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Abstract 

EEG/MEG source imaging (ESI) aims to find the underlying brain sources to explain the observed EEG or MEG meas-
urement. Multiple classical approaches have been proposed to solve the ESI problem based on different neurophysi-
ological assumptions. To support clinical decision-making, it is important to estimate not only the exact location 
of the source signal but also the extended source activation regions. Existing methods may render over-diffuse 
or sparse solutions, which limit the source extent estimation accuracy. In this work, we leverage the graph structures 
defined in the 3D mesh of the brain and the spatial graph Fourier transform (GFT) to decompose the spatial graph 
structure into sub-spaces of low-, medium-, and high-frequency basis. We propose to use the low-frequency basis 
of spatial graph filters to approximate the extended areas of brain activation and embed the GFT into the classical ESI 
methods. We validated the classical source localization methods with the corresponding improved version using GFT 
in both synthetic data and real data. We found the proposed method can effectively reconstruct focal source patterns 
and significantly improve the performance compared to the classical algorithms.

Keywords EEG/MEG source imaging, Inverse problem, Graph signal processing, Spatial graph filter

1 Introduction
EEG/MEG are non-invasive measurement modalities 
with high temporal resolution up to 1 ms. EEG/MEG sig-
nals can be collected noninvasively through electrodes 
or sensors on the scalp. Importantly, EEG/MEG are the 
direct measurement methods to detect the instantaneous 
electrophysiological activities of the brain  [1]. EEG and 
MEG are recognized as powerful tools for capturing real-
time brain functions by measuring neuronal processes 
with broad clinical and neuroscience applications [2]. The 
EEG/MEG source localization aims to solve an inverse 
problem to reconstruct the underlying electrophysiologi-
cal brain activities given the measured EEG/MEG signal 
and the brain forward model  [3]. The EEG/MEG source 
localization is also referred to as Electrophysiological 
Source Imaging (ESI) [4]. However, the number of EEG/
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MEG channels is far less than that of the brain sources, 
which makes the ESI an ill-posed problem.

In the past decades, numerous algorithms have been 
developed with different assumptions on the configu-
ration of the source signal. One seminal work is mini-
mum norm estimate (MNE) where ℓ2 norm is used as a 
regularization [5], which is to explain the observed signal 
using a potential solution with the minimum energy. Dif-
ferent variants of the MNE algorithm include dynamic 
statistical parametric mapping (dSPM) [6] and standard-
ized low-resolution brain electromagnetic tomography 
(sLORETA) [7]. The ℓ2-norm-based methods tend to 
render spatially diffuse source estimation. To promote 
sparse solutions, Uutela et al. [8] introduced the ℓ1-norm, 
known as minimum current estimate (MCE). Rao and 
Kreutz-Delgado proposed an affine scaling method [9] 
for a sparse ESI solution. The focal underdetermined sys-
tem solution (FOCUSS) proposed by Gorodnitsky et  al. 
encourages a sparse solution by introducing the ℓp-norm 
regularization [10]. Besides, Bore et  al. proposed to use 
the ℓp-norm regularization ( p < 1 ) on the source signal 
and the ℓ1 norm on the data fitting error term to achieve 
sparsity [11]. Babadi et  al. demonstrated that sparsely 
distributed solutions to event-related stimuli could be 
found using a greedy subspace-pursuit algorithm [12]. 
Wipf et al. proposed a unified Bayesian learning method 
that can automatically calculate the hyperparameters for 
the inverse problems under an empirical Bayesian frame-
work, and the sparsity of the solution is also guaranteed 
[13]. To mitigate the high level of noise when estimat-
ing source signal, Hashemi et  al. applied a hierarchical 
Bayesian (type-II maximum likelihood) model for joint 
estimation of latent variables for both source and noise 
[14]. An innovative robust empirical Bayesian framework 
proposed by Ghosh et al. can estimate the low-rank noise 
covariance and sparse brain source activity at the same 
time [15]. Wan et al. reformulate the ESI problem into a 
graph search problem by exploiting the graph neighbor-
hood information in the brain source space and the opti-
mal solution can be theoretically guaranteed under high 
noise circumstances [16].

