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Abstract 

Human emotion recognition remains a challenging and prominent issue, situated at the convergence of diverse 
fields, such as brain–computer interfaces, neuroscience, and psychology. This study utilizes an EEG data set for inves-
tigating human emotion, presenting novel findings and a refined approach for EEG-based emotion detection. Tsallis 
entropy features, computed for q values of 2, 3, and 4, are extracted from signal bands, including theta-θ (4–7 Hz), 
alpha-α (8–15 Hz), beta-β (16–31 Hz), gamma-γ (32–55 Hz), and the overall frequency range (0–75 Hz). These Tsallis 
entropy features are employed to train and test a KNN classifier, aiming for accurate identification of two emotional 
states: positive and negative. In this study, the best average accuracy of 79% and an F-score of 0.81 were achieved 
in the gamma frequency range for the Tsallis parameter q = 3. In addition, the highest accuracy and F-score of 84% 
and 0.87 were observed. Notably, superior performance was noted in the anterior and left hemispheres compared 
to the posterior and right hemispheres in the context of emotion studies. The findings show that the proposed 
method exhibits enhanced performance, making it a highly competitive alternative to existing techniques. Further-
more, we identify and discuss the shortcomings of the proposed approach, offering valuable insights into potential 
avenues for improvements.

Highlights 

• Subject independent human emotion identification is studied using SEED data set.
• Tsallis entropy is employed as feature and performance variation with Tsallis parameter (q = 2, 3, 4) is examined.
• Performance of kNN classifier is examined with Tsallis entropy feature.
• Emotion identification at various levels is studied, brain region, EEG rhythms, brain hemisphere.
• Prospects of TsEn-based real-time emotion recognition framework is canvassed.

Keywords EEG signal, Emotion identification, Brain region, EEG channel selection, Tsallis entropy, Feature 
engineering, SEED data set, KNN classifier

1 Introduction
1.1  Emotions and emotions recognition
The human brain is one of the most evolved brains among 
all other living organisms. Emotions result from cognitive 
mechanisms within billions of neurons subjected to situa-
tions and surroundings [1]. With the advancement of sci-
ence and technology, the practice to explore and quantify 
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the subjective emotions of human beings has gained little 
success but gaining higher accuracy remains challenging. 
The perception, situational reaction, and critical thinking 
biased with human emotions have been tedious to gener-
alize or functionalize. However, a deeper and more accu-
rate understanding of human emotion would essentially 
push forward the mental health care disciplines and next-
generation artificial intelligence.

As a primitive categorization, human emotions were 
classified based on two major models, namely discrete 
emotion models, which rank emotions into happiness, 
sadness, anger, fear, and disgust [2]. The second model 
gives a preliminary qualification based on the emotion’s 
arousal and valance [3]. The model is called the bidi-
mensional emotion model, which categorizes emotions 
in a two-dimensional plane within the four quadrants. 
The intensity of a particular emotion is quantified as its 
valance. The x-axis of the plane describes the valance 
of emotions. Distributions towards the left of the origin 
shows negativeness while towards the right indicates 
positiveness.

Similarly, the arousal axis grades the activation and 
calmness of the emotion from top to bottom. Systematic 
and scientific emotion detection is inevitable for general-
izing and categorizing emotion and extending it to mul-
tidisciplinary science and technology development. This 
study is conducted on the SEED data set which is based 
on the discrete emotion model. However, these enor-
mous data inevitably require an efficient classification to 
make reliable conclusions.

1.2  Why EEG?
Technology has significantly evolved to detect human 
emotions through various methods. Signals from speech, 
physical posture, body language, and facial expressions 
are a few of them [4–6]. A more precise and clinical 
detection mechanism of human emotion has been estab-
lished by Hans Berger et  al. using electroencephalogra-
phy (EEG) [7]. EEG involves the direct measurement of 
electric signals and their variations during brain activity 
that helps to digitalize subjective human emotions in the 
best way possible. The preference for EEG recordings 
over different alternatives is also substantiated by the fact 
that primary impulse in response to any input is gener-
ated in the brain. This impulse then subsequently trans-
mits through the central nervous system to the rest of 
the peripheral systems. From this context, EEG record-
ings give the source’s emotional response, whereas other 
physiological factors might be seen as a by-product of the 
brain’s response to the stimulus  [8]. Thus, a substantial 
rise in the number of studies that employed  EEG time 
series to build an emotion identification framework can 
be seen recently.

1.3  Entropy‑based emotion recognition
In the initial days of the EEG-based research, the EEG 
recordings were analyzed using linear methods, particu-
larly in the frequency zone. However, it would be incor-
rect to characterize brain activity as linear. Neurons 
connect diversely and nonlinearly at all levels, cellular 
or global. Therefore, use of linear techniques alone will 
not provide a comprehensive account of brain’s electrical 
responses. Given this information, nonlinear algorithms 
have been employed further to unravel underlying infor-
mation that remains undiscovered with classic linear 
approaches. Nonlinear approaches have consistently out-
scored the findings of linear algorithms in studying men-
tal activities, including emotion identifications [9–11].

