 
presented an automated framework for optimal selection 
of ldEEG electrode positions that attained higher spa-
tial accuracy than coverage-based electrode distribution 
and close to hdEEG accuracy. In [14], the authors used 
ldEEG, 26 channels, and source space to detect lower 
limb movements. Although ldEEG was utilized, no opti-
mal electrode selection was conducted and electrodes 
were placed based on scalp coverage criteria. Inspired by 
those, here we propose an evaluation of the reconstruc-
tion accuracy with optimized channels with the purpose 
of exploring the boundaries of ldEEG for estimating the 
source activity of hand movement-related areas. To per-
form such evaluation, first, we simulated source activ-
ity in the region of interest (ROI). Then, we applied the 
framework of optimal selection of electrode location 
from [26] and introduced new constraints to evaluate the 
performance of symmetrical and non-symmetrical elec-
trode distributions. The contribution of this paper is to 
conduct an evaluation of how accurate can the estimation 
of the source activity be in the cortical hand movement-
related areas, and provide information that can facilitate 
closing the gap between ESI and BCIs.

2 � Simulation of source activity in the hand 
movement‑related areas

To simulate activity we made use of the EEG forward 
equation that defines the EEG:

where the matrix y represents the EEG channel data. The 
matrix x represents the time courses of the source activ-
ity. The matrix M , often called the lead field matrix, rep-
resents the morphology and conductivity of the brain 
and contains the linear relationship between the cortical 
sources and the signals at the scalp. The matrix ε repre-
sents the noise registered in the measurements. We fol-
lowed these steps for the simulations: forward modeling, 
ROI definition, simulation of source time courses, EEG 
computation, and noise addition.

2.1 � Forward modeling
To obtain the lead field matrix M , we computed a bound-
ary element method (BEM) model based on the MRI 
images of a 27-year-old subject. The MRI images were pro-
cessed and segmented using Freesurfer [4], and the BEM 
surfaces of the scalp, skull, and brain were generated using 
Freesurfer and MNE-python [8]. A set of 339 electrodes 
named and positioned according to the international 10-05 
system were co-registered and projected into the scalp. 
Then, the lead field matrix for the 10-05 set was computed 
using the BEM surfaces and the projected electrodes. The 
number of sources was defined as 4098 per hemisphere, 
and the default MNE-python conductivities of 0.3, 0.006, 
and S/m were used for scalp, skull, and brain, respectively.

2.2 � ROI definition
Previous studies [1, 3, 10, 31] have identified the sensory-
motor cortex as the source regions where the upper limp 
movements take place, in particular, the so-called hand 
knob of the precentral gyrus has been found common 
across these studies. To define the ROI in the hand knobs 
we inspected the 3D surface of the cortex and manually 
labeled the center of the hand knob in each hemisphere. 
Two sets of sources around the markers were established 
by selecting the 20 closest sources to each marker. The 
40 source locations and hand knobs ROIs are depicted in 
Fig. 1.

2.3 � Simulation of source time‑courses
Two epochs of 2Hz were simulated per each source in the 
ROIs, resulting in 80 epochs. In each epoch three sources 
were activated: the main source within the ROIs and two 
more background sources outside them. The sources were 
generated using a sinusoidal Gaussian windowed activity as 
in [26, 27], by using the following equation:

The time course of the i − th source is defined by the 
maximum amplitude ai , the time center ci , frequency 

(1)y = Mx + ε

(2)xi(t) = aie
− 1

2 (
t−ci
σ

)2sin(2π fit)
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fi , and window width σi . The three activities were cen-
tered at 1Hz. The main source was simulated with a fre-
quency of 10Hz and width 0.12. The background sources 
were simulated outside the ROIs to emulate brain activ-
ity from other areas and generate interference to the ESI 
algorithms, their location was randomly selected and 
they should be at least 3cm from the main source. Their 
amplitude was 10% of the amplitude of the main source, 
with a width of 0.12 and frequencies of 5 and 20Hz.

2.4 � EEG computation and noise addition
The EEG was computed using the forward equation pre-
sented in Eq 1, and the matrices M and x generated at 
forward modeling and source time courses simulation 
stages. After obtaining the matrix y , Gaussian noise was 
added to represent the noise in the measurements, three 
different levels of signal-to-noise ratio were used 10, 5, 
and 0dB.