In addition to using optimization approaches, deep 
learning methods have become increasingly popular in 
recent years. Hecker et  al. came up with a CNN model 
with a special design of the input matrices of EEG and 
MEG signal, termed as ConvDip, for source localiza-
tion which achieved good performance [17]. Jiao et  al. 
proposed to use of a graph Fourier transform based 
bidirectional long-short-term memory, termed as GFT-
BiLSTM, which can reduce the output dimensions and 
can construct an extended brain region activation. The 

GFT-BiLSTM method achieves good performance local-
izing seizure onset zone [18]. To take advantage of both 
the high spatial resolution of fMRI and the high temporal 
resolution of EEG, Liu et al. proposed a hierarchical deep 
transcoding model for fusing simultaneous EEG-fMRI 
data to estimate the brain source activity with high spati-
otemporal resolution [19, 20]. Another multi-modal deep 
learning model that fuses both MEG and EEG informa-
tion is shown to have high accuracy compared to using 
a single modality of EEG or MEG in the context of deep 
learning approach [21].

As the brain sources are not activated discretely due 
to its volume conductivity property, a compact and 
extended area of source estimation is preferred [4, 22, 
23], and it has been used for multiple applications, such 
as somatosensory cortical mapping [24], and epilep-
togenic zone in focal epilepsy patients [25, 26]. To esti-
mate an extended area of source activation, we propose 
to use the GFT technique, which has been shown with 
an improved accuracy in reconstructing extended source 
activations [18, 27]. GFT plays a pivotal role in under-
standing the spectral characteristics of the signals on a 
graph, analogous to how the Fourier Transform reveals 
the frequency content of a signal in the time domain 
[28]. By decomposing graph data into its spectral compo-
nents, it provides a unique perspective on the underlying 
structure and connectivity/continuity patterns within the 
graph. Numerous interesting applications can be found 
in various domains. For example, in their seminal work, 
Defferrard et al. proposed to use GFT with deep learning 
and came up with ChebNet, which highlighted the use of 
GFT in neural networks for graph-structured data [29]. 
GFT has been used to characterize the spectrum proper-
ties of the brain connectivity networks [30], Brahim and 
Farrugia showed that using GFT-based structural con-
nectivity and functional connectivity analysis can provide 
a more accurate classification for patients with Autism 
Spectrum Disorders [31].

In this work, we propose to improve the classical ESI 
methods using GFT and its low-frequency components 
as source space subspaces, and we highlight the impor-
tance of using GFT for an extended area of source acti-
vation before applying the classical source imaging 
methods. A preliminary version has been published in 
the Brain Informatics Proceedings [32].

2  Method
In this section, we start with the introduction of the ESI 
inverse problem, which is followed by the presentation of 
the GFT and the improved version of classical methods 
using GFT.
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2.1  EEG/MEG source imaging
The source imaging forward problem can be described 
in the formula as Y = KS + E , where Y ∈ R

C×T is the 
EEG or MEG measurements, C is the number of EEG or 
MEG channels, T represents the time sequence length, 
K ∈ R

C×N is the leadfield matrix which is a linear map-
ping from the brain sources to the EEG/MEG sensors, 
N is the number of brain source, S ∈ R

N×T represents 
the brain source signal in N source locations for all the 
T time points, and E is the measurement noise. The 
inverse problem is to estimate S given Y and K. Since the 
source dimension N is much larger than the number of 
electrodes C, making the ESI an ill-posed inverse prob-
lem, it is challenging to obtain a unique solution. Various 
regularization terms were designed based on the prior 
assumptions of the spatial and temporal structure of the 
source signal to find a unique solution. The inverse prob-
lem of ESI can be formulated as below:

where � · �F is the Frobenius norm, and S can be obtained 
by solving the minimizing problem. The first term in 
Eq.  (1) is the data fitting term trying to explain the 
recorded EEG/MEG measurements. The second term is 
called the regularization term, which is imposed to find a 
unique solution using sparsity or other neurophysiology-
inspired regularizations. For example, if R(S) is a ℓ2 norm, 
the problem is called minimum norm estimate (MNE).