Entropy measures are being broadly used to build emo-
tion recognition frameworks among the several nonlin-
ear approaches found in the literature. Entropy, which 
describes the nonlinear properties of a nonstationary sys-
tem, is the rate of information that a time series report. 
As a result, entropy measures are valuable tools for eval-
uating the chaotic dynamics of nonstationary systems 
like the brain. Several research studies have used these 
nonlinear approaches to extract emotional states from 
EEG records [12–14].

The concept of entropy first came in the field of ther-
modynamics. Further, it was adapted and redefined in 
the information theory by Shannon and known as Shan-
non’s entropy. Shannon entropy in signal analysis defines 
the amount of information a signal provides, indicating 
its complexity, irregularity, or unpredictability [15]. Later 
many entropy generalizations were formulated and effec-
tively employed for various EEG-based medical research, 
including mental illnesses, epilepsy [16–18], Alzheimer’s 
[19–21], autism, and depression [22, 23], among others. 
Considering these outcomes, entropy measures were 
employed in studying emotion recognition from EEG sig-
nals [24–27].

1.4  Previous entropy‑based emotion studies
Literature shows that various entropy functions have 
been derived and used for emotion recognition with the 
EEG data set [13]. Table  1 summarises all the entropy 
works and our results from Tsallis entropy for emotion 
recognition. For simplification, all the entropies studied 
to date can be categorized as (i) regularity-based entropy 
(ii) Predictability-based or symbolic entropy, and the (iii) 
multiscale entropy.

Regularity in the EEG context is defined as the rate of 
the repetitiveness of specific patterns in the signal. Some 
of the widely used regularity-based entropy are approxi-
mate entropy and sample entropy. This entropy works on 
the probability of having repetitive patterns within the 
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Table 1 Comparison between the performance of existing entropy indices and the method proposed in the present study

Entropy indices Database (No. of 
channels)

No. of subjects 
(Stimuli)

Emotions Classifier Accuracy Reference 
(Year)

Regularity-based entropy indices

Approximate entropy + oth-
ers

Private (31 channels) 44 (Images) HVLA, LVLA, LVHA SVM 75.5% [51]
2017

Quadratic sample entropy DEAP (32 channels) 32 (Video) Calm, distress DT 75.29% [52]
2016

Dynamic sample entropy SEED (62 channels) 15 (Video) Positive, negative SVM 84.67% [53]
2021

Clustering coefficient 
entropy

SEED (62 channels) 15 (Video) Positive, negative SVM 68.44% [54]
2021

Predictability-based entropy indices

Permutation entropy, AAPE, 
quadratic sample entropy

DEAP (32 channels) 32 subjects (Video) Calm, negative stress SVM 81.31% [28]
2017

Spectral entropy, shannon 
entropy

DEAP (32 channels) 32 subjects (Video) Valence and arousal, LSSVM, 
D-RFE

78.96% (arousal)
71.43% (valence)

[29]
2017

Renyi entropy + others DEAP (32 channels) 32 subjects (Video) 2, 3, 4 and 5 emo-
tions

SVM 73.8–86.2% [30]
2018

Kolmogorov entropy, shan-
non entropy, power-spectral 
entropy

Private (3 channels) 213 subjects (Audio) Depression KNN 79.27% [23]
2018

Shannon entropy, spectral 
entropy + others

DEAP (32 channels) 32 subjects (Video) Peace, anger, joy, 
depression

LSSVM 65.13% [31]
2018

Conditional entropy (CEn) 
QSampEn

DEAP (32 channels) 32 subjects (Video) calm and distress SVM 80.31% [32]
2020

Differential entropy SEED (62 channels) 15 subjects (Video) Positive and negative LDA 68% [33]
2019

SEED (62 channels) 15 subjects (Video) Positive and negative MLP, CNN 83.7% [55]
2022

Dynamic differential entropy 
(DDE)

SEED (62 channels) 15 subjects (Video) Positive and negative DDELGCN 81.56% [56]
2022

Multiscale entropy indices

Composite multiscale 
quadratic sample entropy 
(CMQSE), composite 
multiscale amplitude aware 
permutation entropy 
(CMAAPE)

DEAP (32 channels) 32 subjects (Video) Valence and arousal SVM, DT 86.35% [34]
2019

Multi wavelet entropy DEAP (32 channels) 32 subjects (Video) valence, arousal, 
dominance, liking

SVM, 
FCM4

73.32% [35]
2019

MSpEn6 + others SEED (62 channels) 15 subjects (Video) 3 emotions (positive, 
neutral, and nega-
tive)

ARF 94.4% [37]
2021

Present study

Tsallis entropy (q = 2, 3, 4) SEED (62 channels) 15 subjects (Video) Positive, and Nega-
tive

KNN q = 2
Avg Accuracy—71%
Avg  Fscore—0.69
Max Accuracy—79%
Max  Fscore—0.83

2023

q = 3
Avg Accuracy—79%
Avg  Fscore—0.81
Max Accuracy—84%
Max  Fscore—0.87

q = 4
Avg Accuracy—71%
Avg  Fscore—0.68
Max Accuracy—80%
Max  Fscore—0.82
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length of the signals selected. Studies using approximate 
and sample entropy gave accuracy between 73% and 90%.

