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Abstract 

Brain age algorithms using data science and machine learning techniques show promise as biomarkers for neu-
rodegenerative disorders and aging. However, head motion during MRI scanning may compromise image quality 
and influence brain age estimates. We examined the effects of motion on brain age predictions in adult participants 
with low, high, and no motion MRI scans (Original N = 148; Analytic N = 138). Five popular algorithms were tested: 
brainageR, DeepBrainNet, XGBoost, ENIGMA, and pyment. Evaluation metrics, intraclass correlations (ICCs), and Bland–
Altman analyses assessed reliability across motion conditions. Linear mixed models quantified motion effects. Results 
demonstrated motion significantly impacted brain age estimates for some algorithms, with ICCs dropping as low 
as 0.609 and errors increasing up to 11.5 years for high motion scans. DeepBrainNet and pyment showed great-
est robustness and reliability (ICCs = 0.956–0.965). XGBoost and brainageR had the largest errors (up to 13.5 RMSE) 
and bias with motion. Findings indicate motion artifacts influence brain age estimates in significant ways. Further-
more, our results suggest certain algorithms like DeepBrainNet and pyment may be preferable for deployment 
in populations where motion during MRI acquisition is likely. Further optimization and validation of brain age algo-
rithms is critical to use brain age as a biomarker relevant for clinical outcomes.
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1  Introduction
Recent advances in machine learning and data science 
have led to a number of research projects focused on the 
concept of “brain age”. This novel metric uses large data-
sets where age and neuroimaging scans are available, and 
age can be estimated on new participants only using neu-
roimaging data (for review, see [1]). Interestingly, these 
neuroimaging estimates can diverge from participants’ 
chronological age, suggesting potential alterations in an 
individual’s biological age. An increasing focus on brain 

age is in part due to its promise as a potential biomarker 
for neurodegeneration, cognitive decline, and multiple 
psychiatric issues (e.g., schizophrenia, major depression, 
bipolar disorder; [2]). Given that many of these condi-
tions are highly prevalent, early detection, via brain age 
or other metrics, could have important public health 
implications.

While potentially powerful, numerous open questions 
exist regarding brain age, especially in thinking about use 
of this metric in clinical settings. Of particular impor-
tance is how noise and image quality may influence the 
derivation of brain age. Noise and poor image quality 
arises, in part, from participant head movement during 
an MRI scan. Notably, high levels of head motion have 
been found in children, older adults, and clinical patient 
groups, as compared to young adult, non-patient samples 
[3–6]. High rates of head motion can eventually lead to 
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erroneous estimates of cortical thickness, surface area, 
and volume [7–9]. This has been noted in both adult 
[8, 10], as well as pediatric samples [11]. As such, head 
motion during imaging sessions may influence our abil-
ity to detect differences in brain age between different 
groups, or in relation to behavioral traits of interest [12].

Pursuant to the clinical utility of brain age, research-
ers have developed multiple algorithms to calculate brain 
age. While one can use multimodal neuroimaging [13], 
most algorithms use T1-weighted anatomical images, 
either processed in Freesurfer or in NIfTI format to esti-
mate brain age [14–16]. With head motion likely to com-
promise measures of brain morphometry [7, 8, 17], image 
quality and participant motion could be introducing 
biases into brain age calculations. Put another way, image 
quality and motion could lead to lower estimates of cor-
tical thickness, surface area, and volume, resembling the 
cortical atrophy associated with typical aging [18]. In 
this way, head motion artifacts could bias estimates of 
brain age, leading to accelerated brain age being inaccu-
rately noted in high motion participants. Connected to 
this, work from our group has found modest correlations 
between raw brain age and image quality (r = −  0.38 to 
− 0.46), as well as between brain age gaps (the differences 
from raw brain age and a participant’s chronological age) 
and image quality (max r = 0.36, [19]).

While notable, our past work may be underestimating 
the true impact of motion and noise in brain age calcu-
lation. We previously examined bivariate correlations 
between image quality and brain age by assessing brain 
age and scan quality across different individuals. As such, 
potential relations may be occluded because of between-
person variations in brain age. To understand the impact 
of motion and noise more deeply in brain age calculation, 
it will be important to examine intra-individual relations 
between image quality and brain age. Put another way– 
If we only look at between person effects, people who 
are able to stay still more frequently and produce higher 
quality MRI scans may have slower brain aging, but these 
individuals may also have better cognitive functioning 
and other factors that also relate to brain aging. As such, 
image quality and other third factors related to brain age 
collide. Such factors could be both causes and effects, 
and we cannot statistically separate these within our typi-
cal (between-level) study designs. To truly understand 
the impact of motion and noise on brain age, it would be 
advantageous to examine brain age within the same par-
ticipants repeatedly scanned when they are remaining 
still and when they exhibit higher levels of head motion.