2.2  Graph Fourier transform in brain source space
Consider an undirected graph G = {V ,A} generated from 
the 3D mesh of brain cortex, where V = {v1, v2, . . . , vN } 
is the set of N nodes, A is the weighted adjacent matrix 
with entries given by the edge weights aij that repre-
sents the connection strength between node i and node 
j. The graph Laplacian matrix is defined as L = D − A , 
where D is the degree matrix with Dii =

∑

j �=i Aij . Since 
L is a positive semi-definite matrix, its eigenvalues are 
all greater or equal to 0, and the associated eigenvec-
tors U = [u1,u2, . . . ,uN ] , U ∈ R

N×N can be regarded as 
the basis vectors of GFT where any signal in the graph 
can be approximated as the linear combinations of basis. 
Thus, the GFT for a signal S can be defined as S̃ = UTS , 
whereas the inverse GFT is given as S = US̃ . Here we 
define normalized graph frequency (NGF) [27] as

where Tr(L)is the trace of L, and fs(ui) is defined as

(1)S = argmin
S

1

2
�Y − KS�2F + �R(S),

(2)fG(ui) =
fs(ui)

Tr(L)
,

where N (m) represents all neighbors of node m, and I(·) 
is the indicator function which equals 1 if the values of 
ui on node m and n have different signs and 0 otherwise. 
The number of sign flips at time t indicates how many 
zero crossings of a signal are within a bounded region at 
t.

We calculated the NGF in the whole time series within 
first-order neighbors, second-order neighbors, and third-
order neighbors, respectively. The spectrogram, which is 
illustrated in Fig. 1, reveals that the NGF is positively cor-
related with the order of the eigenvalue of L. Thus we can 
further separate U into low, medium, and high-frequency 
components according to NGF values, and reformat it as 
U = [UL,UM ,UH ] . The source activation patterns cor-
responding to eigenvectors with different NGFs are illus-
trated in Fig. 1.

2.3  Brain source imaging with spatial graph filters
The existing sparse source localization methods with ℓ1
-norm and ℓ2,1-norm as regularizations usually provide 
over-sparse solutions when estimating source extents, 
whereas the other non-sparsity methods commonly result 
in multiple foci. In this work, we propose to use the low-
frequency subspaces spanned by the low-frequency graph 
filters (eigenvectors) to approximate an extended area of 
brain source localization. The proposed GFT technique 
can improve the performance of classical source localiza-
tion methods by providing the low-frequency spatial graph 
filters [UL] ∈ R

N×P , thus removing the high-frequency 
noises to reconstruct the focally extended sources. Here 
P serves as the cutoff value for the set of low-frequency 
components in the subspace. The intuition is that the main 
energy of the source signal usually lies in the low-frequency 
components which are associated with the regions on the 
cortex with relatively large source extend area in a time 
series. Keeping the low graph frequency could promote a 
source extend area reconstruction and decrease the impact 
of the noise. Moreover, the reduced dimensional estimation 
in the inverse problem could further constrain the solution 
space and make the solution more easily solved and robust.

Specifically, we project graph signals S onto a subspace 
spanned by Ũ with low NGF values. The data fitting term 
can be written as �Y − KŨŨTS�2F . Let S̃ = ŨT S and 
K̃ = KŨ , then the data fitting term can be rewritten as 
�Y − K̃ S̃�2F . Solving S is equivalent to finding parameters 
in the subspace Ũ . Our goal is to estimate S̃ , and all regu-
larizations will be added to S̃ instead of S.

(3)fs(ui) =

N
∑

m=1

∑

n∈N (m)

I(ui(m)ui(n) < 0)/2,
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Finally, the source estimation ŜGFT can be simply 
obtained from the inverse GFT Ũ Ŝ∗GFT .

We delineate the solutions for 5 classical ESI methods, 
including MNE [33], MCE [8], MxNE (with L21 imple-
mentation) [34], dSPM [6] and sLORETA [7], and show 
the solution or objective function of both original form and 
GFT-based form as follows.

MNE MNE is proposed by Hämäläinen by imposing an 
ℓ2 regularization on the source solution  [33], the MNE 
algorithm has a closed-loop solution, given as

We define K̃ = KŨ , then the GFT-MNE solution is

sLORETA sLORETA is a method proposed by Pascual-
Marqui [35], and the solution is also in a closed form

The GFT-sLORETA solution is given as below:

(4)Ŝ∗GFT = argmin
S̃∗

1

2
�Y − K̃ S̃∗�2F + �R(S̃∗),

(5)Ŝ = KT (KKT + �I)−1Y ,

(6)ŜGFT = ŨK̃ T (K̃ K̃ T + �I)−1Y .

