
Vimbi et al. Brain Informatics           (2024) 11:10  
https://doi.org/10.1186/s40708-024-00222-1

REVIEW Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Brain Informatics
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and SHAP in Alzheimer’s disease detection
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Abstract 

Explainable artificial intelligence (XAI) has gained much interest in recent years for its ability to explain the complex 
decision-making process of machine learning (ML) and deep learning (DL) models. The Local Interpretable Model-
agnostic Explanations (LIME) and Shaply Additive exPlanation (SHAP) frameworks have grown as popular interpretive 
tools for ML and DL models. This article provides a systematic review of the application of LIME and SHAP in interpret-
ing the detection of Alzheimer’s disease (AD). Adhering to PRISMA and Kitchenham’s guidelines, we identified 23 
relevant articles and investigated these frameworks’ prospective capabilities, benefits, and challenges in depth. The 
results emphasise XAI’s crucial role in strengthening the trustworthiness of AI-based AD predictions. This review aims 
to provide fundamental capabilities of LIME and SHAP XAI frameworks in enhancing fidelity within clinical decision 
support systems for AD prognosis.
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1  Introduction
Alzheimer’s Disease (AD) is a neurodegenerative dis-
order characterised by the progressive deterioration of 
brain cells’ protein components resulting in the deposi-
tion of plaques and tangles [1]. The presence of these 
anomalous proteins impairs the communication between 
these components, resulting in a significant decline in 
cognitive function. Mild Cognitive Impairment (MCI) 
is a transitional stage from Cognitively Normal (CN) to 

dementia, with a 10% chance of progressing to AD [2, 3]. 
According to the most recent World Alzheimer’s Report, 
55 million people worldwide suffer from AD, making it 
the seventh leading cause of death [4].

Figure  1 shows different stages of dementia, which 
often fall into three major categories: (i) Early Mild 
Cognitive Impairment (EMCI), (ii) Late Mild Cognitive 
Impairment (LMCI), and (iii) Severe stage of cognitive 
impairment, which is when the patient is diagnosed to 
suffer from AD [4]. There are no apparent disease symp-
toms during the EMCI stage (frames 1 and 2), but a per-
ceptible memory decline is observed [5]. The LMCI stage 
(frames 3 and 4) is marked by below-average memory 
and moderate dementia that has minimal effect on daily 
activities [6]. In this stage, the diseased cannot manage 
their daily affairs (such as coping with their profession) 
[5]. AD’s terminal stage (frames 5 and 6) is character-
ised by severe functional impairment that interferes with 
essential daily activities and necessitates frequent assis-
tance [4, 7]. At this phase, the AD patient relies entirely 
on their caregiver, which causes significant physical and 
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mental strain on the patient and their caretaking family 
members. MCI is a transitional stage from CN to demen-
tia, with a 10% chance of progressing to AD. Hence, early 
prediction of the MCI can provide an opportunity for 
early intervention to prevent or delay the onset of AD.

The AD diagnosis typically takes a considerable 
amount of time. However, diagnostic technologies such 
as magnetic resonance imaging (MRI), computed tomog-
raphy (CT), and positron emission tomography (PET) 
scans have emerged as efficient methods for collecting 
AD biomarkers [7]. When these biomarker data are used 
in conjunction with artificial intelligence (AI), it can aid 
in early disease prediction. In recent years AI, in particu-
lar machine learning (ML) and deep learning (DL), have 
attracted many researchers to contribute in diverse fields 
and challenging research assignments such as: anomaly 
detection [8–10], signal analysis [11–23], neurodevelop-
mental disorder assessment and classification focusing 
on autism [24–32], neurological disorder detection and 
management [33–39], supporting the detection and man-
agement of the COVID-19 pandemic [40–47], elderly 
monitoring and care [48], cyber security and trust man-
agement [49–54], ultrasound image [55], various disease 
detection and management [56–63], smart healthcare 

service delivery [64–66], text and social media mining 
[67–69], understanding student engagement [70, 71], etc. 
ML and DL models have also been used extensively in AD 
prediction due to their ability to analyse large amounts of 
data and identify patterns that may not be immediately 
apparent to human experts [7, 37, 72–77]. ML and DL 
models can identify patterns and signals that may indi-
cate the early stages of a disease, allowing for early detec-
tion and treatment. DL models are even more popular, 
and the results obtained for AD prediction by DL models 
are unparalleled to this date [6, 78–80].

While ML and DL models have shown great promise in 
AD prediction, their black-box nature remains a signifi-
cant hurdle to their adoption in real-world scenarios [81]. 
The lack of interpretability and transparency can lead to 
reluctance by medical professionals to use these models 
in real-world scenarios [82]. For instance, if a model pre-
dicts that a patient is at high risk for AD, the physician 
needs to know the reasons behind the prediction to make 
informed decisions about treatment and care.

Hence, Explainable Artificial Intelligence (XAI) is gain-
ing importance in recent years which refers to techniques 
and methods used to make AI models more transparent 
and interpretable [30, 81, 81, 83]. Some examples of XAI 

Fig. 1  Stages of Dementia: 1–2 corresponds to early mild cognitive impairment or EMCI, 3–4 represents late mild cognitive impairment or LMCI 
and 5–6 depicts the AD phenomenon
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techniques include saliency maps and feature importance 
analysis. Of many different XAI techniques, LIME and 
SHAP remain popular for explaining ML and DL mod-
els in AD prediction [83]. Based on the data presented 
in Fig.  2, it can be inferred that LIME and SHAP tools 
have been the most popular XAI frameworks for AD pre-
diction and interpretation, with nearly 70% of the stud-
ies utilising them [79]. Hence, a comprehensive review 
article covering the broad scope of these techniques is 
imperative.

This review article covers various aspects, such as the 
theoretical foundations and implementation of these 
techniques, their applications in AD classification, and 
potential benefits associated with their use. Furthermore, 
the review article also explores these techniques’ limita-
tions and discusses possible future research directions.

This resource would be an excellent reference point 
for researchers and professionals who seek to exam-
ine deeper into the XAI frameworks and develop accu-
rate and interpretable models for AD diagnosis and 
classification.

This study makes three notable contributions: 

1.	 Methodological Excellence: The research employs 
a systematic review methodology aligned with 
the guidelines proposed by Kitchenham [84] and 
PRISMA [85], ensuring a rigorous and comprehen-
sive analysis.

2.	 In-Depth Exploration: The formulation of research 
questions (RQ) addresses the holistic landscape of 
LIME and SHAP XAI frameworks for AD classifica-
tion. The study conducts a thorough survey of these 
methods over the last decade, critically analysing 
their findings, results, capabilities, and limitations.

3.	 Practical Guidance: The study goes beyond theoreti-
cal analysis by providing Python-based code walk-
throughs for implementing LIME and SHAP frame-
works. This practical guidance is especially beneficial 
for newcomers entering the field, enhancing accessi-
bility and application of the presented frameworks.

The rest of the paper is structured as follows: Sect.  2 
provides a brief overview of LIME and SHAP XAI 
frameworks. The search strategy is explained in Sect.  3. 
Section 4 presents the findings of this systematic review 
and Sect. 5 draws the concluding remarks.

2 � Overview of SHAP and LIME
The predictions of machine learning algorithms, par-
ticularly for medical diagnosis, can be disastrous if acted 
upon with blind faith. The models are evaluated based 
on accuracy metrics. Besides using accuracy metrics, 
inspecting each prediction and interpreting significant 
instances that lead to the decision is necessary [83]. 
Such explanations for instances of individual predictions 
can lead to trusting the prediction [83]. Multiple such 

Fig. 2  Sanky Diagram of various XAI frameworks used in AD prediction since 2018–2023 September. Reproduced with permission from [83]
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predictions and explanations can help trust the model. 
LIME and SHAP are popular model interpretability 
frameworks featuring various approaches. While LIME 
focuses on local interpretability, SHAP offers global and 
local insights with dual interpretability.

Table  1 provides key distinctions between the LIME 
and SHAP XAI frameworks. For an in-depth understand-
ing of XAI-specific terminologies, readers should refer to 
recent review articles on XAI [81, 83]. This section fur-
nishes a brief overview of these frameworks.

2.1 � Local interpretable model‑agnostic explanations 
(LIME)

LIME is an algorithm that, by locally approximating 
any classifier or regressor with an interpretable model, 
can accurately explain the predictions of any classi-
fier or regressor [86]. Interpretable representation and 
local fidelity are two essential characteristics of LIME. 