Motivated by this, we leveraged a public access data-
set to examine the impacts of motion on brain age. This 
dataset had high-, low-, and no-motion scans for the 
same individuals [20]. Processing these datasets through 

multiple commonly used brain age algorithms (2 algo-
rithms using Freesurfer-derived outputs; 3 algorithms 
using less processed NIfTI images), we first calculated 
evaluation metrics between participants’ chronological 
age and brain age predicted from each algorithm (using 
Mean Absolute Error and Root Mean Squared Error). We 
then examined intraclass correlations and Bland–Altman 
bias metrics to compare algorithmic performance across 
repeated MRI scans of the same individuals (as depicted 
in Fig. 1). We also constructed linear mixed effect mod-
els that could accommodate repeated measures from 
the same individuals and examined the high-, low-, and 
no-motion conditions. This would allow us to derive 
standardized estimates for each algorithm in relation to 
low- and high-motion scans. Given past work finding 
motion and noise related to lower gray matter levels, we 
predicted lower correlations between chronological age 
and brain age for high motion scans. We also predicted 
algorithms that relied on Freesurfer would have greater 
changes in these metrics for high motion scans, since 
image quality is related to variations in morphometric 
estimates from this software [11]. Of note, we believe 
this is the first study to systematically examine multiple 
brain age algorithms on the same dataset with controlled 
levels of motion artifact. Our work can provide a more 
comprehensive assessment of brain age algorithms across 
multiple reliability metrics. Furthermore, by using this 
within-participant design with repeated scans, we believe 
we are able to more strongly understand the effects of 
head motion on brain age and more robustly control for 
individual differences.

2 � Method
2.1 � Dataset and participants
We examined a public-access MRI dataset that included 
148 healthy adult participants, ages 18–75  years (Mean 
Age = 30.01 ± 12.76  years; 64.1% Female; age-by-sex his-
togram shown in Fig.  2) [20]. During MRI acquisition 
(detailed below), participants were instructed not to 
move at all, and in other scans to nod their head. To cre-
ate different levels of motion artifacts, the word “MOVE” 
was presented (in Hungarian) for 5 s, 5 or 10 times evenly 
spaced during image acquisition. Nodding was used as a 
motion induction since it is reportedly the most promi-
nent type of head motion, responsible for most MRI 
artifacts [21]. This procedure yielded images with mini-
mal head motion, as well as with slight (low) and more 
excessive (high) head motion. Participants gave informed 
consent and reported no neurological or psychiatric dis-
eases. Collection protocols were approved at the National 
Institute of Pharmacy and Nutrition in Hungary. These 
repeated scans, with varying levels of motion, allowed for 
rich evaluation of the impact of motion artifacts on MRI 
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image quality and brain age calculations. Of note, the 
final analytic sample was 138 due to failure in preprocess-
ing or missing scans (details noted below) 

2.1.1 � MRI data acquisition
The dataset includes three whole brain T1-weighted MRI 
images that were acquired using a Siemens Magnetom 

Fig. 1  Graphical depiction of study design

Fig. 2  Age and sex distribution of study participants. Histogram showing the age and sex distribution of the 138 adult participants with usable data 
included in the study, ages 18–75 years
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Prisma 3  T MRI scanner (Siemens Healthcare GmbH, 
Erlangen, Germany) with the standard Siemens 
20-channel head-neck receiver coil at the Brain Imag-
ing Centre, Research Centre for Natural Sciences. Each 
T1-weighted 3D magnetization-prepared rapid gradient 
echo (MPRAGE) anatomical image was acquired using 
twofold in-plane GRAPPA acceleration with isotropic 
1 mm3 spatial resolution (repetition time (TR) = 2300 ms, 
echo time (TE) = 3 ms, inversion time (TI) = 900 ms, flip 
angle (FA) = 9°, FOV = 256 × 256  mm). Of note, three 
T1-weighted structural scans were acquired with the 
same parameters for each participant in a standard set-
ting, with no   (N),  low (L) and high  (H) levels of head 
motion.

During each scan, a fixation point was presented at the 
center of the display, and participants were instructed to 
gaze at this point. For the N (no motion) scan, partici-
pants were instructed to remain completely still. In the 
case of the L and H scans, participants were directed to 
nod their heads (tilt them down and then up along the 
sagittal plane) once upon the appearance of the word 
“MOVE” on the screen. We chose nodding as the motion 
pattern, as it is recognized as the predominant form of 
head movement, associated with the majority of motion 
artifacts [21–26]. To introduce varying levels of motion 
artifacts, the word “MOVE” was displayed for 5 s, occur-
ring 5 and 10 times evenly spaced throughout image 
acquisition for the L (5 times) and H (10 times) scans, 
respectively. Participants were explicitly advised not to 
lift their heads from the scanner table while nodding and 
were instructed to return their heads to the original posi-
tion after each nod. This dataset is publicly available at 
OpenNeuro at: https://​openn​euro.​org/​datas​ets/​ds004​
173/.

2.2 � Brain age algorithms
We deployed five brain age algorithms on this dataset: 
Cole et  al. [14] (referred to as “brainageR”), Kaufmann 
et  al. [15] (referred to as “XGBoost”), Bashyam et  al. 
[16] (referred to as “DeepBrainNet”), Han et  al. [27] 
(referred to as “ENIGMA”), and Leonardsen et  al. [28] 
(referred to as “pyment”). We selected these algorithms 
based on popularity in recent brain age publications and 
their open access code. For pyment, DeepBrainNet and 
brainageR, T1-weighted MRI scans are input and pre-
processed by each algorithm. In contrast, XGBoost and 
ENIGMA require preprocessing using Freesurfer [29], an 
open-source MRI processing software package. Of note, 
for a small number of participants Freesurfer processing 
was not successful due to extensive noise (N = 7 of our 
original sample size) or missing scans (N = 3). This left 
a final, usable N of 138. We provide brief summaries of 

the algorithms below. For detailed descriptions of model 
structure, please see the original papers cited here.