(7)
Ŝ = (KT (KKT + �I)−1K )−

1
2KT (KKT + �I)−1Y ,

(8)

ŜGFT = Ũ(K̃ T (K̃ K̃
T + �I)−1

K̃ )−
1
2

K̃
T (K̃ K̃

T + �I)−1
Y .

dSPM dSPM is proposed by Dale et  al. It has a closed-
form solution, and the solution is

the GFT-dSPM solution can be obtained as:

MCE MCE is a method proposed by Uutela et al. with ℓ1 
regularization [8]. There is no closed-loop solution. Mul-
tiple iterative solvers can solve this problem. The objec-
tive function is:

and the GFT-MCE solution can be obtained by solving 
the following equation:

MxNE MxNE used a mixed norm as a regularization 
term, where ℓ2 norm is applied to the temporal domain 

(9)

Ŝ = (KT (KKT + �I)−1
I(KT (KKT + �I)−1)T )−

1
2

K
T (KKT + �I)−1

Y ,

(10)

ŜGFT = Ũ(K̃ T (K̃ K̃
T + �I)−1

I(K̃ T (K̃ K̃
T + �I)−1)T )−

1
2

K̃
T (K̃ K̃

T + �I)−1
Y .

(11)Ŝ = argmin
S

1

2
�Y − KS�2F + ��S�1,

(12)
Ŝ
∗
GFT = argmin

S

1

2

∥

∥

∥
Y − K̃ S

∥

∥

∥

2

F

+ ��S�1

ŜGFT =Ũ Ŝ
∗
GFT .

Fig. 1 Source distributions corresponding to eigenvectors with different NGFs
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and ℓp ( p = {0.5, 1} is applied in the spatial domain, 
which is proposed by Gramfort et  al. [34]. There is no 
closed-loop solution for this regularization. In this paper, 
we use ℓ2,1 norm version for MxNE. The objective func-
tion is:

and the GFT-L21 solution is given as:

where � · �2,1 denotes ℓ2 norm on the horizontal direction 
and ℓ1 on the vertical dimension of a matrix.

3  Result
In this section, we conducted numerical experiments 
to validate the effectiveness of the proposed method on 
synthetic EEG data under different levels of neighbors 
(LNs) and signal Noise Ratio (SNR) settings for source 
localization followed by a causal time series reconstruc-
tion simulation. Lastly, we further validate it on real MEG 
recordings from a visual-auditory test.

3.1  Simulation experiments
To validate the proposed GFT-based methods, We first 
conducted experiments on synthetic data with known 
activation patterns.

Forward model To generate synthetic EEG data, we build 
a realistic head model based on T1-MRI. The brain tissue 
segmentation and source surface reconstruction were con-
ducted using FreeSurfer [36]. Then a three-layer boundary 
element method (BEM) head was built based on these sur-
faces, given the tissue conductivity values. A 128-channel 
BioSemi EEG cap layout was used, and the EEG channels 
were co-registered with the head model using Brainstorm 
[37] and then further validated on the MNE-Python toolbox 
[38]. The source space contains 1026 sources in each hemi-
sphere, with 2052 sources combined, resulting in a leadfield 
matrix L with a dimension of 128 by 2052.

(13)Ŝ = argmin
S

1

2
�Y − KS�2F + ��S�2,1,

(14)
Ŝ
∗
GFT =argmin

S

1

2

∥

∥

∥
Y − K̃ S

∥

∥

∥

2

F

+ ��S�2,1

ŜGFT =Ũ Ŝ
∗
GFT

Synthetic data generation We randomly generated 200 
source locations out of 2052 locations in the source space 
to conduct the experiments. Furthermore, as illustrated 
in Fig. 2, we used three different neighborhood levels (1-, 
2-, and 3-level of the neighborhood) to represent differ-
ent sizes of source extents, then we activated the whole 
“patch" with different neighborhood levels at the same 
time. The activation strength of the 1-, 2-, and 3-level adja-
cent regions was successively set to be 80%, 60%, and 40% 
of the central region. The scalp EEG data was generated 
based on the forward model under different measurement 
noise configurations with different Noise Ratio (SNR) set 
to be 40 dB, 30 dB, 20 dB, and 10 dB. SNR is defined as the 
ratio of the signal power Psignal to the noise power Pnoise : 
SNR = 10 log(Psignal/Pnoise) . In total, there were 12: 3 (lev-
els of neighborhood) × 4 (SNRs) data sets (Y and S pairs).