Interpretability provides a qualitative understanding 
between the input variables and the responses. At the 
same time, local fidelity corresponds to the trustworthi-
ness or faithfulness of the model’s performance within 
the vicinity of the predicted instance. The term model-
agnostic implies that the explainer algorithm can explain 
any model by treating the original model as a black box 
model [83]. LIME can interpret image classifications, 
explain text-based models, and provide explanations for 
tabular datasets. These explanations can be presented in 
different forms, including textual (see Fig. 9), numeric, or 
visual formats. As shown in Fig. 3, an interpretable model 
is easily understood by humans irrespective of the mod-
el’s basic feature set. For instance, in image classification 
for AD, the classifier may represent the image as a tensor 
with three colour channels per pixel. Then, an interpret-
able representation can be a binary vector indicating the 
presence or absence of a contiguous patch of pixels that 
can explain the prediction.

Algorithm 1  Explanations using LIME

Table 1  Comparing LIME and SHAP frameworks

Criteria LIME SHAP

Explanation scope Focus on local interpretability Offers global and local insights

Implementation and applicability Local, global, model-agnostic Local, global, model-agnostic

Post-hoc Post-hoc

Explanation type Textual, visual Numeric, visual

Github link https://​github.​com/​marco​tcr/​lime https://​github.​com/​slund​berg/​shap

https://github.com/marcotcr/lime
https://github.com/slundberg/shap
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The listing in Algorithm  1 presents the step-by-step 
approach to realising LIME explanations. Suppose G is a 
class of interpretable models and g ∈ G is a model that 
can be readily presented with visual or textual artefacts. 
In that case, the domain of g is {0, 1}d , indicating the 
presence or absence of interpretable components. How-
ever, not every g ∈ G may be interpretable, so let �(g) 
be a measure of complexity. For a model f : Rd → R 
that needs interpretability, f(x) denotes the probability 
of x belonging to a specific class. To define the locality 
around x, let πx(z) be a measure of the distance between 
an instance z and x. Finally, let L(f , g ,πx) denote a meas-
ure of the unfaithfulness of g in getting an explanation for 
f within the locality defined by πx . These parameters are 
used as input as shown in Algorithm 1 to obtain an expla-
nation for LIME represented by Eq. 1:

where L(f , g ,πx) and �(g) must be minimised to ensure 
interpretability and local fidelity.

An empty set Z is initialised (step 8) to store the non-
zero instances chosen from a linear model, for example, 
drawn by minimising Delta L(f , g ,πx) weighted by πx 
around x′ (see Fig. 4a). From steps 10–14, it is seen that 
the N data samples around x′ are randomly perturbed. 
The perturbed samples can be represented as z′ ∈ {0, 1} 
d’ and contain some non-zero elements of x′ . The origi-
nal representation of the sample can be reformulated as 
z ∈ R

d . In classification, f(z) is the probability or binary 
indicator that z belongs to a particular class. These 

(1)ǫ(x) = argming∈GL(f , g ,πx)+�(g)

perturbed samples are append to the set Z and again fed 
to the black box model, and f(z) is used to obtain the clas-
sification labels (see Fig. 4b, c).

The next step is to fix weights to the chosen sam-
ples (Refer Algorithm  1 step 16). The primary intuition 
behind LIME is building a good local approximation 
using πx where samples with higher weight lie near x′ 
and others (with lower weight) far from x′ . Therefore, to 
learn the interpretable model, LIME again fixes weights 
to the perturbed samples according to their proxim-
ity to x′ . Samples close to x′ are given a more significant 
weight, and samples far from x′ are given low weights 
(see Fig. 4d). The model with perturbed data samples Z 
s used to construct a learning model by adding weights 
g(z′) = wg × z′ and the new function of unfaithfulness L 
found as in Eq. 2:

where the weight πx(z) = e
−D(x,z)2

σ2  defined on some dis-
tance function D based on the type of resultant artefacts 
(textual or visual) with width σ.

Given this dataset Z of perturbed and weighted sam-
ples with associated labels, Eq. 1 is further optimised to 
get an explanation ǫ(x) (see Algorithm 1 step 21). Con-
sidering a default linear model for LIME with sparse 
features, learning from the weighted samples provides 
adequate explanations for the prediction that x′ is 
intrinsically interpretable. The model’s linear weights 

(2)L(f , g ,πx) =
∑

z,z′∈Z

πx(z)(f (z)− g(z′))2

Fig. 3  A model predicting a patient with AD and LIME highlights the symptoms that led to the prediction

Fig. 4  a Binary classification task from two features. b Randomly perturbed data sample. c Perturbed samples labelled using a black box model. d 
LIME weights samples based on proximity. e LIME learns linear model (best when visualised in color)
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can be seen as feature scores indicating its importance 
in prediction (see Fig. 4e).

2.2 � SHapley additive explanations (SHAP)
SHAP is an XAI technique based on a mathematical 
method that assigns a weight called the Shapley value, 
to each feature of a trained model [87]. The weight 
assigned to each feature measures its contribution to 
the prediction and is based on game theory concepts. 
SHAP is a model-agnostic explainer that is an inter-
pretable model by itself. It can predict the original 
black box model for a specific data instance by deter-
mining the essential features and their influence on the 
model prediction.

Algorithm 2  Explanation using SHapley values ( φ)

In this section, we explain SHAP as a simple linear 
regression machine learning model that predicts the 
absence or presence of a disease. We assume F as a 
set of M features {1, 2, 3, · · · ,M} , a coalition or combi-
nation of possible features, S as a subset of F (S ⊆ F) , 
and φ as an empty set (coalition with no features). Then 
based on cardinality 2M is the possible number of coa-
litions. We also assume a function v that maps each 
coalition to a real number called the marginal contribu-
tion of the coalition (see Algorithm 2). Then, the mar-
ginal contribution is v(S) for each coalition S, and for an 
empty coalition, it is given by Eq. 3:

(3)v(φ) = 0

Fig. 5  Process of relevant article identification
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For each permutation P, the first step is to calculate 
the marginal contribution of the coalition of features S, 
which were added before a feature {i} (Refer steps 11–16 
from Algorithm  2). Subsequently, the coalition’s contri-
bution formed by adding the feature {i} to S, which is the 
coalition S ∪ {i} , is found. In Eq. 4, the contribution of the 
feature {i} is represented as φ(i):

where |F| is the number of features of set F, |F|! is the 
total number of permutations of the coalition set F (con-
sisting of all features) and v(S ∪ {i})−−v(S) is the con-
tribution of the feature {i} to the total contribution of 
each permutation. In Eq. 4, the sum of the contributions 
is divided by |F|! to find the average contribution for the 
feature {i} . Therefore, the total contribution of the feature 
{i} to the total contribution of all permutations for one 
possible coalition S in F is given by Eq. 5:

The process can be repeated for other coalitions of 
F − {i} to obtain the sum of the contributions of the fea-
ture {i} in all the permutations of F as in Eq. 6 (see steps 
11 to 16 from Algorithm 2):

(4)φ(i) =
1

|F |!

∑

P

(v(S ∪ {i})− v(S))

(5)|S|! · (|F | − |S| − 1)! · (v(S ∪ {i})− v(S))

Table 2  Research Questions

RQ Research questions Motivation 

RQ1 What AI systems are available for AD research that incorporate LIME 
and SHAP?

Understanding black-box models employed in AD detection that utilise 
LIME and SHAP for improved clinical fidelity

RQ2 What are the different input modalities used by LIME and SHAP for AD 
detection?

Understanding comprehensively supported input modalities for these 
XAI frameworks

RQ3 What are the benefits of using LIME/SHAP for AD detection? Exploring practicality of employing XAI tools to elucidate AD predictions 
and their implications within the medical community

RQ4 What are the limitations and challenges, and future prospects of LIME 
and SHAP in AD detection?

To comprehend the fundamental capabilities and limitations, as well 
as to identify research gaps that prompt further research

Table 3  Inclusion–exclusion criteria, search strings, and scientific repositories used in data synthesis

Inclusion criteria Exclusion criteria Search string Database

Studies related to AD diagnosis 
using AI techniques

Pilot papers, Editorials, proceedings, 
magazines

“Alzheimer’s” explainable AI, “Alzhei-
mer’s” interpretable AI

IEEE Xplore (www.​ieee.​org), Scien-
ceDirect (www.​scien​cedir​ect.​com)

Studies related to Explainable AI 
for AD prediction

Articles not related to AI based AD 
and AD disease diagnosis

“Alzheimer” explainable ML, “Alzhei-
mer” interpretable ML

Springer (www.​sprin​ger.​com), ACM 
(www.​acm.​org)

Studies related to performance 
results of ML/DL models for AD

Article on AD but not on detecting 
it (e.g., supportive care)

“Alzheimer” explainable DL, “Alzhei-
mer” interpretable DL

PubMed (https://​pubmed.​ncbi.​nlm.​
nih.​gov)

Studies related to AD Explainability 
using LIME and SHAP

“Alzheimer” post hoc explainable AI, 
“Alzheimer” XAI

IDENTIFICATION

SCREENING

FILTERING

INCLUDED FOR STUDY

All Databases (n= l567) 
IEEE (n=l50)
ScienceDirect (n=261)
Springer (n=159)
ACM(n=208) 
PubMed (n= 789)