Figure  1 summarizes the procedure of simulation of 
source activity in the hand movement-related areas

3 � Optimal selection of EEG channels
To select and reduce the number of channels, we used 
the automatic methodology for electrode selection pre-
sented in [26]. In it, the non-dominated sorting genetic 

algorithm II (NSGA-II) is combined with ESI algorithms. 
The number of channels used during ESI and the locali-
zation error are minimized in a multi-objective optimiza-
tion problem.

3.1 � Algorithm modification
In the original work [26], authors applied the method-
ology over epochs, therefore combinations of channels 
were optimized in each epoch. In this work, we intro-
duced a main modification: the optimization is per-
formed over all epochs to obtain a single combination 
instead of an epoch-wise combination.

3.2 � Constraints
We performed multiple tests in an attempt to iden-
tify combinations that lead to the lower reconstruction 
errors: constraining the search space to the 10-10 stand-
ard electrode placement, without search space constraint, 
adding a symmetricity constraint to maintain the num-
ber of channels equal between both hemispheres and 
performed cascade search optimization. In the cascade 
search, we performed three nested optimizations for 32, 
16, and 8 channels, the second and third optimization 
were constrained to the previous combination found.

Fig. 1  Simulation procedure of the source activity in the hand movement-related areas
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3.3 � Channel optimization process
The NSGA-II overall process for ESI is presented in 
Fig.  2. It starts with an initialization by generating a 
population of individuals randomly, each individual 
is represented by a binary chromosome with g genes. 
In the context of channel optimization, each chromo-
some represents a combination of channels, in which 
each gene represents a specific channel location as 
ilustrated in Fig. 2. In a next step, each chromosome is 
used to weight the EEG. This represents that if a gene 
has a value of 1, the channel information will be used 
during ESI, otherwise the channel is not used and its 

information is zeroing. Then, each individual (combina-
tion of channels) of the population is used to perform 
ESI over each simulated trial. Each individual is evalu-
ated with two performance indexes, objectives to min-
imize: The average localization error over all trials by 
comparing the estimated source with the ground truth, 
and the number of channels. After evaluating each 
channel combination the performance indexes return 
to the NSGA-II block. In it individuals are sorted 
according to their performance using a non-dominated 
strategy. An individual is said to dominate another if 
it is superior in at least one objective and not worse in 

Fig. 2  EEG NSGA-II Channel Optimization for ESI
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any other objective. In this block, half of the popula-
tion is selected to continue in the next generation and 
used to create half of a new generation using crossover 
and mutation procedures. At this point, each individual 
is verified to comply with the constraints, otherwise, 
the individual is removed and a new individual is cre-
ated, until complete a new generation. This process is 
repeated with the next generation until a maximum 
number of generations is reached. After all the process 
is complete, all the individuals are analyzed to iden-
tify the best channel combinations per each number of 
channels and the non-dominated individuals.

3.4 � ESI algorithms
The standardized low-resolution electromagnetic tomog-
raphy (sLORETA) [20] and weighted minimum norm 
estimation (wMNE) [6] were used to estimate the source 
activity during NSGA-II optimization. These algorithms 
were selected based on the results of previous work in 
[25, 26], where multiple ESI algorithms were evaluated 
in ldEEG conditions, and it was found that wMNE and 
sLORETA consistently obtained the lowest source locali-
zation errors. Both algorithms are based on minimum 
norm estimation, where the ESI problem can be consid-
ered as an optimization problem as follows:

As the number of variables to estimate (source activity 
x ) is much higher than the number of observations (EEG 
channels y ) the problem is mathematically ill-posed and 
ill-conditioned [11]. This means that infinite solutions for 
the source activity x can be found to minimize J  and fit 
with the EEG data y . To find a unique solution, the algo-
rithms make use of Tikhonov-Phillips regularization by 
including a regularization parameter � that weights the 
norm of the estimated solution:

The ESI solutions of wMNE and sLORETA are given by 
the following equations:

The solution of wMNE uses a weighting matrix W  to 
influence the weight of the deep sources, resulting in 
a better localization of the source activity of the deeper 
sources [5]. Its value is computed using the following 
equation:

(3)J = argmin(x){||Mx − y||22}

(4)J = argmin(x,�){||Mx − y||22 + �
2||x||22}

(5)x̂wMNE = W−1MT (MW−1MT + �
2I)−1y

(6)x̂sLOR =

√

1

[Sx]ii
MT (MMT + �

2I)−1y

where W  is a diagonal matrix, and ‖ls‖2 the Euclidean 
norm of the s-th column of M.