2.2.1 � brainageR [14] brain age algorithm
brainageR loaded T1-weighted MRI images into SPM12, 
where these anatomical images were segmented and 
normalized with custom brain templates. After this, the 
resulting segmented and normalized images were loaded 
into R [14]. In R, gray matter, white matter and CSF were 
vectorized. The rotation matrix of a previously calculated 
Principal Components Analysis was then applied to gray 
matter, white matter and CSF vectors to predict an age 
value with the trained model with kernlab (using a Gauss-
ian Process Regression with Radial Basis Function kernel 
and default hyperparameters). This algorithm (version 
2.0 24 Sep 2019) was trained on a sample (N = 2001) of 
healthy adults aged 18–90. Relevant code is available at: 
https://​github.​com/​james-​cole/​brain​ageR.

2.2.2 � DeepBrainNet [16] brain age algorithm
DeepBrainNet is a 2D Convolutional Neural Network 
(CNN) built using the inception-resnetv2 framework and 
pre-trained on ImageNet [16]. With this algorithm, raw, 
unprocessed, T1-weighted MR images are N4 bias cor-
rected, skull-stripped, and affine registered to an MNI-
template. This algorithm was implemented through the 
ANTsRNet package, an implementation of Advanced 
Normalization Tools (ANTs) in the R programming 
language [30]. This algorithm was trained on a sample 
(N = 11,729) of healthy controls aged 3–95. Relevant code 
for this algorithm is located here: https://​github.​com/​
ANTsX/​brain​AgeR.

2.2.3 � XGBoost [15] brain age algorithm
XGBoost uses gradient tree boosting to predict brain 
age based on 1118 features extracted using Freesurfer 
[15]. These features consist of thickness, area, and vol-
ume measurements from a multimodal parcellation of 
the cerebral cortex, cerebellum, and subcortex [31]. This 
algorithm was trained on a large and diverse sample 
(N = 35,474). Kaufmann et al. trained separate models for 
male and female brain age. We deployed this algorithm 
by first completing standard processing approaches in 
Freesurfer 7.1 (http://​surfer.​nmr.​mgh.​harva​rd.​edu). This 
processing includes motion correction and intensity 
normalization of T1-weighted images, removal of non-
brain tissue, automated Talairach transformation, seg-
mentation of white matter and gray matter volumetric 
structures, and derivation of cortical thickness [32–36]. 
Freesurfer processing was implemented via Brainlife.
io (brainlife/app-freesurfer), which is a free, publicly 
funded, cloud-computing platform for developing repro-
ducible neuroimaging processing pipelines and sharing 

https://openneuro.org/datasets/ds004173/
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data [37]. The technical details of this software suite are 
described in prior publications. Relevant code for the 
XGBoost algorithm is available at: https://​github.​com/​
tobias-​kaufm​ann/​brain​age.

2.2.4 � ENIGMA [27] brain age algorithm
The ENIGMA algorithm used ridge regression based 
on Freesurfer features (processing details for Free-
surfer, noted above). The ENIGMA algorithm was devel-
oped based on data from N = 2,188 participants [27]. 
Structural MRI measures output from Freesurfer, from 
both the left and right hemispheres, were combined. 
Specifically, this resulted in 77 brain features includ-
ing subcortical volumes, cortical thickness and surface 
area. Normative models were then estimated in a train-
ing sample of male and female controls. Relevant code 
for this algorithm is located here: https://​photon-​ai.​com/​
enigma_​brain​age.

2.2.5 � Pyment [28] brain age algorithm
The pyment algorithm implemented a Simple Fully Con-
volutional Network on T1-weighted structural magnetic 
resonance images. These images were partially preproc-
essed in FreeSurfer (using this software’s -autorecon1 
steps). Training dataset was one of the largest and most 
diverse datasets assembled (N = 34,285), stratified by 
age and study. Additional technical details are available 
in the original report (Ref. [28]). Relevant code for this 
algorithm is located here: https://​github.​com/​esten​hl/​
pyment-​public.

2.3 � MRI image quality assessment
While head motion varied based on instructions to par-
ticipants, we also quantitatively measured image quality, 
an indirect assessment for head motion, using the CAT12 
toolbox. Specifically, we generated a quantitative met-
ric (“CAT12 score”) using the Computational Anatomy 
Toolbox  12 (CAT12). This metric considers four sum-
mary measures of image quality: noise-to-contrast ratio, 
coefficient of joint variation, inhomogeneity-to-contrast 
ratio, and root-mean-squared voxel resolution. CAT12 
normalizes and combines these measures using a kappa 
statistic-based framework. The score is a value from 0 to 
1, with 0 being the lowest quality and 1 being the high-
est quality. This measure was used for two purposes: (1) 
to confirm different levels of motion artifacts of repeated 
scans; and (2) to allow for a more continuous investiga-
tion of the impact of image quality (and connected head 
motion) on brain age estimates.

Of note, quantifying and estimating participant move-
ment is a complex area of current investigation for 
many. We did not have direct assessments of participant 
movement, which is an important issue to highlight. 