Total Duplicates(n = 626) 
Duplicate records from: 
IEEE (n=71), ACM(n=106),
ScienceDirect (n=99),
PubMed (n= 289), 
Springer(n = 61)

Unique Records (n = 941)
 
 (Journal Publications,
  Research Articles, 
  Studies after 2012)

Excluded records (n = 891) 

(Conference Proceedings. 
Books, Posters, Editorials, 
Reviews, Non-journals, 
Studies before 2012)

Reports assessed for 
eligibility (n = 50)

Reports excluded: 

Not LIME/SHAP (n = 13) 
Descriptive (n = 3) 
Research Questions not 
covered (n = 11)

Records included for 
Systematic Review 
(n = 23)

 [89], [90], [91], [92], [93], [94],
 [95], [96],[97], [98], [99], [100], 
 [101], [102], [103], [104], [105], 
 [106],[107],[108],[109],[110],[111]

Reference numbers:

Fig. 6  Filtering of Alzheimer’s Disease Studies with LIME and SHAP: 
The PRISMA Approach

http://www.ieee.org
http://www.sciencedirect.com
http://www.springer.com
http://www.acm.org
https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
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Finally, considering the |F|! permutations for F, the aver-
age contribution of the feature {i} to the total contribu-
tion of all the permutations of F is given by Eq. 7:

where φ(i) is the Shapley value for one feature {i} and is 
the mathematically computed marginal contribution of 
the feature {i} to the total contributions of all the features 
in F. The process can be repeated to compute the Shapley 
values for every other feature {i} and represent that fea-
ture’s contribution to the model output for a specific pre-
diction (see steps 17 and 18 from Algorithm 2).

For example, considering input features for AD, like 
age, gender, education level, cognitive test scores, and 
brain image data and aggregating the SHAP values for 
the entire dataset, we may find that the cognitive test 
scores have the highest negative SHAP value, indicating 
that they are strongly associated with a lower probability 
of AD. On the other hand, the age, education level, and 
brain imaging data can have positive SHAP values, indi-
cating that they are associated with a higher probability 
of AD. Further, the SHAP values can be visualised using 
various plots, such as a summary plot (see Fig.  10) that 
shows the global importance of each feature or a force 

(6)
∑

S⊆F−{i}

|S|! · (|F | − |S| − 1)! · (v(S ∪ {i})− v(S))

(7)

φ(i) =
∑

S⊆F−{i}

|S|! · (|F | − |S| − 1)!

|F |!
(v(S ∪ {i})− v(S))

plot (see Fig. 11) that shows the contribution of each fea-
ture to a model prediction.

3 � Research questions and search strategy
We followed PRISMA [85] and Kitchenham [84] guide-
lines to identify relevant papers for this review. The over-
all process is shown in Fig. 5.

The first process is framing clear and well-defined 
Research Questions (RQ). This ensures that the review 
is focused, helps to guide the search for relevant stud-
ies, and aids in data extraction and synthesis. The RQs 
used in this study are shown in Table  2. Next, appro-
priate search strings are finalised by developing a list 
of relevant keywords and synonyms. The search strings 
shown in Table 3 are finalised after several permutation 
combinations of identified keywords. The search for 
relevant articles was carried out on five databases.

Initial search until September 2023 in these data-
bases yielded 1567 research articles (208 from ACM, 
150 from IEEE, 159 from Springer, 789 from PubMed, 
261 from ScienceDirect). These records were screened 
for duplicates, which resulted in 941 unique records. 
Next, the identified articles are screened using titles 
and abstract of publication with the help of inclusion–
exclusion criteria as shown in Table  3. This effectively 
reduced the number of relevant articles to 50 records 
that exclusively dealt with XAI-based AD classifica-
tion. However, this included research articles dealing 
with other XAI frameworks such as Gradient Class 

Fig. 7  Sanky diagram of LIME and SHAP frameworks used in this review
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Activation Mapping (GradCAM), Layerwise Rele-
vance Propagation (LRP), Salience Map, etc. So, a final 
screening included only studies using LIME and SHAP 
frameworks in the model interpretability, which effec-
tively had 23 research articles. Figure 6 shows a proper 
understanding of the steps taken in the process.

4 � Data synthesis
In this section, we present our findings by extensively 
reviewing the 23 articles through the RQs shown in 
Table 2.

4.1 � LIME and SHAP XAI frameworks for AD detection
This subsection addresses the RQ1: What AI systems 
are available for AD research that incorporate LIME 
and SHAP?

Since 1970 there has been immense attention on AI in 
disease diagnosis and treatment [88] and has achieved 
important progress in research over the years.  The con-
cept of eXplainable AI (XAI) has recently been intro-
duced into AI-based AD prediction which is a suite of 
machine learning techniques that produce models due 
to a growing demand for transparency and explain-
ability in healthcare and medical practice. The XAI 
techniques make it possible for people to comprehend, 
believe in, and control the newest generations of AI 
models. Among the emerging techniques, two frame-
works have been widely recognised as state-of-the-art 
in XAI and those are: the LIME framework introduced 
by Rebeiro et al. [86] and the SHAP values introduced 
by Lundberg et al. [87]. Several studies for AI-based AD 
detections incorporating LIME and SHAP have been 
identified (see Tables  4, 5 and 6, and the mapping on 
Fig. 7). Some of the research articles have utilised data-
sets that include ADNI, OASIS, and Kaggle for training 
AI-based AD detection models. The following subsec-
tions focus on the strengths and applications of LIME 
and SHAP individually. Subsequent subsection, analy-
ses papers that integrate both techniques, exploring the 
combined insights they provide for enhanced interpret-
ability in machine learning models.

Fig. 8  LIME Explanation (modified from [89])

Table 4  Studies incorporating LIME framework for explaining model predictions

References Task Data type Sig. features Classifier Blackbox

[89] mdDem versus moDem ver-
sus noDem versus vmDem

Image OR8B8, ATP6V1G1 ML SpinalNet

Numeric FZD4, HTR1F, OR68B2 DL CNN, SVC

GALNT6, ATP6AP1 XGBoost, KNN

TGFBRAP1, ORGR1

 [90] noDem versus vmDem Image Super pixel generation DL VGG16, CNN, 
ResNet50, Incep-
tion v3

 [91] MCI versus AD Numeric Headplot ML SVM, ANN

Spectogram DL CNN

 [92] HC versus AD Categoric Text DL BERT, BioBERT

Vocubulary BioClinicalBERT

Word RoBERTa, ALBERT

Linguistic XLNet, MTL-BERT

ConvBERT

MTL-BERT-DE

 [93] noDem versus vmDem ver-
sus mdDem versus moDem

Image Super pixel generation DL CNN
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Table 5  Studies incorporating SHAP framework for explaining model predictions

References Task Data type Sig. features Classifier Blackbox

 [94] HC versus sMCI versus Numeric Cognitive, PET, MRI, CSF ML RF

pMCI versus AD Genetics, Medical history

Other Individual modalities

Neuropsychological battery

 [95] HC versus MCI versus AD Numeric Volumetric measurements ML RF

Cognitive tests, ApoE allele XGBoost

Demographic features

 [96] HC versus MCI versus AD Numeric Demographic, Clinical ML RF

Neuropsychological

 [97] HC versus MCI versus AD Numeric Clinical history, Cognitive features ML XGBoost

Anatomical Metabolic features SVM, RF

CSF biomarkers,ApoE4

 [98] HC versus AD Numeric Endoplasmic Reticulum stress related differentially expressed 
genes measures

ML AdaBoost, RF

LGBM, XGBoost

kNN, NB, SVM

LR

 [99] HC versus erMCI versus Numeric CDRSB, Age, MMSE, RAVLT ML XGBoost

ltMCI versus AD Categoric measure, MRI middle temporal artery measure RF

Gender, ApoE

FDG, MRI whole brain

MRI entorhinal measur

MRI hippocampus measure

 [100] aMCI versus AD Numeric Clinical, Demographic, ApoE genotype, Neuropsychological ML LR, RF

XGBoost,SVM

 [101] HC versus MCI versus AD Numeric CDRSB, MMSE, EcogSPTotal ML Random Seeds

RAVLT-perc-for-getting SVM-SMOTE

FAQ, ADAS11, MOCA RF

LDELTOTAL

 [102] HC versus erMCI versus Numeric MRI Volumetric measures, Age ML DT, LGBM

ltMCI versus AD Categorical Gender, Education, ApoE RF, SVM

 [103] HC versus sMCI versus Numeric MRI Volumetric measures ML XGBoost

pMCI versus AD ApoE4 alleles, Cognitive results RF, SVM

Socio-demographic data

 [104] HC versus AD Numeric Socio-demographic data medical history, Life Style measures ML RF