The solution of sLORETA is usually smooth (estima-
tions are blurry and widespread over large areas) but it 
is recognized by its zero localization error in the absence 
of noise [20]. In its solution sLORETA introduces a non-
linear standardization of the solution using the variance 
of the estimated activity Sx , this variance is defined by:

The Eucledian distance was used to compute the localiza-
tion error by comparing the position of the ground-truth 
source Px and the estimated source position Px̂ using the 
follow equation:

where Px̂ is selected from the estimated source activity x̂ 
by selecting the location of the source with the highest 
power value.

4 � Classification of motor imagery task using 
selected optimal channels and ESI

In order to evaluate the optimal channels selected in the 
previous step, the same participant who underwent the 
MRI session, and whose brain model was used for the 
channel optimization, was invited to participate in an 
EEG recording session while performing a protocol of 
motor imagery for hands movements.

4.1 � Data recording
The motor activity was recorded with a 32-channel EEG 
amplifier (Explore+ , Mentalab GmbH, Munich, Ger-
many). A cap based on the standard 10-10 was used to 
attach the electrodes to the scalp and a wet electrode 
was attached to the earlobe as a reference for the ampli-
fier. The position of the electrodes was defined based on 
the results of Section 3, by constraining the search space 
to electrode positions within the 10-10 system and per-
forming a cascade search. To compare optimal chan-
nels versus a symmetric distribution covering mostly the 
sensory-motor cortex, the optimal 16 electrodes with 
sLORETA (localization error of 12.61mm, see last col-
umn in Table 1) were selected. To obtain the 32 channels, 
the optimal distribution with 16 was expanded by add-
ing the corresponding electrodes in the opposite hemi-
sphere and below and above the Cz until obtaining the 
most symmetrical distribution possible, Fig.  3 presents 
the 16 optimal selected electrodes (constrained 10-10 
system and cascade search) and their expansion to make 

(7)W−1 = diag

[

1

�l1�2
,

1

�l2�2
, ...,

1

�ls�2

]

(8)Sx = MT (MMT + �
2I)−1M

(9)LocE = �Px − Px̂�2
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a symmetrical distribution of 32 channels. Dry electrodes 
were used during the data collection, the impedances 
were measured before the beginning of the recordings 
and they were kept below 50k�.

4.2 � Motor imagery/execution protocol
A modified version of a goal-directed protocol from [21] 
was implemented. In each trial, a fixation cross is pre-
sented during 500–1000 mHz. Then, a white arrow was 
shown during 1500–2000 mHz to the participant either 
at the right or left side of the screen to indicate the goal 
to touch and the hand to use. Finally, the arrow changed 
color to red as a cue to start imagining/executing the 
movement to touch the arrow on the screen, the cue 
lasts for 5000 mHz. Two runs for each motor execution 
and motor imagery were recorded. In each run, 30 trials 
were performed for each hand. A run for execution was 
performed before each imagination run to facilitate the 
imagination of the task. Within each run the trials were 
randomized to avoid carryover effects from one trial 

to the next. Figure  4 presents an example of the imple-
mented protocol.