We, however, believe that CAT12 may be a reason-
able proxy for participant movement, especially in more 
applied settings. In our past work, we have found that 
CAT12 differentiates passing human visual checks for 
MRI scan inclusion (receiver operating characteristic 
curve = 98.9%). In this past work, nearly all of the exam-
ined MRI scans were excluded for participant movement. 
Furthermore, CAT12 scores strongly correlate with other 
previously used metrics of MRI quality, Freesurfer’s Euler 
Number r = −  0.904. CAT12, however, outperformed 
Freesurfer’s Euler Number in determining scan inclusion 
and exclusion (as determined by human visual checks, as 
previously reported in [11]).

2.4 � Statistical analyses
Each brain age algorithm output a predicted brain age,  
which  was used as  a continuous variable in multiple 
analyses. We also calculated a brain age delta, or (pre-
dicted brain age—chronological age). This is the most 
commonly used metric in applied brain age studies, with 
higher values denoting accelerated aging. After we organ-
ized these values, our analysis included calculation of: 
(1) evaluation metrics (MAE; RSME); (2) Intraclass cor-
relations; (3) Bland–Altman bias measures; (4) effect size 
estimates from linear mixed effect models. We sought to 
do this for each of these five algorithms noted above.

2.4.1 � Evaluation metrics for each algorithm
We calculated differences between participants’ chrono-
logical age and brain age predicted from each algorithm. 
Specifically, we used Mean Absolute Error (MAE) and 
Root Mean Squared Error (RMSE). MAE is calculated by 
taking the absolute differences between predicted (brain 
age) and true (chronological age) values and averaging, 
while RMSE measures the square root of the average 
squared differences between predictions and true values. 
MAE is in the same units as the data, while RMSE is not 
and penalizes larger errors more heavily.

2.4.2 � Brain age reliability assessment by intraclass 
correlations

To assess the reliability of brain age calculation by algo-
rithm, we used two approaches of looking at reliability: 
intraclass correlation coefficient (ICC) and Bland–Alt-
man analysis. ICC is a descriptive statistic indicating the 
degree of agreement between two or more sets of meas-
urements. The statistic is similar to a bivariate correlation 
coefficient insofar as it has a range from 0 to 1 and higher 
values represent a stronger relation. An ICC differs from 
a bivariate correlation in that it utilizes groups of meas-
urements and gives an indication of the numerical cohe-
sion across the given group [38]. We calculated ICCs 
using the statistical programming language R, with the 

https://github.com/tobias-kaufmann/brainage
https://github.com/tobias-kaufmann/brainage
https://photon-ai.com/enigma_brainage
https://photon-ai.com/enigma_brainage
https://github.com/estenhl/pyment-public
https://github.com/estenhl/pyment-public
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icc function from the package “irr” [39]. Here, we used a 
mixed effects model to calculate intraclass correlation for 
single measurements per participant under different con-
ditions; this is typically notated as ICC(3,1). This assesses 
test–retest reliability by isolating variance between par-
ticipants and residual variance to quantify measurement 
consistency. Although there are no definitive guidelines 
for precise interpretation of ICCs, results have frequently 
been binned into four quality groups where 0.0–0.5 is 
“poor”, 0.50–0.75 is “moderate”, 0.75–0.9 is “good” and 
0.9–1.0 is “excellent” [40].

2.4.3 � Bland–altman metrics of reliability
In contrast to ICCs, Bland–Altman analyses investigate 
reliability by considering the differences between paired 
groups of measurements [41, 42]. We were interested 
in: (1) the mean difference between methods (chrono-
logical age—brain age), also known as “bias”; and (2) the 
bias ± 1.96 standard deviations of the differences, also 
known as “limits of agreement” (LoA). Narrower ranges 
of these limits indicate better agreement. Given that 
our data was non-normally distributed, we used non-
parametric approaches that construct the limits using 
percentiles of the distribution rather than assuming nor-
mality. This was done via the R package “SimplyAgree” 
[43], separately for no versus low-motion and then no 
versus high-motion scans. For Bland–Altman metrics, 
there are no universal interpretations for bias and limits 
of agreement, instead being dependent on the context 
and desired accuracy [44]. While this research area is in 
a nascent state, we wanted to provide some broad guide-
lines related to these outcomes. We therefore reported 
bias, limits of agreement, and the percentage of predicted 
brain ages from each algorithm that were between − 3.55 
and + 3.55  years (our chosen maximal allowable differ-
ence [MAD] for chronological—brain age). This thresh-
old was derived from a recent mega-analysis that found 
this amount of brain age acceleration in patients with 
severe mental illness [45].

2.4.4 � Effect size estimates of motion effects
We constructed linear mixed effect models that could 
accommodate repeated measures from the same individ-
uals and examined the high-, low-, and no-motion con-
ditions. To investigate the effect of movement condition 
on brain age, movement condition was input as a fixed 
effect and participant ID was included as a random effect 
to account for the repeated measures design. We then 
compared differences in brain age between the no move-
ment and low movement conditions, and between the 
no movement and high movement conditions. This was 
completed with the lme4 package in R. For these analy-
ses, we calculated partial Eta2 as an effect size (ES) and 

binned these ES into four classes: ES < 0.02 as "very small”, 
0.02 < ES < 0.13 as “small”, 0.13 < ES < 0.26 as “medium”, 
and ES > 0.26 as “large”.

2.4.5 � Additional analyses
Complementing these quantitative metrics, we also 
wanted to depict the variability in predicted brain age 
and brain age delta for no-, low, and high-motion scans. 
To do this, we constructed repeated measure graphs (aka 
“spaghetti plots”) of differences in brain age (predicted 
age and brain age delta) across the different scan types. 
Additional analyses are detailed in our Supplemental 
Materials (Additional file 1) which include bivariate cor-
relations between algorithms and comparison of image 
quality across moving and non-moving scans.