XGBoost

 [105] HC versus ltMCI ver-
sus AD

Numeric Amyloid beta features, glucose ML RF

MRI measures

 [106] noDem versus vmDem 
versus mdDem ver-
sus moDem

Image Image patterns DL CNN

ML KNN, SVM

 [107] HC versus AD Numeric Image patterns DL 3DCNN

Image Demographic and Cognitive biomarkers

 [108] HC versus MCI Numeric Clinical information ML XGBoost, RF

Neuropsychological test AdaBoost, NB

Data, Neuromaging-extracted biomarkers, gene data

APOE-ǫ4
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4.1.1 � Studies based on LIME
This section focuses on review articles using LIME, 
known for its model-agnostic local interpretability, and 
generates explanations around instances using pertur-
bation (see Table  4). Hamza et  al. [90] experimented 
with neural network models for early AD detection by 
employing classification approaches utilising a hybrid 
dataset from Kaggle and OASIS. In this study, the LIME 
explainer is used to explore the exact region for which a 
specific classification occurs. The predicted result is per-
turbed to create featured data. A local linear model is 
obtained that includes partial value moderation. LIME 
now interprets the probable outcome of the newly gen-
erated data by assigning weights in the model to justify 
the prediction of AD patients whether it is in the early 
stage or later. Kamal et al. [89] have used images and gene 
expression to classify AD and also explained the results 
in a trustworthy way. In this study, LIME interprets how 
genes were predicted and which genes are particularly 
responsible for an AD patient. The genes identified for 
AD are ranked based on probability values and are sepa-
rated into AD and non-AD classifications. Figure 8 shows 
an illustration of the LIME explanation from this study. 
Another article by Loukas et  al. [92] has used speech 
recordings and associated transcripts from the ADReSS 
Challenge dataset to detect AD. In this article, LIME was 
employed to explain the BERT model that shed light on 
the differences in language between AD and non-AD 
patients. Maria et  al. [91] propose a novel approach for 
classifying Electroencephalogram (EEG) signals to pro-
vide early AD diagnosis. The XAI method used in the 
study provides quantitative features that help arrive at the 

prediction using EEG recordings obtained from individu-
als with probable AD, MCI, and HC. Duamwan et al. [93] 
in their study discuss contemporary techniques like neu-
ral networks that often operate as black boxes, empha-
sising the importance of understanding the rationale 
behind predictions, particularly in the medical domain. 
This study uses a CNN-based computer vision method to 
find AD using the ADNI MRI dataset. It was able to clas-
sify unseen MRI scans with 94.96% accuracy. The LIME 
algorithm is used to make things easier to understand by 
giving visual proof and automatically showing parts of 
images that help make predictions through a segmenta-
tion algorithm. The primary objective of the study is to 
use LIME in this context to furnish medical professionals 
with specific, easily comprehensible information, facili-
tating efficient, consistent, and convenient diagnoses.

4.1.2 � Studies based on SHAP
In this review, it was found that SHAP is another XAI 
framework that is being used frequently rooted in coop-
erative game theory, offering a unified measure of fea-
ture importance (see Table  5). Shaker et  al. [94] have 
developed and utilised a multi-layered multi-model sys-
tem for an accurate and explainable AD diagnosis. The 
authors have used SHAP in each layer of the Random 
Forest (RF) architecture for a local and global explana-
tion and provide a complementary justification by using 
several other explainers that include decision trees and 
fuzzy rule-based systems. Bloch et al. [95] state that the 
diverse causes of AD can lead to inconsistencies in dis-
ease patterns, protocols used for acquiring scans, and 
preprocessing errors of MRI scans resulting in improper 

Table 6  Studies incorporating LIME and SHAP framework for explaining model predictions

References Task Data type Sig. features Classifier Blackbox

[109] HC versus AD Numeric Normal whole brain volume ML SVM, KNN, MLP

Categoric Years of education, Socioeconomic status, Age, MMSE, Gender

Intracranial volume

Atlas scaling factor

[110] HC versus mdMCI 
versus moMCI 
versus AD

Numeric Cross sectional MRI data ML SVM, KNN

Longitudinal MRI data RF, GB

[111] HC versus AD Numeric Gender, hand, age, Years of education, Socioeconomic status ML SVM, KNN, MLP

Mini-mental state examination

Clinical dementia, Estimated total intracranial volume

Normalised whole-brain volume

Atlas scaling factor
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ML classification. This study investigates whether select-
ing the most informative participants from the ADNI 
and Australian Imaging Biomarker and Lifestyle (AIBL) 
cohorts can enhance ML classification using an auto-
matic and fair data valuation method based on XAI tech-
niques. Angela et al. [96] present a robust framework for 
classification between CN, Mild Cognitive Impairment 
(MCI), and AD and interpret the predictions with XAI 
methods. The article shows how SHAP values can accu-
rately characterise its effect on a patient’s cognitive status. 
Monica et al. [97] compare the performances of the best 
three models from ‘The Alzheimer’s disease prediction 
of Longitudinal evolution’ (TADPOLE) challenge con-
cerning prediction and interpretability within a common 
XAI framework. SHAP values explain the decision made 
by the RF classifier for each sample with a vector show-
ing feature importance for each subject at a specific visit. 
Based on interpretable machine learning, Lai et  al. [98] 
investigate the endoplasmic reticulum (ER) stress-related 
gene function in AD patients and identify six feature-rich 
genes (RNF5, UBA C2, DNAJC10, RNF103, DDX3X, and 
NGLY1) that enable accurate prediction of AD progres-
sion. This article uses SHAP along with white-box mod-
els that include decision trees and Naive Bayes (NB) for 
a local and global interpretation of each feature within 
the ML models. The study by Bogdanovic et al. [99] used 
XGBoost and RF for a four-way classification of disease 
from HC, early MCI, late MCI and AD. The explainer 
SHAP is used here for a local and global interpretation of 
the model. Chun et al. [100] try to improve the predictive 
power of progression from amnestic MCI to AD using 
an interpretable ML algorithm. This study uses several 
classifiers including logistic regression (LR), RF, Support 
Vector Machine (SVM) and XGBoost to compare the 
predictions. The SHAP values are expressed as summary 
and dependence plots for a local interpretation of indi-
vidual patients and also behave as model-agnostic for a 
global interpretation.

Xiaoqing et al. [101] propose a reliable multi-class clas-
sification model supported by XAI methods to explain 
the predictions accurately. The study uses Random Seeds 
and Nested cross-validation SVM Synthetic Minority 
over Sampling (SVM-SMOTE) and RF as classifiers for a 
multi-way prediction. In this study, SHAP values are used 
for both local and global interpretation. SHAP is used 
by Ahmed et  al. [102] and Louise et  al. [103] to deter-
mine the order of informative predictors in test data. ML 
models and their relationships were also visualised and 
analysed using SHAP summary plots. SHAP force plots 
examined the individual forecasts of chosen individuals, 

and the summary plots of those models primarily dis-
played biologically conceivable outcomes. Sameul et  al. 
[104], used RF and XGBoost algorithms in classifying 
between CN and AD. The study developed an ensem-
ble-based ML model to predict AD and explained the 
prediction in local and global contexts. The study also 
includes feature importance analysis and ranked the 
dominant features influential in AD. Hammond et  al. 
[105] use the SHAP framework to identify the biomarker 
that is most influential in AD detection predicted by the 
RF classifier. The research article tries to classify sub-
jects into different categories like CN, MCI, or AD by 
using SHAP values to rank the features in each layer of 
RF to obtain a local interpretation. The study also aggre-
gates the rightly ranked layers of RF and compares again 
for a global interpretation. In the study by Yilmaz et  al. 
[106] authors address the designing of an explainable 
diagnostic machine learning model for predicting AD 
severity levels. Utilising two open-source MRI datasets, 
a Convolutional Neural Network (CNN) was developed 
and evaluated, achieving an impressive accuracy rate 
of 99.9%. This outperformance underscores the poten-
tial of deep learning in meeting diagnostic standards. 
To enhance transparency, the SHAP framework was 
employed, revealing that the model’s predictions align 
with well-known pathological indicators of AD, thereby 
providing interpretability and reinforcing its diagnostic 
validity. A multimodal deep-learning framework, com-
bining a 3DCNN with a bidirectional recurrent neural 
network (BRNN) is introduced by Rahim et  al. [107]. 
The 3D CNN captures intra-slice features from MRI 
volumes, while the BRNN identifies inter-sequence pat-
terns indicative of AD, utilising longitudinal data over a 
6-month span. The study explores the impact of fusing 
MRI with cross-sectional biomarkers like demographic 
and cognitive scores. The authors used SHAP to enhance 
interpretability for domain experts. Results demonstrate 
the framework’s robustness, achieving 96% accuracy, 99% 
precision, 92% recall, and a 96% AUC. The fusion of MRI 
with demographic features enhances stability, and the 
explainability module provides valuable insights, accu-
rately identifying brain regions relevant to AD diagnoses.