4.3 � Data processing
The data processing and classification have been done 
offline, after the recording the data was imported and 
processed using MNE-python [8]. A zero-phase finite 
impulse response (FIR) notch filter was applied to remove 
the power line at 50 and 100 Hz. Then a zero-phase FIR 
high-pass filter is applied at 0.1  Hz. The channels are 
divided into two sets at this point by forming a set con-
taining all the 32 channels, and a set containing the 16 
optimal channels. A common average reference (CAR) 
procedure is applied to each set of channels, the channels 
were split into two groups to emulate the recording with 
only 16 channels and avoid any influence of the comple-
mentary 16 channels over the optimal 16 channels dur-
ing the CAR procedure. Then, a band-pass filtered with 
cutoff frequencies of 8 and 12 Hz was applied to each set 
of data to extract the activity in the frequency of the Mu 

Fig. 3  Combinations of 16 optimal channels for sLORETA constrained to 10-10 system and with cascade search, and the 32 channels used 
for recording

Fig. 4  Protocol of goal-directed motor imagery/executed movement, an example of a right hand trial is displayed



Page 7 of 12Soler et al. Brain Informatics           (2024) 11:11 	

rhythm [22, 31]. Finally, epochs of each trial were defined 
between − 1000 and 3000 mHz before and after the cue 
to start imagining/executing the limb.

4.4 � Feature extraction and classification
Two types of epochs are used as input for the feature 
extraction process: The epochs directly from electrode 
data and the epochs from the estimated sources. The 
epochs in the source space are computed using sLO-
RETA. The ESI method computes the activity of the 
whole set of 8196 sources and then the activity of the 
handknobs ROI is extracted using the same ROI criterion 
as in Sect.  2, extracting only the time courses of the 40 
selected locations in the handknobs ROI. The epoched 
data from source/electrode space is used as input for 
feature extraction performed by applying the common 
spatial filter (CSP) method. To apply the CSP, the data is 
split into testing (30%) and training (70%), and the CSP 
is computed in the training set and then applied to the 
testing set. Similarly, the features are standardized by 
computing and applying a standard scaler over the train-
ing features and then applying it over the testing features. 
Then the training features are used to train three models 
based on the following types of classifiers: Random For-
est (RF), support vector machine (SVM), and linear dis-
criminant analysis (LDA). Finally, the trained models are 
evaluated over the unseen testing features. This process 
is repeated 10 times to form a 10-fold cross-validation. 
During each fold, the accuracy, F1 score, precision, and 
recall are computed from the confusion matrix, where 
the true negative (TN) and true positive (TP) predictions 
are presented in the diagonal, and the false negative (FN) 

and false positive (FP) predictions in the anti-diagonal, 
the metrics are computed using the following equations:

5 � Results
5.1 � Optimal channel selection
A summary of the performed tests for the optimal selec-
tion of EEG channels is presented in Table 1. The locali-
zation error presented is the mean of the localization 
error across all epochs. We first evaluated the dataset 
with the three levels of added noise and constrained the 
search space to the 10–10 standard electrode placement. 
The localization error between the three levels of noise 
was similar, i.e. for 8 channels the errors were between 
15.45 and 16.07 mm for sLORETA and 16.08–17.01 mm 
for wMNE. As the difference is less than 1mm between 
the highest and lowest error for all electrode counts, we 
decided to continue the evaluations only with the dataset 
of higher noise level (0dB).

(10)Accuracy =
TN + TP

TN + FN + TP + FP

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)

F1 score = 2 ·
precision · recall

precision+ recall
= 2 ·

TP

2TP + FP + FN

Table 1  Localization error (mm) and standard deviation of the optimization test

The values remarked correspond to the best result with a given number of channels and ESI method. The values in the parenthesis correspond to the standard 
deviation

Dataset 10dB 5dB 0dB

Constraint type 10–10 system 10–10 system, 
symmetricity, cascade 
search

Symmetricity No constraints 10–10 system, 
cascade search

8 chs sLORETA 15.87 (10.54) 15.45 (9.03) 16.07 (10.11) 18.59 (7.97) 14.29 (5.04) 14.74 (7.24) 16.75 (11.68)

wMNE 16.08 (8.87) 16.19 (9.22) 17.01 (13.05) 19.49 (10.69) 14.94 (7.69) 14.80 (10.84) 16.64 (12.12)

16 chs sLORETA 12.66 (9.10) 12.58 (9.04) 13.11 (8.77) 16.45 (9.58) 11.56 (5.57) 10.69 (6.61) 12.61 (9.09)

wMNE 12.90 (8.92) 13.62 (8.82) 13.64 (8.89) 15.65 (8.87) 12.63 (5.11) 12.01 (5.74) 13.91 (9.19)