For causal time series reconstruction, we generated a simu-
lated causal time series in the source space based on the Ber-
lin Brain Connectivity Benchmark (BBCB) [39]. We slightly 
simplified it by using the autoregression with randomly gen-
erated 2 by 2 state transition matrix � , with the order K to be 
1 and the number of activated brain regions is set to be 2, to 
generate the source signal, given in Eq. 15.

Then an independent random Gaussian noise with SNR 
from 10 to 40 dB was added at each time point. Lastly, a 
third-order Butterworth filter with zero phase delay was 
applied with pass bandwidth [0.1 Hz, 40 Hz].

Experimental settings We adopted MNE [5], MCE [8], 
ℓ2,1(MxNE) [34], dSPM [6], and sLORETA [7], as bench-
mark algorithms for comparison. We separately per-
formed EEG source localization based on benchmark 
algorithms with and without the proposed GFT-based 
dimensionality reduction method. All the experiments 
were conducted on a Linux environment with CPU 
Intel(R) Xeon(R) Gold 6130 CPU @2.10 GHz and 128 GB 
memory.

(15)xt =

K
∑

k=1

�kxt−k + nt , t = 1, . . . ,T , xt ∈ R
N

Fig. 2 Brain source distributions with different levels of neighbors (LNs)
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Source localization simulation results The performance 
of each algorithm was quantitatively evaluated based on 
the following metrics:

(1) Localization error (LE): it measures the Euclidean 
distance between centers of two source locations on 
the cortex meshes.

Table 1 Performance evaluation

SNR Method Source with LNs = 1 Source with LNs = 2 Source with LNs = 3

AUC LE AUC LE AUC LE

40 dB MCE 0.574 ± 0.059 19.667 ± 17.587 0.547 ± 0.030 23.715 ± 17.542 0.537 ± 0.018 25.770 ± 17.790

GFT-MCE 0.865 ± 0.185 38.930 ± 14.862 0.940 ± 0.111 37.001 ± 13.258 0.957 ± 0.089 35.848 ± 12.438

L21 0.557 ± 0.099 34.446 ± 28.195 0.560 ± 0.072 33.773 ± 26.604 0.559 ± 0.062 35.278 ± 27.603

GFT-L21 0.977 ± 0.051 20.743 ± 16.816 0.994 ± 0.017 16.199 ± 17.748 0.996 ± 0.014 10.975 ± 13.137

MNE 0.972 ± 0.034 29.069 ± 30.995 0.954 ± 0.032 32.367 ± 33.618 0.941 ± 0.028 34.224 ± 33.046

GFT-MNE 0.991 ± 0.019 22.087 ± 26.172 0.967 ± 0.028 25.285 ± 25.978 0.951 ± 0.026 27.651 ± 26.083

sLORETA 0.973 ± 0.034 9.952 ± 10.383 0.949 ± 0.031 15.208 ± 11.622 0.930 ± 0.027 18.155 ± 13.865

GFT-sLORETA 0.989 ± 0.012 23.278 ± 26.710 0.958 ± 0.023 26.327 ± 26.425 0.940 ± 0.022 28.683 ± 26.543

dSPM 0.952 ± 0.042 35.092 ± 25.358 0.916 ± 0.041 39.696 ± 27.028 0.888 ± 0.042 42.170 ± 26.496

GFT-dSPM 0.995 ± 0.009 19.709 ± 23.126 0.985 ± 0.019 22.409 ± 22.882 0.970 ± 0.025 24.431 ± 22.872

30 dB MCE 0.573 ± 0.059 19.729 ± 17.485 0.547 ± 0.030 23.910 ± 17.730 0.538 ± 0.018 26.087 ± 17.796