Fuliang et al. [108] address the class imbalance in their 
study, in the context of Alzheimer’s disease diagnosis, 
during the transition from normal cognition to mild cog-
nitive impairment using a machine learning approach. 
They have used the framework, extreme gradient boost-
ing-Shapley additive explanations (XGBoost-SHAP), that 
aims to handle the imbalance among different AD pro-
gression statuses and achieve multiclassification of NC, 



Page 13 of 29Vimbi et al. Brain Informatics           (2024) 11:10 	

MCI, and AD. In the study clinical, neuropsychologi-
cal, and neuroimaging-derived biomarker patient data 
collected from ADNI database is employed for feature 
extraction embedded into the XGBoost algorithm. To 
enhance interpretability, the SHAP method is coupled 
with XGBoost, providing insights into the impacts of 
model predictions. The framework achieves high sensi-
tivity, specificity, accuracy, and area under the receiver 
operating characteristic curve (AUC) on all datasets. 
Additionally, the study provides valuable insights for clin-
ical decision-making based on SHAP values.

4.1.3 � Studies based on LIME and SHAP
In this section we review articles that integrate both 
the techniques LIME and SHAP, uncovering insights 
for enhanced interpretability in machine learning mod-
els (See Table 6). Loveleen et al. [109] discuss AD pre-
diction using tree-based models. The study employed 
machine learning algorithms like LR, SVM, KNN, 
Multilayer Perceptron, and decision trees to classify 
patients into demented and non-demented groups. The 
authors introduced an explanation-driven Human–
Computer Interaction (HCI) model, achieving high 
accuracy across algorithms and comparing perfor-
mance with state-of-the-art deep learning models. To 
enhance interpretability, LIME and SHAP explanation 
algorithms were applied to black-box deep learning 
models. Rashmi et al. [110] diagnoses AD with various 
datasets and emphasises the importance of explain-
ability beyond diagnosis. The study utilises MRI feature 
data, including generic information, cross-sectional 
MRI data, and longitudinal MRI data. In the study, the 
data processing methodology involves balancing data, 
transferring data using a Quantile Transformer, apply-
ing PCA dimension reduction for six features, and 
employing a meta machine learning model. The author 
uses SHAP and LIME as explainable tools to elucidate 
the diagnostic outcome. The research achieves out-
standing results, with 97.6% accuracy, 95.8% preci-
sion, 97% recall, and an F1 Score of 96.8%, as a result of 
employing advanced data processing techniques.

Loveleen et  al. [111] advocate that medical research 
should go in a new, and more revolutionary direc-
tion by combining deep learning and XAI and moving 
toward a human–computer interface (HCI) model. The 
proposed study uses SHAP, LIME, and DL algorithms 
to create a strong and understandable HCI model. The 
inclusion of DL algorithms, including LR (80.87%), 
SVM (85.8%), k-nearest neighbour (87.24%), multilayer 
perceptron (91.94%), and decision tree (100%), along 

with LIME and SHAP, opens new avenues for explora-
tion in the medical sciences. These findings show that 
using an easy-to-use computer interface in decision-
making processes makes the model more accurate at 
making predictions. This is very important for biomedi-
cal and clinical research.

4.2 � Data modalities used in LIME and SHAP XAI 
frameworks

This subsection addresses the RQ2: What are the differ-
ent input modalities used by LIME and SHAP for AD 
detection?

The popular XAI frameworks, LIME and SHAP, can be 
applied to a wide range of input modalities for machine 
learning models including numeric, categorical, image, 
audio and time-series data. Models that use tabular 
data such as medical records, financial data or customer 
demographics are examples of numeric data modality. 
Predictions in textual form like natural language text, 
sentiment analysis or spam detection are considered 
categoric in nature. The input data image constitutes 
medical images, facial recognition, object detection, etc. 
for predictions by machine learning models. LIME and 
SHAP also analyse audio data such as speech recogni-
tion or voice authentication and time-series data such as 
weather forecasting and sensor data analysis. By this RQ 
we categorise the reviews into subsections showing arti-
cles using image, numeric or tabular data, and categoric 
data modality separately along with ML techniques for 
prediction and subsequent AD interpretations. A few 
articles have used either numeric and medical images 
alone or along with numeric and categoric data in asso-
ciation with DL classifiers(see Tables 4, 5, and 6)

4.2.1 � Studies that use image data for explainability
As images present unique challenges, including intricate 
patterns and spatial relationships, we examine in this sec-
tion the essential theme of model explainability tailored 
to interpret complex models dealing with image data. 
Hamza et al. [90] collected T1 weighted MRI scans from 
Kaggle, aiming for a four-way classification of AD predic-
tions. Using DL architectures like ResNet50, VGG16, and 
InceptionV3, they explained feature importance through 
LIME. The weights assigned by LIME served as explana-
tions, justifying predictions for AD patients at various 
stages. Simultaneously, Duamwan et  al. [93] examined 
the  contemporary neural network techniques, emphasis-
ing the need for transparent models in medical predic-
tions. Their study, employing a CNN-based computer 
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vision approach on the ADNI MRI dataset, achieved a 
notable  94.96% accuracy in classifying MRI scans. Lev-
eraging LIME, the research enhances interpretability by 
visually highlighting crucial image segments. The shared 
objective is to provide medical professionals with spe-
cific, easily comprehensible information, streamlining 
diagnoses efficiently and consistently. Yilmaz et al. [106] 
focus on crafting an interpretable machine-learning 
model to predict AD severity levels. Using two open-
source MRI datasets, they developed and evaluated a 
Convolutional Neural Network (CNN), achieving an 
exceptional accuracy rate of 99.9%. This outstanding per-
formance highlights the capability of deep learning to 
meet diagnostic standards. To augment transparency, the 
study integrates the SHAP framework, revealing that the 
model’s predictions align with established pathological 
indicators of AD. This not only enhances interpretability 
but also reinforces the diagnostic validity of the model.

4.2.2 � Studies using numeric data for explainability
Numeric data, with its quantitative nature, plays a crucial 
role in decoding complex algorithms and offering valu-
able insights. In this section we explore studies focused 
on numeric data for explainability, aiming to under-
stand how researchers harness numerical information to 
demystify the black box nature of machine learning mod-
els, fostering transparency and accountability in artificial 
intelligence.

Maria et al. [91] propose a pioneering method for early 
AD diagnosis by classifying Electroencephalogram (EEG) 
signals. The study employs an XAI method, extract-
ing quantitative features from EEG recordings of indi-
viduals with probable AD, Mild Cognitive Impairment 
(MCI), and Healthy Controls (HC). Numerous stud-
ies, such as [94, 101], and [105], exclusively use datasets 
from the ADNI database. These studies employ numeric 
input data derived from diverse biological and clinical 

Fig. 9  LIME Textual explanation (modified from [92])
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measures, including MRI volumetric readings, cognitive 
scores, genetic data, demographic history, and labora-
tory test data. Machine learning classification techniques, 
such as RF, SVM, LR, DT, and LGB, are utilised for clas-
sifying CN and AD. Studies in [95] and [96] compare 
prediction accuracy using datasets from ADNI and AIBL 
cohorts. These studies utilise numeric input data from 
biological and clinical measures to train ML models like 
RF and XGBoost for three-way classification (CN, MCI, 
and AD). The SHAP framework is consistently used for 
either local or global explanations of features. Similarly, 
[103] performs a four-way classification (HC, stable MCI, 
progressive MCI, and AD) using numeric input data col-
lected from ADNI, OASIS, and AIBL cohorts. Various 
ML models, including XGBoost, RF, SVM, LR, and Deci-
sion tree, are employed, and SHAP is used to interpret 
prediction results.

Studies in [97] utilise the numeric input dataset from 
the TADPOLE challenge and ADNI cohorts, incorpo-
rating clinical history, cognitive and anatomical data, 
metabolic features, and cerebrospinal fluid biomarkers. 
XGBoost, RF, and SVM ML models are applied for AD 
classification, with SHAP providing explanations. In [98], 
numeric gene expression data from the Gene Expression 
Omnibus website is used for classifying patients between 
CN and AD. SHAP is employed for both local and global 
interpretations of predictions made by various ML classi-
fiers. Moreover, [100] utilises clinical and neuropsycho-
logical assessments from the Samsung Medical Center, 
South Korea, for classifying between amnestic MCI and 
AD. ML models, including LR, RF, SVM, and XGBoost, 
are used, and SHAP is applied to explain feature impor-
tance. Fuliang et  al. [108] tackle class imbalance in AD 
diagnosis using the XGBoost-SHAP framework. Clini-
cal, neuropsychological, and neuroimaging-derived 
biomarker data from ADNI are employed for feature 
extraction. SHAP is coupled with XGBoost to enhance 
interpretability, achieving high sensitivity, specificity, 
accuracy, and area under the receiver operating charac-
teristic curve (AUC) on all datasets. Rashmi et  al. [110] 
emphasises the importance of explainability beyond diag-
nosis, utilising various datasets for Alzheimer’s diagnosis. 
The study employs MRI feature data, applies advanced 
data processing techniques, and uses SHAP and LIME 
for explanation. Additionally, Loveleen et al. [111] advo-
cate for a revolutionary direction in medical research 
by combining deep learning and XAI. The study uses 
SHAP, LIME, and deep learning algorithms to create a 

Human–Computer Interface (HCI) model, achieving 
high accuracy in predictions.