32 chs sLORETA 7.80 (8.70) 7.85 (8.42) 7.74 (8.68) 8.42 (8.81) 6.02 (7.38) 5.07 (5.64) 8.41 (8.49)

wMNE 7.30 (8.74) 7.32 (8.31) 6.45 (7.82) 7.20 (8.39) 3.99 (6.37) 5.18 (6.29) 6.62 (8.60)

72 chs (10-
10 system)

sLORETA 4.00 (7.15) 4.01 (7.15) 4.05 (7.16) 4.05 (7.16) – – 4.05 (7.16)

wMNE 3.77 (6.99) 3.75 (6.98) 3.65 (6.99) 3.65 (6.99) – – 3.65 (6.99)
339 chs sLORETA – – – – 0.00 (0.00) 0.00 (0.00) –

wMNE – – – – 0.00 (0.00) 0.00 (0.00) –
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The less accurate results were obtained when adding 
multiple constraints, in particular, the case when the 
optimization was performed in cascade with hemispheri-
cal symmetricity and search within the 10–10 system. 
The effect of these constraints increased the localiza-
tion error between 2.01 and 3.34mm in the lower chan-
nel counts of 8 and 16 channels when compared with 
only applying the 10–10 system constraint. On the con-
trary, when fewer constraints were imposed, the accu-
racy increased. As shown in Table 1, the highest accuracy 
values were obtained when no constraint was imposed 
or when only applying symmetricity constraint. These 
results coincide with the bigger search space of 339 chan-
nels, as no 10-10 system constraint was imposed in both 
cases. In these two cases, the localization error was low-
ered between 1.63 and 2.67 mm when compared with the 
10–10 system constraint. The Pareto fronts when con-
straining the search space to 10–10 system and without 
constraint, search space of 339 channels, are presented in 
Fig. 5. It is noticeable that the Pareto fronts of sLORETA 
and wMNE were more accurate when not limiting the 
search space.

The 8 channel combinations for the cases with the 
search space of 339 channels with and without symme-
tricity for sLORETA are presented in Fig. 6. From them, 
it can be seen that the electrodes were found close to 
the motor cortex areas, in both cases with one electrode 
slightly separate from the others.

5.2 � Classification
A summary of the classification results is presented in 
Table  2. The results are divided into electrode space 
and source space. When comparing the results in those 

domains it can be seen that the classification metrics 
are higher when extracting features from the handknobs 
source space than the classification metrics from the 
same classifier and number of channels when extract-
ing features from the electrode space. Notice that only 
for one case the performance was better in the electrode 
space (16 channels, RF classifier). In addition when com-
paring the accuracy between the number of channels, in 
all cases except one, the performance was higher with 
the optimally selected 16 channels than the 32 typical 
electrode distribution. The highest classification accu-
racy 0.8444(0.0499) was obtained using a LDA classifier 
extracting the features from reconstructed source space. 
The reconstruction was obtained by combining ESI with 
sLORETA and the 16 optimally selected electrodes.

6 � Discussion and conclusion
The localization error is an indication of the spatial 
accuracy, here, in the best evaluation cases we obtained 
14.29 mm (8 channels, sLORETA, and only symmetricity 
constraint), 10.69  mm (16 channels, sLORETA, and no 
constraints), and 3.99 mm (32 channels, wMNE, and only 
symmetricity constraint). As in [27], we confirmed that 
the channel optimization with NSGA-II enables us to 
find channel combinations that led to the closest values 
to hdEEG accuracy values, in particular, the combination 
with 32 channels is less than 0.5 mm from the accuracy 
obtained with 72 channels in 10–10 system.

This research provides a pipeline to optimize the 
number of channels and identify ldEEG channel com-
binations for an individual subject that reduces the gap 
between hdEEG and ldEEG spatial accuracy. This system-
atic search for the best electrode positions was done as 

Fig. 5  Comparison of Pareto fronts for SNR 0dB dataset when constraining the search space to the 10–10 positioning system 
and without constraining (search space of 339 positions)
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a first step in the design of dedicated EEG systems that 
can monitor the cortical source activity and facilitate the 
implementation of BCI systems for assisting in the reha-
bilitation of hand movement in stroke survivors. The 
previous studies in [3, 7, 14, 28] demonstrated that the 
source space can outperform the sensor space. Here, our 
results indicate that 16 channels could provide an accu-
rate reconstruction to be used in BCIs related to hand 
movements.