GFT-MCE 0.873 ± 0.176 38.868 ± 14.806 0.951 ± 0.092 36.886 ± 13.232 0.968 ± 0.066 35.852 ± 12.462

L21 0.567 ± 0.099 33.393 ± 27.697 0.567 ± 0.069 32.376 ± 26.137 0.563 ± 0.059 34.044 ± 26.876

GFT-L21 0.978 ± 0.049 20.315 ± 16.254 0.995 ± 0.015 15.143 ± 15.930 0.997 ± 0.011 10.708 ± 12.695

MNE 0.957 ± 0.045 38.450 ± 45.892 0.929 ± 0.040 42.829 ± 48.644 0.906 ± 0.034 50.860 ± 52.669

GFT-MNE 0.990 ± 0.024 25.206 ± 33.390 0.951 ± 0.037 29.121 ± 34.989 0.920 ± 0.033 32.276 ± 35.514

sLORETA 0.963 ± 0.046 16.588 ± 23.833 0.929 ± 0.041 22.422 ± 24.842 0.901 ± 0.035 25.689 ± 25.394

GFT-sLORETA 0.984 ± 0.021 27.468 ± 35.861 0.934 ± 0.031 31.705 ± 37.753 0.902 ± 0.027 35.09 ± 38.352

dSPM 0.940 ± 0.056 35.540 ± 25.774 0.891 ± 0.054 39.718 ± 26.799 0.854 ± 0.053 41.859 ± 25.901

GFT-dSPM 0.995 ± 0.013 21.693 ± 26.864 0.977 ± 0.027 24.410 ± 27.060 0.953 ± 0.035 26.323 ± 26.260

20 dB MCE 0.572 ± 0.058 19.426 ± 17.142 0.547 ± 0.030 23.403 ± 17.027 0.538 ± 0.018 25.204 ± 17.086

GFT-MCE 0.879 ± 0.171 38.220 ± 14.542 0.953 ± 0.092 36.206 ± 12.959 0.969 ± 0.065 34.729 ± 11.946

L21 0.567 ± 0.100 32.667 ± 29.531 0.569 ± 0.065 32.261 ± 28.750 0.565 ± 0.054 36.020 ± 31.831

GFT-L21 0.980 ± 0.046 19.209 ± 15.773 0.996 ± 0.010 14.448 ± 16.017 0.997 ± 0.009 11.514 ± 17.229

MNE 0.896 ± 0.069 70.686 ± 60.049 0.846 ± 0.057 83.812 ± 58.453 0.807 ± 0.046 92.826 ± 55.580

GFT-MNE 0.957 ± 0.053 36.198 ± 43.792 0.868 ± 0.056 45.584 ± 47.039 0.806 ± 0.046 56.759 ± 49.333

sLORETA 0.914 ± 0.073 47.694 ± 51.549 0.851 ± 0.062 61.623 ± 54.220 0.802 ± 0.052 76.219 ± 54.994

GFT-sLORETA 0.931 ± 0.063 41.632 ± 48.490 0.833 ± 0.053 53.106 ± 51.408 0.776 ± 0.043 65.194 ± 52.521

dSPM 0.880 ± 0.094 37.385 ± 27.315 0.799 ± 0.089 40.268 ± 27.599 0.740 ± 0.081 43.687 ± 28.075

GFT-dSPM 0.977 ± 0.039 28.313 ± 33.943 0.922 ± 0.054 32.615 ± 34.334 0.865 ± 0.058 39.456 ± 35.939

10 dB MCE 0.568 ± 0.057 20.197 ± 17.414 0.545 ± 0.029 24.231 ± 17.784 0.535 ± 0.017 25.581 ± 17.447

GFT-MCE 0.863 ± 0.188 38.663 ± 14.157 0.930 ± 0.128 36.489 ± 12.496 0.947 ± 0.110 35.271 ± 11.621

L21 0.546 ± 0.088 40.739 ± 39.937 0.538 ± 0.057 47.475 ± 44.186 0.534 ± 0.043 54.949 ± 47.103

GFT-L21 0.971 ± 0.076 29.000 ± 33.911 0.982 ± 0.046 35.873 ± 46.373 0.922 ± 0.077 45.569 ± 50.570

MNE 0.731 ± 0.138 92.912 ± 48.956 0.693 ± 0.104 94.861 ± 46.006 0.665 ± 0.089 96.173 ± 45.351

GFT-MNE 0.765 ± 0.137 69.890 ± 42.483 0.684 ± 0.096 76.526 ± 38.688 0.647 ± 0.082 78.559 ± 36.579

sLORETA 0.726 ± 0.135 89.228 ± 48.313 0.673 ± 0.102 91.018 ± 44.866 0.640 ± 0.087 92.693 ± 44.886

GFT-sLORETA 0.737 ± 0.130 74.17 ± 44.229 0.662 ± 0.094 79.575 ± 39.930 0.633 ± 0.082 80.937 ± 38.260

dSPM 0.682 ± 0.155 60.615 ± 43.931 0.619 ± 0.12 66.894 ± 44.070 0.586 ± 0.101 70.274 ± 43.919