All the referenced studies underscore the significance 
of numeric data in enhancing the transparency and inter-
pretability of machine learning models, particularly in 
the context of AD diagnosis.

4.2.3 � Studies using categorical data 
In this review, there was only one article by Loukas et al. 
[92] that used a distinctive approach for AD detection. 
The authors used speech recordings and associated tran-
scripts from the ADReSS Challenge dataset to detect AD. 
Unlike studies relying on numeric data, this investiga-
tion employs categorical data models for explainability. 
Specifically, Loukas et  al. [92] leverage the transformer-
based network BERT along with transcripts to uncover 
language differences between AD and non-AD patients. 
LIME is applied to explain the BERT model, providing 
insights into these linguistic distinctions. The visual rep-
resentation in Fig. 9 illustrates the intensity of colours for 
the textual form of explanation by LIME. It suggests that 
AD patients exhibit a higher frequency of using personal 
pronouns, interjections, adverbs, verbs in the past tense, 
and the token “and” at the beginning of utterances. This 
approach offers a unique perspective by utilising cat-
egorical data and linguistic patterns for AD detection, 
contributing to the broader landscape of explainable AI 
in healthcare.

4.2.4 � Studies using numeric data along with categorical 
or image data

Studies with an intersection of numeric, categorical, or 
image data are paving the way for enhanced understand-
ing and interpretability in machine learning models. In 
this review, we found innovative articles that explore the 
combination of numeric, categorical, and image data to 
provide significant insights and foster transparency in 
machine learning outcomes.

In [99], numeric and categoric datasets from the 
TADPOLE challenge and ADNI cohorts, encompass-
ing diverse clinical, anatomical, metabolic, and cer-
ebrospinal fluid biomarker information, are employed 
for multi-way classification in AD. Utilising XGBoost, 
RF, and SVM  models, the study integrates the SHAP 
framework for both local and global interpretations of 
feature importance. Despite the decision tree-based 
nature of ML models, SHAP’s model-agnostic attrib-
utes facilitate its extension to diverse ML models. The 
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authors discuss potential selection bias with the Data 
Shapley method, emphasising more specific and less 
generalisable models for a particular subgroup. Fig-
ure  11 illustrates force plots depicting the impact of 
SHAP values on feature interaction and overall pre-
dictions at the individual level. Additionally, the study 
underscores SHAP as supplementary knowledge for 
clinicians, enhancing diagnostic conclusions over time. 
Analysing SHAP plots, the study identifies CDRSB as 
the most impactful feature, while gender and APOE4 
exhibit minimal influence, challenging gender pre-
disposition notions. The study concludes that MMSE 
value predominantly impacts CN subjects, with age 
holding the most influence on late MCI class, ren-
dering gender insignificant. In another study, Ahmed 
et  al. [102] utilise SHAP to ascertain the sequence 
of informative predictors in test data. ML models, 
such as DT, Light Gradient Boosting (LGB), Logistic 
Regression (LR), RF, and SVM, are examined using 
SHAP summary plots. The studies focus on CN and 
AD classification, employing numeric input data from 
biological and categoric measures obtained from the 
ADNI database. In the study, SHAP is applied for both 
local and global interpretations of feature importance. 
Various ML models are also explored for a 4-way clas-
sification, leveraging SHAP to establish rankings. The 
study further quantifies associated predictors using a 
proxy PCA, contributing to stable rankings.

A few studies have employed numeric and image data 
for AD classification and explaining thereafter. Kamal 

et al. [89] employed both DL and ML classifiers in a com-
prehensive four-way classification of AD predictions. 
DL classifiers, specifically SpinalNet and CNN, utilised 
MRI scans from Kaggle and OASIS-3, while ML classi-
fiers, including SVM, KNN, and XGBoost, leveraged 
gene microarray data from the NCBI database. By com-
bining MRI and gene expression data, the authors cre-
ated a multimodal diagnostic model for AD. LIME was 
integrated to provide interpretability, explaining the role 
of genes and ranking them based on probability values 
in AD prediction. In a similar study, Rahim et  al. [107] 
introduced a multimodal deep-learning framework, com-
bining a 3D CNN with a bidirectional recurrent neural 
network (BRNN). This framework captured intra-slice 
features from MRI volumes and identified inter-sequence 
patterns indicative of AD, utilising longitudinal data over 
a 6-month span. The study explored the fusion of MRI 
with cross-sectional biomarkers such as demographic 
and cognitive scores. SHAP was employed to enhance 
interpretability for domain experts. Results demonstrated 
the framework’s robustness, achieving 96% accuracy, 99% 
precision, 92% recall, and a 96% AUC. The fusion of MRI 
with demographic features enhanced stability, and the 
explainability module provided valuable insights by accu-
rately identifying brain regions relevant to AD diagnoses.

In summary, studies combining numeric, categori-
cal, and image data for AD classification utilise diverse 
machine learning models. XAI methods like SHAP 
and LIME enhance interpretability, shedding light on 
influential features. This holistic approach, integrating 

Fig. 10  SHAP Summary Plot explanation (modified from [94])
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different modalities, aims to create comprehensive and 
transparent AD diagnostic models, ultimately advanc-
ing our understanding of the disease and aiding clinical 
decision-making.

4.3 � Benefits of LIME and SHAP in AD detection
This subsection addresses the RQ3: What are the benefits 
of using LIME/SHAP for AD detection and in general 
healthcare?

Several benefits have been reported by studies in this 
review that use the concept of LIME and SHAP explain-
ers in AI-based AD detection. A majority of the stud-
ies discuss the importance of adding trustworthiness in 
AI predictions, particularly in the medical industry. We 
discuss the benefits in terms of various output forms 
of explanations such as numeric, textual, visual and 

rule-based forms. There are no studies that have pro-
duced Rule-based explanations in this review. Therefore 
in this section, we discuss the benefits in terms of the 
Numeric, Textual, and Visual forms of explanations.

Kamal et  al. [89] have found that LIME was useful in 
discovering critical genes responsible for AD. Also, the 
XAI method was useful in identifying the major sets 
of genes and their role in favouring the progress of AD 
disease. The authors found that the genes OR8B8 and 
ATP6V1G1 are found to be highly significant for AD 
and HTR1F and OR6B2 for non-AD patients. Hamza 
et al. [90] and Sidulova et al. [91] use LIME to visualise 
the more red areas of the brain that were identified as 
representative features for AD diagnosis. The colourful 
areas signify regions that instigate the image classifica-
tion models to make the prediction. The author also finds 

Fig. 11  SHAP Force Plot explanation (modified from [104])
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LIME to be beneficial to comprehend low-level data. 
Loukas et  al. [92] use the transformer-based network - 
BERT along with transcripts to produce differences in 
language between AD and non-AD patients. Figure  9 
depicts the intensity of colours for the textual form of 
explanation by LIME, suggesting that AD patients tend to 
use personal pronouns, interjections, adverbs, and verbs 
in the past tense and the token “and” at the beginning of 
utterances in a high frequency.

The RF classifier is found to be used in several research 
along with the SHAP explainer supporting the predic-
tions with visual explanations such as violin, force, and 
summary plots [94, 96, 105]. The authors in [94] claim 
high-performance measures for the tradeoff between 
accuracy and interpretability. Several credible and trust-
worthy visual justifications support the results.

Figure 10 shows the summary plot for the second layer 
for the pMCI and sMCI classes respectively. The study 
in [96] gives the absolute value of each SHAP score 
that expresses how much each feature contributes to 
the final prediction. The authors also show how SHAP 
has achieved in explaining the internals of the RF clas-
sifier trained on cognitive and clinical information. The 
explanations provide a possible link between diagnosis 
and patterns of feature relevancy. In another study [105], 
the authors illustrate models with high-performance 
measures as the models work by merging many deci-
sion trees to obtain a final global forecast. The authors 
replicated the analysis using SHAP and obtained a con-
sistent feature ranking analysis. The study employed AD 

biomarkers that are powerful enough to predict CN, late 
MCI and AD and also ranked the biomarkers in order of 
their feature importance. The study also shows that the 
Amyloid beta (A), tau (T), and neurogenerative biomark-
ers (N) have different importance in predicting clini-
cal dementia. The study proves the high importance of 
the biomarkers (A) and (T) in predicting early cognitive 
impairment and the glucose uptake in predicting later 
cognitive impairment. The authors also demonstrate a 
framework integrating A/T/N biomarkers using RF to 
classify dementia and rank biomarker features.