3 � Results
3.1 � Evaluation metrics for each algorithm
We calculated MAE and RMSE for each algorithm for 
each scan type (no-, low- and high-motion). As shown 
in Table 1, across algorithms, prediction errors increased 
with greater motion, with the largest errors observed for 
ENIGMA (MAE 9.967 to 11.549; RMSE 12.145 to 13.535) 
and the smallest errors for DeepBrainNet (MAE 3.497 to 
4.019; RMSE 4.629 to 5.230) and pyment (MAE 3.139 to 
3.326; RMSE 4.102 to 4.073). The brainageR, XGBoost, 
and ENIGMA algorithms showed substantial declines 
in performance with motion, while DeepBrainNet and 
pyment were more robust.

Table 1  Predictive performance metrics of five brain age 
algorithms (brainageR, DeepBrainNet, XGBoost, ENIGMA, 
pyment) across three motion conditions (no motion, low motion, 
high motion)

Performance was evaluated by mean absolute error (MAE) and root mean 
squared error (RMSE) between algorithm predicted brain age and chronological 
age

Predictive metrics (comparing chronological age and brain age)

Algorithms No motion Low motion High motion

brainageR MAE 4.043 5.316 7.236

RMSE 5.128 7.150 9.535

DeepBrainNet MAE 3.497 3.937 4.019

RMSE 4.629 5.121 5.230

XGBoost MAE 6.927 7.642 9.021

RMSE 9.025 9.647 10.757

ENIGMA MAE 9.967 10.827 11.549

RMSE 12.145 12.459 13.535

pyment MAE 3.139 3.310 3.326

RMSE 4.102 4.143 4.073
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3.2 � Graphical depiction of variability in brain age delta
Complementing our calculation of evaluation metrics, 
we also wanted to depict the variability in predicted brain 
age and brain age delta for no-, low, and high-motion 
scans. To visualize differences in brain age across the dif-
ferent scan types, we have included repeated measure 
graphs (aka “spaghetti plots”) shown below in Fig. 3.

3.3 � Brain age reliability by algorithm, as assessed 
by intraclass correlations

We examined reliability using intraclass correlations 
(ICCs) for our five algorithms of interest, comparing 
no to low motion scans and no to high motion scans. 
For “raw” brain age, DeepBrainNet and pyment showed 
excellent reliability when comparing no motion to versus 
low- and also high- motion scans  across all scan types 
(ICC 0.956–0.965 no vs low motion; 0.944–0.956 no vs 
high motion). These results are shown in Table 2. Brain-
ageR XGBoost, and ENIGMA had lower ICCs indicat-
ing poorer reliability, particularly for high motion scans 
(brainageR ICC 0.712; ENIGMA ICC 0.709; XGBoost 
ICC 0.609). For brain age delta, XGBoost showed the 
highest reliability for no vs low motion scans (ICC 0.873), 
while DeepBrainNet demonstrated good reliability across 
both comparisons (ICC 0.825 and 0.788). BrainageR had 
the lowest ICCs, indicating less reliable brain age deltas, 

particularly for high motion (ICC 0.351). These results 
are shown in Table 3.

3.4 � Bland–altman metrics of reliability by algorithm
There was a high degree of variability when examining 
Bland–Altman metrics of reliability for each algorithm 
(as shown in Table 4). Of note, narrower LoAs and higher 
% within MAD indicates better agreement. DeepBrain-
Net and pyment showed the best agreement, with tight 
LoAs and high % within MAD across motion conditions. 
XGBoost and ENIGMA had wider LoAs and lower % 
within MAD, reflecting poorer agreement. BrainageR 
demonstrated the lowest agreement for high motion 
scans (LoA − 24.254 to − 1.418; % within MAD 34.06%). 
While there are no defined cutoffs for MAD, it is nota-
ble that for multiple algorithms, a bare majority, or less, 
of the predicted brain ages are within this span (−  3.55 
and + 3.55  years for predicted brain age—chronologi-
cal age). This was seen for brainageR (for no versus low; 
and no versus high motion scans), ENIGMA (no versus 
high motion scans), and XGBoost (no versus high motion 
scans).

3.5 � Statistical quantification of participant motion, 
as assessed by linear mixed effects models

Using linear mixed effects models with repeated meas-
ure, we calculated effect sizes, compared differences 

Fig. 3  Repeated line graphs of predicted age (top) and brain age delta (bottom) for each algorithm. Motion level is shown on the horizontal axis 
with no motion on the left (N), low motion in the middle (L), and high motion on the right (H). The vertical axis is the predicted brain age or brain 
age delta (with equal axes for each graph). The order of the plots for each row from left to right is brainageR, DeepBrainNet, XGBoost; ENIGMA, 
and pyment
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in brain age between the no movement and low move-
ment conditions, and between the no movement and 
high movement conditions. This was completed with 
the lme4 package in R. Overall, participant head motion 
had significant, though mostly modest impacts on raw 
brain age calculated by three of our algorithms, specifi-
cally DeepBrainNet, pyment, and ENIGMA. For Deep-
BrainNet, the overall effect was (F(2,283.73) = 4.445, 
p = 0.01, partial Eta2 = 0.03). For this algorithm, both 
low and high levels of motion scans had small effects 
on raw brain age calculation (low motion β = 0.06, 