GFT-dSPM 0.797 ± 0.142 61.567 ± 36.941 0.719 ± 0.101 68.552 ± 34.038 0.673 ± 0.082 72.215 ± 32.479
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(2) Area under curve (AUC): it is particularly useful to 
characterize the overlap of an extended source acti-
vation pattern.

Better performance for localization is expected 
if LE is close to 0 and AUC is close to 1. The perfor-
mance comparison between the proposed methods 
and benchmark algorithms on LE and AUC is sum-
marized in Table 1, and the boxplot figures, as well as 
the difference significance test for SNR =  30  dB, and 

10 dB are given in Fig. 3. The comparison between the 
reconstructed source distributions with a 3-level of the 
neighborhood and 40 dB SNR is shown in Fig. 4.

From Table 1 and Figs. 3 and 4, we can find that: (1) 
MNE, MCE, ℓ2,1 , sLORETA, and dSPM can only recon-
struct the brain sources when the activated area is small 
and the SNR level is high, and even the evaluation met-
rics can be good in some cases, the reconstruction for 
source extend area is discrete or disconnected as shown 
in Fig.  4. As the source range expands and the SNR 

Fig. 3 Significance of difference through t test on AUC and LE with 3-level of the neighborhood for SNR = 30 dB (subplot A and B), and SNR = 10 dB 
(subplot C and D). Asterisks indicate the results of paired-sample t tests: p value < 0.5(*), p value < 0.05(**), p value < 0.005(***)

Fig. 4 Brain sources reconstruction by different ESI algorithms with the single activated area and 3-level of the neighborhood for SNR = 40 dB
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decreases, a significant increase in LE and an obvious 
reduction in AUC can be observed. The reconstructed 
source distributions are no longer concentrated. (2) 
By contrast, the results of the proposed GFT-based 
methods outperform benchmark methods in most 
cases after applying the spatial graph filters. They both 
show good stability for varied neighborhood levels and 
SNR settings. Particularly, the performance of the pro-
posed GFT-based ℓ1 regularization family (i.e., ℓ1-norm 
and ℓ2,1-norm) exhibits better performance on recon-
structing source extents without losing its advantage 
in sparse focal source reconstruction and outperforms 
other methods in most instances.

Causal time series reconstruction An order K = 1 causal 
time series was generated at different levels of noise. 
As the reconstructed time series at the source space is 
impacted by the strength of regularizations, to rectify this 
impact, we use the correlation of two sets of time series 
to quantify the similarity between the reconstructed time 
series and the ground true time series. A detailed com-
parison of different methods is given in Table 2, and an 
example of source reconstruction at 20 dB SNR is illus-
trated in Fig. 5.

It is worth noting that the proposed GFT-based meth-
ods are better than their original counterparts in most 
cases. Even at low SNR levels, the proposed methods can 
also perform well. Particularly, the GFT-based ℓ1 regu-
larization family has a significant performance improve-
ment compared to that of their original form which is 
consistent with the findings in the source localization 
simulation above, and this phenomenon can be observed 
in Fig.  5, where the reconstruction results of the GFT-
based ℓ1 regularization family method are significantly 

better than the original method, especially the recon-
struction of the source signal trend during some time 
intervals.

3.2  Real data experiments
We further validated the proposed methodology on a 
real dataset that is publicly accessible through the MNE-
Python package [38]. In this dataset acquirement, check-
erboard patterns were presented into the left and right 
visual field, interspersed by tones to the left or right ear 
with a stimuli interval of 750 ms. The subject was asked 
to press a key with the right index finger as soon as possi-
ble after the appearance of a smiley face was presented at 
the center of the visual field [40]. Evoked Response Poten-
tials (ERP) were extracted from the MEG measurements, 
and then we averaged these ERPs for source reconstruc-
tion under MNE, MCE, ℓ2,1 , dSPM, sLORETA with and 
without the proposed GFT operations. The averaged 
spikes are shown in Fig. 6, and the reconstructed source 
distributions are shown in Fig. 7.