The ML models XGBoost and RF are used in [95, 99, 
104] for AD classification and interpreting with SHAP. 
Although the ML models used in the study are decision 
tree-based, the SHAP model-agnostic interpreter simpli-
fied its possibility of extending the application to other 
ML models. The authors discuss the increased possibil-
ity of a selection bias using the Data Shapley method, 
leading to more specific and less generalised models 
and reducing the problem to a specific subgroup. Fig. 11 
shows force plots with the effect of SHAP values on the 
interaction of features and the overall prediction at the 
individual level. In a different study [99], the authors 
demonstrate the use of SHAP as additional knowledge 
for clinicians and other related experts when concluding 
the diagnosis for a particular patient. The study claims 
worthy benefits regarding the model’s exactness and 
validity for the time difference. The study establishes, 
by analyzing the SHAP plot, that CDRSB leads by far 
the most in the impact of the model’s output. The gen-
der and APOE4 have very low feature importance values, 
indicating the least influence on the prediction outcome. 
The authors establish that there is no gender predispo-
sition for obtaining AD. From this outcome, it can be 
confirmed that the APOE gene does not act as a decisive 
factor in a diagnosis. The authors conclude in the study 
that the MMSE value impacts most on the CN subjects, 
and the subject’s age has the most influence on the late 
MCI class, leaving the gender feature insignificant.

The study by Monica et al. [97] and Min et al. [100] use 
the ML models LR, SVM, and RF to compare prediction 
performances between CN and AD. In [97], the author 
shows how to quantify the contribution of each feature to 
achieve the best accuracy and also identify features with 
significant importance that resulted in the prediction. 
The authors justified the best ML method that uses infor-
mation coherent with clinical knowledge using SHAP 
violin plots. Fig.  12 shows the SHAP values computed 
from the RF classifier as described by the authors in [97]. 

Fig. 12  SHAP Violin Plot explanation (modified from [97])
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The study [100] using LR, SVM, and RF proves note-
worthy in demonstrating that the interpretable machine 
learning (IML) algorithm can estimate the individual risk 
of conversion to dementia in each MCI patient. Another 
major finding of the authors was that the IML, consisting 
of ICE and SHAP, allowed for the interpretation of vari-
ables that acted as important factors in the conversion to 
dementia in each patient. Altogether, both the findings in 
the study suggest that an algorithm using the IML tech-
nique enabled the authors to individually predict the con-
version of patients with amnestic MCI to dementia.

The study by Xaioqing et al. [101] involves ML models 
that include Random Seeds and Nested Cross-validation, 
SVM-SMOTE, and RF for a three-way classification. 
The study uses SHAP to identify the important features 
among CDRSB, MMSE, EcogSPTotal, and RAVLT_perc_
forgetting and distribute them according to the class. The 
study shows how SHAP provides a colored visual expla-
nation for a single instance in AD class as a cumulative 
effect of cognitive score features based on its contribu-
tion to the class. SHAP takes explanations for each case 
of the test set, rotates them 90 degrees, and stacks them 
horizontally to visualise the test set explanations. The 
study proves beneficial to physicians in providing insight 
into why the model makes decisions. Another study by 
Ahmed et al. [102] uses DT, LGB, LR, RF, and SVM for 
4-way classification. The authors used SHAP to derive 
the rankings of informative predictors in descending 
order. The study utilised SHAP and proxy PCA to meas-
ure predictors, which produced uncorrelated variables 
and a stable ranking for most classifiers. Louise et  al. 
[103] also use the ML classifiers XGBoost, RF, SVM, DT, 
and LR for a four-way classification and summary plots 
from SHAP were used to visualise and interpret the ML 
models and also show biologically plausible results. Also, 
SHAP force plots were used to investigate individual pre-
dictions of interesting subjects. The study shows a mod-
erate to significant correlation between the importance 
of natural and permutation features in SHAP value com-
parisons. Another study by Gaur et al. [109] uses the ML 
models LR, SVM, KNN, Multilayer Perceptron, and DT 
for a two-way classification along with LIME and SHAP 
explainers. The authors were able to order features in 
order of importance with the help of a proposed HCI 
model that aims to increase trust in ML models.

In this RQ, we show that LIME and SHAP are instru-
mental in interpreting machine learning models across 
different data types. Regarding numeric data, LIME 
proves good at local interpretability because it can 
change instances and fit interpretable models, showing 

that it is flexible across black-box models. However, its 
sensitivity to perturbation methods and reliance on local 
approximations limit its global generalization. On the 
other hand, SHAP gives a single measure of how impor-
tant a feature is based on cooperative game theory for 
numeric data. This makes the data easier to understand 
globally and gives a full picture of how the model acts. 
However, challenges arise regarding computational com-
plexity, especially for large datasets and complex models, 
and interpreting specific features, particularly in high-
dimensional spaces. Both frameworks contribute distinct 
approaches tailored to numeric, text, and image data 
characteristics.

In all the studies for this RQ, we found LIME explainers 
interpreting predictions of both ML and DL models and 
SHAP produced a quantitative measure of features and 
their rankings. The RQ also helped to group the studies 
based on different forms of explanation for AD predic-
tion that will be of significant use in future research.

4.4 � Limitations, challenges and future prospects
This subsection addresses the RQ4: What are the limi-
tations, challenges, and future prospects of LIME and 
SHAP in AD detection?

Several studies have suggested using the concepts of 
LIME and SHAP to better understand the predictions 
made by AI systems. High-performance computers, 
access to the LIME and SHAP open-source frameworks, 
and the availability of the source code have significantly 
contributed to the rise of HCI systems equipped with AI. 
Despite the encouraging outcomes shown by independ-
ent studies, it is not surprising that these initiatives have 
several limitations. To stimulate further research in this 
area, we outline below some drawbacks and knowledge 
gaps in AD detection using LIME and SHAP. 

1.	 One of the limitations of using LIME and SHAP for 
AD detection is the limited sample size of available 
data [100]. Therefore, to obtain reliable and robust 
explanations, a large number of data points are 
required, which can be challenging for medical data-
sets.

2.	 Several research articles use preprocessed and read-
ily available datasets. AD detection demands analyz-
ing multiple types of features, such as demographic 
data, cognitive test scores, and brain imaging data, 
which can be complex and difficult to interpret and 
mandates the need to be validated with a professional 
from the medical domain [105]. LIME and SHAP 
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may not provide sufficient information to explain 
the complex interactions between these features. 
Therefore, to enhance the benefit to all stakehold-
ers, it is necessary to include medical and AI experts 
to deduce the interpretability obtained by the XAI 
framework. We have not found any such studies in 
this review that have considered this aspect.

3.	 Researchers in XAI frequently rely on their intui-
tion to ascertain a sound explanation without prior 
consultation with a medical expert [94]. When an 
intuition is detected that is inconsistent with how 
it is being understood, a confusion scenario results, 
raising doubts about how interpretability originated. 
The only way to avoid this is to have access to ground 
truth data so that one may objectively validate the 
explanation against it without questioning the XAI 
systems’ judgments.

4.	 Multiple XAI frameworks have been employed in 
some research to enhance explainability. While this 
may sound good from an academic point of view, 
it sometimes leads to ambiguity. One study com-
bined the use of the LIME and SHAP frameworks 
[109]. However, there was no correlation between 
the feature rankings produced by these frameworks. 
Another study that tested the interpretability of 
SHAP combined it with other techniques [103]. 
Again, a bad association between feature ranks of 
the SHAP values and other models was discovered. 
The explanations provided by multiple XAI mod-
els may cause ambiguity, which can undermine the 
confidence and trust of clinicians in AI decisions as a 
whole, not just in the interpretations of XAI.

5.	 Even though researchers used XAI frameworks to 
predict AD, there is always a tradeoff between the 
interpretability of a model and accuracy. While 
LIME and SHAP can improve the interpretability of 
a model, they may reduce the accuracy, particularly 
of complex models [91]. Therefore, it is important 
to balance interpretability and accuracy when using 
these techniques.

Several studies have offered to explain AD predic-
tion and subsequent interpretation using the LIME and 
SHAP frameworks. While the reviewed articles demon-
strated significant progress in achieving clinical accuracy, 
the raised RQs, along with acknowledged limitations 
and challenges, underscore the need for more targeted 
research endeavors. This is pivotal for driving substantial 

improvements in XAI-based AD systems in real-world 
medical scenarios. For instance, envision a hospital set-
ting where clinicians rely on an XAI-based AD classifi-
cation model to interpret and validate a complex data 
sample of an individual. In this scenario, the XAI frame-
work should provide clear and understandable explana-
tions for why the model arrived at specific predictions, 
guiding clinicians in making informed decisions about 
patient care. This kind of contribution is yet to be car-
ried out due to the non-availability of large datasets and 
XAI ground truth data. On the other hand, AI research-
ers must thoroughly study the issues discussed in RQs, 
keeping medical professionals in the loop to provide the 
medical community with profound reliability and trust-
worthiness for AI-driven AD diagnosis.