high motion β = 0.06). For pyment, the overall effect 
was (F(2,283.81) = 7.637, p < 0.005, partial Eta2 = 0.05). 
For this algorithm, both low and high levels of motion 
scans had small negative effects on raw brain age calcu-
lation (low motion β = − 0.08, high motion β = − 0.03). 
With ENIGMA, there was an increasing but still mod-
est effect of motion (F(2,283.37) = 8.526, p < 0.005, 
partial Eta2 = 0.06). For this algorithm, low motion 
had a small effect on raw brain age calculations, while 
high motion had a significantly larger, albeit mod-
est, effect (low motion β = 0.09, high motion β = 0.22). 

Table 2  Intraclass correlation coefficients (ICCs) evaluating reliability of “raw” brain age from five algorithms (brainageR, DeepBrainNet, 
XGBoost, ENIGMA, pyment) between no motion and low motion scans, and between no motion and high motion scans ICC values 
quantify consistency of brain age outputs; higher values indicate greater reliability

Algorithms with ICCs in the “poor” (0.0–0.5) or “moderate” (0.50–0.75) ranges are colored in red, while those with “good” ICCs (0.75–0.9) are colored in yellow and 
“excellent” ICCs (0.9–1.0) are colored in green

Table 3  Intraclass correlation coefficients (ICCs) evaluating reliability of brain age delta values (differences between predicted and 
chronological age) from five algorithms (brainageR, DeepBrainNet, XGBoost, ENIGMA, pyment)

ICCs were calculated between no motion and low motion scans, and no motion and high motion scans. Higher ICC values indicate more reliable, consistent delta 
values across motion conditions. Algorithms with ICCs in the “poor” (0.0–0.5) or “moderate” (0.50–0.75) ranges are colored in red, while those with “good” ICCs (0.75–0.9) 
are colored in yellow
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Effects of motion were more pronounced for XGBoost 
and brainageR. ANOVAs indicated large effects 
for motion for both of these algorithms (XGBoost 
F(2,283.99) = 58.008, p < 0.005, partial Eta2 = 0.29; brain-
ageR F(2,283.35) = 111.65, p < 0.005, partial Eta2 = 0.44). 
For these algorithms, both low and high levels of 
motion scans had moderate effects on raw brain age 
calculation (XGBoost low motion β = 0.25, high motion 
β = 0.57; brainageR low motion β = 0.35, high motion 
β = 0.55).

For brain age delta, effects were larger in magnitude, 
but algorithmic performance mostly mirrored results 
for raw brain age. Omnibus tests were nearly identical 
but probing of low and high levels of motion scans (com-
pared to no motion scans) revealed some subtle differ-
ences in effects. For DeepBrainNet, both low and high 
levels of motion scans had small effects on brain age delta 
(low motion β = 0.14, high motion β = 0.14). Effects were 
very similar for ENIGMA brain age delta (low motion 
β = 0.11, high motion β = 0.24). For pyment, different lev-
els of motion had negative effects, though with similar 
absolute magnitudes (low motion β = − 0.23, high motion 
β = − 0.09). Similar to raw brain age, effects were largest 
for low and high levels of motion for XGBoost and brain-
ageR brain age delta (XGBoost low motion β = 0.20, high 
motion β = 0.43; brainageR low motion β = 0.61, high 
motion β = 0.94).

4 � Discussion
In this study, we examined the effect of movement dur-
ing MRI scans on calculations of brain age using multi-
ple, well-validated, and commonly deployed calculation 
algorithms. Given that motion artifacts can skew volu-
metric and morphological measures used to determine 
brain age, it is critical to track variations in the sensitivity 
of different brain age algorithms to these issues. To these 
ends, we used two measures of prediction (MAE; RMSE) 
and two metrics of reliability (ICCs; Bland Altman met-
rics) to compare the different algorithms, leading to mul-
tiple important findings. First, predictive errors increased 
with greater motion for all algorithms, but DeepBrainNet 
and pyment were most robust, maintaining low errors 
even for high motion scans (MAE 3–4 years). In contrast, 
ENIGMA showed substantially worse performance for 
motion scans (MAE up to 11.5 years). These are similar 
to past estimates from other groups focused on evalu-
ation of brain age prediction [46]. Using ICCs for brain 
age, DeepBrainNet and pyment demonstrated excellent 
reliability for brain age predictions, with high ICCs of 
0.956–0.965 for no vs low motion and 0.944–0.956 for 
no vs high motion scans. The other algorithms showed 
poorer reliability, particularly XGBoost and brainageR 
where ICCs dropped as low as 0.609 for high motion 
scans. Turning to Bland Altman metrics, two algorithms, 
DeepBrainNet and pyment, had a small degree of bias 
for raw brain age, tighter LoA, and higher % of predicted 
points within a predefined maximum allowable differ-
ence. Performance was a bit poorer for the ENIGMA 
and XGBoost algorithms, and the brainageR algorithm 
showed the largest amount of bias when examining 
motion and non-motion scans. Critically, all the algo-
rithms had sizable ranges of differences, indicating that 
participant motion could significantly influence brain age 
calculation for any given participant.