From Fig. 7, we can see that the source area estimated 
by MNE, MCE, ℓ2,1 , sLORETA, and dSPM is highly 
broad. By contrast, the proposed GFT-based meth-
ods provide more sparse focal source reconstructions. 
Moreover, the reconstructed focal for the proposed GFT-
based methods falls primarily on areas with the strong-
est source signal, while others would spread to several 
regions. Obviously, the spatial graph filter in the pro-
posed GFT-based methods promotes a concentrated and 
accurate estimation of the visual zone.

4  Discussion
We showed that the subspace composed of low-fre-
quency spatial graph filters can be used to approximate 
the compact and extended source activation patterns, 
which is a non-parametric approach, thus empower-
ing the classical ESI methods to have better reconstruc-
tion performance for source extents reconstruction. This 
approach is an easy and effective pre-processing tech-
nique compared to predefined spatial gradient based 
methods or data-driven methods in a deep learning para-
digm. While we validated 5 classical methods, it is worth 
noting that most of the other classical approaches, such 
as recursive multiple signal classifier (MUSIC), recur-
sively applied and projected MUSIC (RAP MUSIC), low-
resolution brain electromagnetic tomography (LORETA), 
FOCUSS, weighted minimum norm (WMN), shrinking 
LORETA-FOCUSS, hybrid weighted minimum norm 
method, recursive sLORETA-FOCUSS, standardized 
shrinking LORETA-FOCUSS (SSLOFO), etc., can use the 
proposed GFT in the source space before applying each 
specific method.

Table 2 Pearson correlation for causal time series reconstruction

Methods SNR = 10 dB SNR = 20 dB SNR = 30 dB SNR = 40 dB

MCE 0.575 ± 0.276 0.591 ± 0.287 0.595 ± 0.287 0.597 ± 0.286

GFT-MCE 0.904 ± 0.115 0.908 ± 0.127 0.907 ± 0.143 0.907 ± 0.144

L21 0.847 ± 0.335 0.888 ± 0.281 0.888 ± 0.285 0.887 ± 0.286

GFT-L21 0.976 ± 0.051 0.980 ± 0.048 0.980 ± 0.047 0.980 ± 0.047

MNE 0.909 ± 0.095 0.973 ± 0.066 0.981 ± 0.066 0.982 ± 0.066

GFT-MNE 0.910 ± 0.093 0.974 ± 0.061 0.982 ± 0.061 0.983 ± 0.062

sLORETA 0.912 ± 0.100 0.970 ± 0.076 0.977 ± 0.076 0.978 ± 0.076

GFT-sLO-
RETA

0.890 ± 0.112 0.968 ± 0.080 0.979 ± 0.080 0.980 ± 0.080

dSPM 0.911 ± 0.115 0.965 ± 0.093 0.971 ± 0.093 0.972 ± 0.093

GFT-dSPM 0.921 ± 0.088 0.973 ± 0.069 0.979 ± 0.070 0.980 ± 0.070
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5  Conclusion
In this study, we improved the classical source locali-
zation methods by using spatial graph filters to solve 
the inverse problem of ESI. The proposed methodol-
ogy enjoys the advantage of reconstructing focal source 
extents with sparsity and minimizing the impact of 
the noise by transforming the estimation of the source 
signal into a projected subspace spanned by spa-
tial frequency graph filters. Numerical experiments 
demonstrated that the proposed method performs 

particularly well on source extents, yields excellent 
robustness when the SNR level is low, and can better 
reconstruct the source time series, specifically the per-
formance of the ℓ1 family regularization can be greatly 
improved with the GFT. In the experiment on real data 
we performed, the proposed methodology provides a 
satisfactory reconstruction with more concentrated 
source distribution and more stability to noise than 
benchmark algorithms.

Fig. 5 Time series reconstruction on activated region at SNR = 20 dB, where the sub-figures (a)–(e) on the left column are the reconstructions 
of the original and proposed GFT-based forms of MCE, L21, MNE, sLORETA, and dSPM at casual source 1, whereas the sub-figures (f )–(j) on the right 
column are the same definition at casual source 2. The blue curves are true source signals, and the orange as well as green curves are original 
and proposed GFT-based forms of different methods respectively
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