Previous works have applied NSGA optimization to 
improve classification task in emotion studies [18], EEG 
sleep scoring [29], and EEG epilepsy detection [19]. How-
ever those studies focused on the electrode space, while 
in here, the channel optimization pipeline was applied to 
estimate the activity in ROIs with ESI, and then the opti-
mized channels were used in a BCI context for motor 
imagery classification. It is important to indicate that 
the optimized channels have been found using the head 

Fig. 6  Combinations of 8 channels for sLORETA without constraints and with symmetricity constraint

Table 2  Classification accuracy, F1-score, Precision, and Recall

The metrics were obtained by extracting features from electrode data and extracting features from reconstructed sources by sLORETA. The values remarked 
correspond to the best result in Source and Electrode Space. The values in the parenthesis correspond to the standard deviation

Electrode space

No Chs. Classifier Accuracy F1 Score Precision Recall

32 SVM 0.7195 (0.0672) 0,712 (0,0710) 0,7372 (0,0658) 0,7265 (0,0609)

32 RF 0.725 (0.0473) 0,7223 (0,0484) 0,731 (0,0458) 0,7327 (0,0456)

32 LDA 0.6972 (0.0576) 0,6949 (0,0587) 0,706 (0,0582) 0,7075 (0,0590)

16 SVM 0.7667 (0.0768) 0,7629 (0,0786) 0,7764 (0,0687) 0,7731 (0,0698)

16 RF 0.8167 (0.0586) 0,8155 (0,0588) 0,8208 (0,0558) 0,8244 (0,0578)
16 LDA 0.7694 (0.0569) 0,764 (0,0591) 0,7778 (0,0624) 0,7673 (0,0572)

Source space

No Chs. Classifier Accuracy F1 Score Precision Recall

32 SVM 0.7387 (0.0598) 0,7374 (0,0595) 0,7504 (0,0613) 0,7471 (0,0610)

32 RF 0.7667 (0.0544) 0,7644 (0,0548) 0,7719 (0,0571) 0,7695 (0,0541)

32 LDA 0.7054 (0.0377) 0,7029 (0,0370) 0,7067 (0,0340) 0,7103 (0,0396)

16 SVM 0.8083 (0.0576) 0,8068 (0,0579) 0,8173 (0,0544) 0,815 (0,0528)

16 RF 0.7194 (0.0761) 0,7168 (0,0771) 0,7218 (0,0796) 0,7238 (0,0793)

16 LDA 0.8444 (0.0499) 0,8421 (0,0520) 0,8459 (0,0559) 0,8485 (0,0481)
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model of the specific participant. We anticipate that opti-
mal channels can vary across subjects due to inter-sub-
ject variability, and across neuroparadigms as the brain 
ROI change according to the activity to study. However, 
further studies should be done to evaluate the optimized 
channels with template models over large subjects pop-
ulations, and clarify the impact of combining ESI with 
channel optimization in other classification tasks.

The level of accuracy required for source-based BCIs 
for hand movements might depend on the type of imag-
ined movements to classify. The boundaries of the appli-
cations should be clarified in further studies, i.e. it is 
noticeable that classifying between right or left hand 
might require lower spatial accuracy than classifying 
within wrist movements of the same limb. As shown 
here, the spatial accuracy of the 16 optimal channels 
was enough the obtain better performance than with 32 
channels, and also enough to obtain better performance 
when using the source space for classification rather than 
the electrode space.

The results indicate that when a bigger search space 
is used, better localization accuracy could be obtained. 
This should be considered in BCI systems, exploring 
electrode locations outside the standard positioning sys-
tems towards a personalized set of combinations can be 
valid in a BCI context if it leads to a better classification, 
future works should explore individual channel distribu-
tions and their classification performance. Here, we dem-
onstrated that the use of electrode locations outside the 
standard led to lower reconstruction errors.