In addition to reliability analyses, we also constructed 
linear-mixed effect models to get specific statistical 
assessments of how much participant motion could 
influence brain age calculation. In these analyses, partic-
ipant head motion had significant, though mostly mod-
est impacts, on brain age calculations for three of our 
algorithms (specifically DeepBrainNet, pyments, and 
ENIGMA). Effects of motion were more pronounced 
for XGBoost and brainageR, with these statistical mod-
els suggesting larger effects (XGBoost partial Eta2 = 0.29; 
brainageR partial Eta2 = 0.44). Overall, our findings dem-
onstrate that motion during MRI scanning can signifi-
cantly influence brain age predictions depending on the 
algorithm used. However, this impact is not consistent 
across all methods. The brainageR algorithm may be less 
desirable for expanded deployment, while DeepBrainNet 
and pyment may have greater noise tolerance. ENIGMA 

Table 4  Bland–Altman analysis evaluating agreement 
between brain age predictions from five algorithms (brainageR, 
DeepBrainNet, XGBoost, ENIGMA, pyment) for no motion versus 
low motion scans, and no motion versus high motion scans

Results include the mean bias, 95% limits of agreement (LoA), and percentage of 
points within the margins of agreement (% within MAD)

Raw brain age bland altman analyses

Algorithms No versus low 
motion scans

No versus high 
motion scans

brainageR Bias − 3.682 − 5.410

LoA − 14.182–1.142 − 24.254–1.418

% within MAD 48.55% 34.06%

DeepBrainNet Bias − 0.721 − 0.816

LoA − 6.9002–4.7241 − 6.4133–7.7052

% within MAD 84.780% 77.540%

XGBoost Bias − 1.370 − 3.577

LoA − 12.389–5.976 − 17.542–7.398

% within MAD 65.220% 44.930%

ENIGMA Bias − 0.689 − 1.553

LoA − 10.453–10.932 − 17.317–12.256

% within MAD 64.490% 52.170%

pyment Bias 0.805 0.631

LoA − 2.3343–6.9135 − 5.8886–7.7195

% within MAD 87.680% 85.510%
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and XGBoost performances were more average and 
should be explored in greater depth.

Digesting our results, there is some divergence in ICCs 
for raw brain age and brain age delta and this is likely due 
to differences in interindividual variance across the meas-
ures. Specifically, ICCs assess reliability by comparing 
interindividual variance to total variance. For raw brain 
age, this interindividual variance reflects differences in 
predicted biological/brain ages between participants; 
however, and in contrast to brain age delta, the interin-
dividual variance is slightly reduced as actual age is sub-
tracted from raw brain age. This leaves variance primarily 
due to prediction error. As such, lower, interindividual 
variance may be expected for brain age delta, potentially 
driving down ICC values. However, by accounting for 
actual age, brain age delta may isolate prediction error 
and provide a more conservative estimate of brain-based 
age prediction reliability. This is something to consider 
as more research groups consider brain age algorithm 
development and benchmarking [47, 48].

4.1 � Relating our findings to past brain age publications
Thinking about our findings in relation to past reports, 
similar patterns have been noted individually for each 
algorithm regarding reliability and relations with other 
critical variables (i.e., age; image quality). When exam-
ining raw brain age, there were reasonably high correla-
tions between the 5 different algorithms we investigated 
with r’s ranging from 0.67–0.93 (as noted in Additional 
file  1). Of note, we deployed brain age algorithms that 
used NIfTI files processed by the algorithm’s code (i.e., 
brainageR; DeepBrainNet), as well as outputs from Free-
surfer. Our results also clearly connect to past work find-
ing variations in morphometric values derived from high 
motion scans. Such effects remain after different forms 
of manual and automatic correction, suggesting that 
in-scanner motion induces spurious effects that do not 
reflect a processing failure in software; rather, they reflect 
systematic bias (e.g., motion-induced blurring) and this 
may appear similar to gray matter atrophy. Particularly 
concerning, many neuroimaging groups will visually 
inspect scans and include scans of “fair” or “marginal” 
quality. As researchers focus on different populations 
(e.g., children versus adolescents; clinical groups versus 
non-clinical groups), this potentially creates an “apples 
versus oranges” comparison; all scans may “pass” visual 
inspection, but one group has excellent image quality and 
clarity, while another has visible motion and is only above 
these passing thresholds.

Regarding the impact of participant motion, past work 
may underestimate the true impact of motion and noise 
in brain age calculation. Work by past investigators has 
found between-person relations between image quality 

and brain age calculation. Our project, however, is the 
first to examine intra-individual (within-subject) differ-
ences. The use of repeated MRI scans from the same par-
ticipants allows us to control for confounding variables 
due to individual differences and understand relation-
ships between motion artifacts and brain age calculation. 
By utilizing a within-person design with multiple scans 
per person over time, we isolated the effects of scan qual-
ity while holding constant time-invariant factors. This 
improves our understanding about these effects, as we 
are separating between- and within-person sources of 
variation.

Connected to this, our team is particularly interested 
in the effects of image quality and motion on brain age 
calculation. To our knowledge, no brain age algorithms 
have integrated measures of image quality in their model 
training and testing. In future development of brain age 
algorithms, it would be interesting to examine whether 
measures of image quality and successful preprocessing 
(i.e., CAT12 grades, or Freesurfer’s Euler Number) could 
be used to further optimize models. Certain brain age 
models (i.e., pyment) have used large numbers of par-
ticipants (N = 53,542) in their algorithmic development. 
This has meant that a large number of high motion par-
ticipants have been included in training and test datasets. 
While this may mean less error when dealing with high-
motion scans, image quality was not explicitly modeled. 
Given that commonly used structural MRI measures 
derived from T1-weighted images are strongly related 
to image quality, this could be a fruitful future direction. 
Tackling these and other open questions related to brain 
age could significantly advance our understanding of 
healthy, as well as accelerated, aging processes.