5 � Conclusion
A carefully selected set of research questions guided 
this systematic review of 23 articles that utilised LIME 
and SHAP for AD classification. It gave us a compre-
hensive understanding of these XAI frameworks’ 
advantages, obstacles, and prospects for AD detection 
and classification. Our findings not only highlight the 
potential of these frameworks to enhance the interpret-
ability of AI models for AD detection and classifica-
tion but also underscore the need for ongoing research 
and development to address the challenges and limi-
tations of these methods. Our review will inspire fur-
ther research in this critical area and help advance our 
understanding of how XAI frameworks can be lever-
aged to improve the diagnosis and treatment of AD.

Appendix: Code walkthroughs
This section provides code walkthroughs for imple-
menting the LIME and SHAP frameworks. The code 
shown in Listing 1 implements the LIME frame-
work that provides local explanations for AD classi-
fication using MRI scans  for a CNN model. The code 
in Listing-2 demonstrates implementation of the 
SHAP framework for enhanced interpretability for an 
XGBoost model that predicts AD using tabular data.
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Code walkthrough: LIME XAI framework
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Lines 1–15 represent the required dependency packages. 
Line 16 defines a function that groups train and test data 
from an h5 file which is invoked in Line 17. The h5 file 
stores MRI image data and labels for training and test-
ing as a numpy array. Lines 18–21 code snippet prepares 
data for deep learning. The x_train and x_test data 
are converted to a 3D format suitable for pretrained deep 
learning models. The y_train and y_test data con-
taining categorical labels is converted to one-hot encoded 
vectors.

Lines 22–39 define a CNN model named model for 
image classification using the InceptionV3 pretrained 
architecture. The pretrained InceptionV3 model is 
loaded with weights from ImageNet and configured to 
exclude the top classification layer (Line-23). The layers 
of the pretrained model are frozen to retain their learned 
features during training (Line-24). The model is then 
extended with additional layers, including dropout for 
regularisation, batch normalisation for stable training, 
and dense layers for classification (Lines 25–37). The last 
layer has four units with softmax activation for multi-
class classification (Line-37). The model summary shows 
the architecture and the number of parameters (Line 38). 
Finally, the weights of the model are loaded from a file 
named best-weights.hdf5 (Line-39).

The code in Lines 40–46 retrieves an MRI image from 
the x_train array, reduces its dimensions to eliminate 
singleton dimensions using np.squeeze and then dis-
plays the grayscale image using matplotlib com-
mands. After displaying the image, it is saved as a JPEG 

file named ‘output.jpg’ using the plt.imsave function, with 
the ‘grey’ colourmap specified to ensure the grayscale for-
mat is preserved in the saved image.

The code in Lines 47–57 reads the previously saved 
JPEG image output.jpg using the PIL library’s 
Image.open function, resizes it to the required dimen-
sions and converts it to a numpy array. The array is then 
preprocessed, expanding its dimensions and making it 
suitable for input to a model. The deep learning model, 
denoted as model, predicts the class probabilities for the 
image (Line 52), and the predicted label is obtained by 
finding the index with the highest probability (Line 54). 
The true label of the image from the y_train array is 
printed for comparison (Line 57).

In the code snippet from lines 60–66, a LimeIma-
geExplainer is employed to interpret the model’s 
prediction for a preprocessed MRI image. The LimeIm-
ageExplainer generates an explanation for the top 4 
labels, creating a visualisation with a mask overlay on 
the original image to highlight influential regions (see 
Fig. 13). The displayed image, along with the true, pre-
dicted, and explanation labels, facilitates a compre-
hensive understanding of the model’s decision-making 
process. By showcasing the areas that contributed to 
the prediction, this explanation aids in interpreting and 
validating the model’s behaviour in the context of the 
given MRI data.

Fig. 13  LIME-Output of code Walkthrough
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Code walkthrough: SHAP XAI framework
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Lines 1–5 represents essential libraries for numerical 
operations, data manipulation, and visualisation. The 
subsequent steps involve preparing a dataset, initialising 
an XGBoost model, and integrating the SHAP library to 
gain insights into feature importance.

Line 6 in the code initiates the SHAP library for JavaS-
cript components required for SHAP visualisations. 
Additionally, Line 7 sets a specific seed value (12345) 
to control the randomness in the subsequent processes, 
ensuring reproducible results across multiple runs.

The code in Lines 8–11 is used as an example to intro-
duce the SHAP library and its functionalities, demon-
strating the loading of a dataset and providing a visual 
representation of its contents. Line-8 imports data from 
a CSV file into a pandas dataframe. The dataset includes 
handwriting data from 174 participants. The classifica-
tion task consists in distinguishing AD patients from 
healthy people. The features (X) related to handwriting 
analysis attributes and a target variable (y) indicating 
whether a person is healthy or AD. Line 9–10 prepare the 
data by separating features and the target variable, mak-
ing it suitable for training a machine learning model.

The train_test_split function from the scikit-
learn library in Line-11 facilitates the process of parti-
tioning the dataset into two disjoint subsets. The training 
set (X_train, y_train) is used to train the model, 
while the validation set (X_valid, y_valid) serves 
as an independent dataset for evaluating the model’s per-
formance. The test_size parameter specifies the pro-
portion of the data to allocate to the validation set, and 
the random_state parameter ensures reproducibility 
by fixing the random seed for the split.

The code segment in Lines 12–16 encapsulates the 
initial steps of configuring an XGBoost model, prepar-
ing data, and establishing hyperparameters for train-
ing. Lines 12–13 are used for data preparation using the 
DMatrix objects, which are specific data structures used 
by XGBoost. ‘dtrain’ and ‘dvalid’ represent the training 
and validation data objects respectively. Line-14 provides 
an initial prediction score for all instances and Line-15 
sets up the hyperparameters for training. Line-16 creates 
a ‘watchlist’ to monitor the performance of the XGBoost 
model while training. This is a diagnostic tool consist-
ing of a list of tuples, where each tuple is DMatrix object 
with a corresponding label.

Line 17 involves the actual training of the model 
and evaluating its performance on the validation set. 
The params argument includes various hyperparam-
eters that control the learning process as initialised in 
Line 15, dtrain is the training dataset provided as a 
DMatrix object, num_boost_round=5000 speci-
fies the maximum number of iterations during training, 
evals=watchlist indicates the dataset (watchlist) on 
which the model’s performance will be evaluated during 
training, early_stopping_rounds=20 enables early 
stopping, where training will stop if the performance on 
the validation dataset does not improve after 20 consecu-
tive rounds, and verbose_eval=100 specifies that 
the training progress will be printed to the console every 
100 iterations. The model object will contain the trained 
XGBoost model after the completion of this process.

The code in Lines 18–19 sets up a TreeExplainer 
for the XGBoost model (created in Line-17) and then cal-
culates Shapley values for the entire dataset to find the 
feature contributions and their impact on the model’s 
predictions. The TreeExplainer function creates a 
SHAP object, explainer, to explain the output of the 
tree-based model. The statement in Line-19 creates Shap-
ley values for the entire dataset X that represents the con-
tribution of each feature. Shapley values provide insights 
into the importance and impact of each feature on the 
model’s predictions. Positive Shapley values indicate a 
positive contribution to the prediction, while negative 
values suggest a negative contribution. These Shapley val-
ues can be used to interpret the model’s decision either 
for individual instances or to analyse the overall feature 
importance of the dataset.

The code in Line 20 creates a force plot of the first 
instance using the SHAP library to give a visual repre-
sentation of the XGBoost model’s prediction (see Fig. 14) 
and Line-21 gives a summary plot (see Fig.  15). The 
explainer.expected_value is the model’s expected 
output, and shap_values[0,:] are the Shapley values 
for the first instance. The X.iloc[0,:] represents the 
feature values of the first instance. The visual representa-
tion shows the contribution of each feature to the model’s 
prediction for a specific instance, aiding in the interpreta-
bility of the XGBoost model. This line can be iterated using 
a loop to show the force plot of any number of instances.

Fig. 14  SHAP-Output of code Walkthrough (Force Plot)
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In this walkthrough of Explainable AI using LIME 
and SHAP, we explored techniques to interpret com-
plex machine learning models. LIME, a model-agnostic 
approach, provided local explanations for AD classification 
on MRI images. SHAP, rooted in cooperative game theory, 
enhanced interpretability for an XGBoost model predicting 
AD using handwritten data. These tools, offering both local 
and global insights, contribute to model transparency and 
trust, crucial for real-world applications like healthcare and 
finance. As XAI advances, LIME and SHAP play pivotal 
roles in making AI more understandable and accountable.
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