This study focused specifically on hand movements, 
restricting the ROIs to the hand knobs. It is worth not-
ing that similar procedures could be applied to other 
limbs or different regions of the brain, such as estimating 
the source activity in areas related to hearing, vision, or 
attention. To the best of our knowledge, no other stud-
ies have been conducted to evaluate the ESI properties 
on particular brain regions using ldEEG with optimized 
channel selection, and this framework can be general-
ized to particular ROIs. Here, the EEG simulation was 
limited to sinusoidal Gaussian activity and this may not 
fully capture the complex behavior of a real EEG record-
ing. However, the simulation framework serves as a basis 
to evaluate the spatial accuracy in the context of ldEEG 
source imaging, considering that the reduced spatial 
sampling has been one of the arguments against the use 
of source-estimated activity in BCI systems. It is debat-
able whether increasing the complexity of the simulated 
signal will affect the spatial resolution, especially when 
considering that the non-linear mix imposed by the 
volume conduction has been included during forward 
modeling. Another limitation is that the motor classifica-
tion task results are based on a single participant’s data. 

However, it is noticeable the impact of modeling and 
optimizing the number of electrodes, and the fact that 
the data was recorded based on the results of the optimi-
zation, demonstrated that for the single participant, the 
classification was better when using the optimal set than 
when using all the channels, and moreover, that the high-
est classification was obtained extracting features for the 
reconstructed sources of the same handknobs ROI that 
was used during simulation.

The ESI estimations were performed with well-known 
methods wMNE and sLORETA. However, recent stud-
ies suggest, that multimodal approaches [13] and deep 
learning algorithms [12, 30] can be beneficial for the esti-
mation of source activity by improving the spatiotem-
poral accuracy. Further studies, including these novel 
approaches, should be done to comprehensively evaluate 
their potential for BCI applications.

In conclusion, this study explores the use of optimized 
ldEEG for estimating the source activity of the hand 
movement related areas and investigates the accuracy 
under multiple optimization scenarios. In this work, sev-
eral key findings are reported. Firstly, optimized chan-
nel selection in ldEEG setups demonstrated potential 
as a viable alternative to hdEEG, offering a comparable 
accuracy when retrieving the source space of the par-
ticular ROI. This finding is significant as it paves the way 
for source-centered BCI systems with low EEG channel 
counts.

Moreover, we presented a comprehensive pipeline to 
perform channel optimization in the context of ESI. The 
pipeline can be used to identify the channels that can 
accurately estimate the sources in a ROI and to be used 
in developing customized EEG solutions for a particular 
user when using individual MRI for forward modeling. 
As demonstrated for the participant, the results of the 
pipeline indicate than a higher classification accuracy can 
be obtained from the selected channels in electrode and 
source space.

Furthermore, as a result of the reduction of channels, 
the optimized ldEEG can improve the practicality of 
EEG in real-world scenarios, as fewer sensors often lead 
to wearable and more easy-to-use devices. For instance, 
if a person wears a EEG headset to operate a BCI daily, 
if a equal or better performance can be achieved with 
lower electrodes, then it would be easier to set-up less 
channels and less costly to acquire the technology. This 
principle can be applied to various scenarios, including 
clinical applications such as neurorehabilitation follow-
ing stroke, monitoring attention in ADHD patients, and 
tracking specific brain regions associated with condi-
tions like depression, anxiety, epilepsy, and sleep disor-
ders. Further studies are needed to explore the potential 
impact of source-centered channel optimization in these 
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applications. It can be argued that the estimation of the 
sources increases computational complexity, especially 
for online systems. However, pre-calculated forward 
models and inverse operators can serve to speed up the 
computations.

This work provides insights into the use of optimized 
ldEEG in retrieving sources towards BCI systems. Includ-
ing an evaluation on a single subject of how ESI improved 
the classification performance in a motor imagery task. 
However, several questions are still open and are required 
to be solved prior to a larger implementation in BCI sys-
tems. Further studies should be performed to clarify the 
role of ESI with optimized sensors and to develop source-
centered BCIs that can complement current BCI sys-
tems based on only scalp recordings. Also, to analyze the 
effect of optimized channels in the classification accuracy 
when using source and sensor space in larger datasets. 
Further efforts should be made to verify the implications 
of the source computation in online settings and clarify 
whether applying forward modeling on an individual 
basis or using brain structural information from template 
heads can be accurate enough.
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