4.2 � Limitations of the current project
While we believe we advanced applied understanding of 
brain age calculation, our work is not without limitations. 
First, our data is cross-sectional in nature, and it will be 
important to think about estimation and validation of dif-
ferent performance metrics in participants with repeated 
MRI scans separated by long periods of time. By looking 
longitudinally at within- and between-person change in 
relation to different algorithms, we may be able to derive 
a particularly powerful window into age-associated func-
tional declines and disease, and different clinically rel-
evant issues. It would be particularly powerful if there 
were high, low, and no motion MRI acquisitions acquired 
longitudinally to richly probe these questions. Second, 
we tested five commonly used algorithms where code 
was publicly shared for mass implementation of brain 
age calculation. There are many in-press and preprinted 
manuscripts engineering new calculations of brain age. 
Such novel algorithms may exhibit superior performance 



Page 11 of 13Hanson et al. Brain Informatics            (2024) 11:9 	

and fewer limitations than the approaches we examined 
here. It would be useful for novel algorithms to reuse 
this dataset to compare performance to what is reported 
here and demonstrate relative superiority. Third, we did 
not connect variations in brain age at different levels of 
movement with behavioral phenotypes of interest. In 
past work, we found that XGBoost brain age calculations, 
compared to those derived from brainageR and Deep-
BrainNet, were more sensitive to the detection of clini-
cal diagnoses of cognitive impairment [19]. We, however, 
did not calculate pyment or ENIGMA brain ages in that 
past project. It would be clinically useful to examine if 
brain age calculated from scans at various motion levels 
were sensitive to clinical characteristics commonly inves-
tigated in brain age research studies (e.g., Alzheimer’s 
Disease; schizophrenia). The sample here was healthy, 
sampled primarily in early adulthood (Mean Age = 30.01), 
but without dense sampling of relevant psychological or 
neurological variables. Examined collectively, it will be 
important for this subfield of neuroimaging to show that 
brain age algorithms are reliable, even with variable levels 
of motion, and that algorithms identify unique and addi-
tive variance in brain age.

A connected, potential limitation is how motion was 
induced in participants (i.e., directing participants to 
nod in the scanner). While nodding has commonly 
been reported as the most common form of motion in 
past MRI projects, explicitly directing participants may 
not fully reflect motion in the “real world”. This project 
did not have direct measurements of movement. Past 
research groups have noted that the primary drivers of 
participant motion may be a combination of nodding, 
relaxation of the participant’s neck muscles, and com-
pression of the foam padding which the participant’s 
head lies on. However, multiple groups have noted that 
problematic head motion is “composed of a single type 
of biomechanical motion, which we infer to be a nodding 
movement” [21] and “typically produced by z-axis dis-
placement (e.g., nodding)” introducing artifacts in f/MRI 
data [26]. The high motion scans had more occurrence of 
movement (related to the instructions given to partici-
pants), but (low or high) motion scans could have vari-
ability on the range, frequency, and type of motion that 
participants engaged in. Deeper investigations on this 
topic are warranted, especially in clinical settings, as dif-
ferences in participant instructions, compliance, and the 
ability to practice or complete mock MRI scans may help 
us generalize our findings out to high-motion, pediatric 
and clinical populations.

Limitations notwithstanding, additional research on 
“brain age” is imperative. Richer information about 
the brain and brain aging could be important for those 
focused on age-related mortality and morbidity. Of note, 

given that these algorithms are often easy to implement, 
it could be advantageous for the field to report group 
comparisons or behavioral correlations with multiple 
algorithms. Typically, a research group will simply deploy 
a single algorithm and report results; it is often unclear 
if results would generalize with different algorithmic 
derivations of brain age and brain age delta. However, 
thoughtful consideration about reliability and noise toler-
ance will be critical when making decisions about differ-
ent brain age algorithms, especially with an ever-growing 
landscape of potential ways to calculate this variable. 
Evaluating model performance on datasets with con-
trolled motion artifacts can better establish the validity of 
brain age as a predictive measure in aging research. Mov-
ing forward, further optimization and validation of brain 
age algorithms is needed to ensure clinical utility and 
reliability of this biomarker.

5 � Conclusions
This study systematically examined the effects of partici-
pant motion on brain age predictions from five popular 
algorithms using a dataset with repeated scans of varying 
motion levels. Results demonstrated that motion signifi-
cantly impacted brain age estimates for some algorithms, 
with intraclass correlations and errors increasing with 
greater motion. DeepBrainNet and pyment showed the 
greatest robustness to motion effects, maintaining high 
reliabilities and smaller errors across conditions. In con-
trast, XGBoost and brainageR exhibited larger errors and 
lower reliabilities with motion. Objective image qual-
ity assessments confirmed differences in motion levels 
between scans. Overall, this study provides empirical evi-
dence that motion artifacts can influence brain age cal-
culations, with implications for algorithm selection and 
reliability when head motion may be present.
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