Predictability defines the stability and the determin-
istic evolution of the nonstationary systems in time. 
Some of the entropies in this category are Shannon 
entropy (ShEn) and its generalization Renyi and Tsal-
lis entropy and another variant of ShEn differential 
entropy. These entropy matrices are based on the prob-
ability distribution of the amplitude of the signal. Per-
mutation entropy is also an example of it. Literature 
shows that the accuracies obtained from these matrices 
are between 65% and 82% [28–32].

Considering the multiscale nature of the EEG data 
set, multiscale entropy has been introduced. Multiscale 
entropy is computed by decomposing the signal into 
coarse-grained time series scales. It comprises of all the 
entropy stated above calculated in multi scales. Rec-
ognition accuracies from multiscale entropy matrices 
range between 73% and 94% [33–37].

1.5  Feature Selection: Why Tsallis entropy?
The previous section discussed various entropy measures 
used in emotion recognition. Yet among several others, 
Tsallis entropy, a very potential generalized form of Shan-
non’s entropy remains unexplored in EEG-based emo-
tion recognition. Tsallis entropy (TsEn) [38, 39] explores 
the nonextensive statistics of a system. It successfully 
describes systems having either multifractal space–time 
constraints, long-range interactions, or long-term mem-
ory effects [40]. Tsallis entropy incorporates a nonexten-
sive parameter ‘q’ which acts as a zoom lens to study all 
systems varying from short- to long-range interactions.

1.6  Mathematical formulation
Since 1948, Shannon’s entropy has been the fundamental 
and most widely used entropy to evaluate system com-
plexity. Mathematically, Shannon’s Entropy is [15]

 where N is the microscopic configuration of the system 
and Pi is the probability of occurrence of the i th configu-
ration, and the sum of the probabilities should be unity, 
i.e., 

∑

i Pi = 1.
Limitation: Shannon’s entropy is valid for systems with 

short-range interaction and fails to comprehend systems 
with long-range interaction.
ESh is additive, ESh(X ∪ Y ) = ESh(X) + ESh(Y ) Mean-

ing systems X and Y are independent.

(1)ESh = −

N
∑

i=1

Pi lnPi,

To overcome this limitation, a non-additive statistic 
was proposed [38, 39] by Tsallis therefore named Tsallis 
entropy. It is formulated as

When q → 1 , Ets reduces to the definition of ESh as:

As Ets follows nonextensive statistics and it undertakes 
the rule of pseudo additivity as

In Eqs.  (2) and (3), q is a parameter that measures 
the degree of non-extensivity [40]. A value of q = 1 cor-
responds to extensivity, that is, Shannon’s entropy. On 
the other hand, q < 1 corresponds to super-extensive, 
[Ets(X ∪ Y ) > Ets(X)+ Ets(Y ) and q > 1 corresponds to 
subextensive [ Ets(X ∪ Y ) < Ets(X)+ Ets(Y ) ] statistics.

As explained, Tsallis’ work presents a generalized form 
of Shannon’s entropy which can effectively describe sys-
tems or phenomena with long-range interaction. Primary 
electrical responses are generated from the cortical neu-
rons [41]. After reaching a threshold value, these acti-
vation potential travels and reaches the brain scalp and 
is the recorded as EEG with respect to time and space. 
Therefore, EEG comes with inherent nonextensivity 
because of the long-range correlation that exists among 
billions of neurons [42]. These long rage interactions are 
the electrical information which are transmitted across 
different cortical areas and feedback loops composed 
of corticothalamic and thalamocortical networks [43]. 
Above argument suggests it is theoretically reasonable to 
replace existing entropy measures with Tsallis entropy to 
get a grip on the long-range effects of EEG. It is also sen-
sible to consider EEG as a subextensive system (i.e., q > 1), 
since mutual information exists among different neuron 
clusters [44, 45].

(2)Ets =
1−

∑N
i=1 P

q
i

q − 1

Ets =
1−

∑N
i=1 P

q
i

q − 1
=

N
∑

i=1

Pi
P
q−1

i − 1

1− q

=

N
∑

i=1

Pi

(q−1) ln Pi − 1

1− q

≈

N
∑

i=1

Pi
[1+ (q − 1) ln Pi]− 1

1− q

=

N
∑

i=1

Pi ln Pi

(3)
Ets(X ∪ Y ) = Ets(X)+ Ets(Y )+ (1− q)Ets(X)Ets(Y )
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1.7  Research questions
As far as we know, this study is the first to propose Tsallis 
entropy as a feature (extracted from EEG) to study cross-
subject emotions using SEED data sets. The present arti-
cle explores the answers to the following queries:

Are Tsallis entropy-based features reliable when 
attempting to extract complex information from EEG 
data sets to classify emotions?
Does the classification performance depend on the 
entropic index “q,” also called the Tsallis parameter?
Is Tsallis entropy as reliable for obtaining informa-
tion from EEG data sets as Shannon entropy or other 
entropy indices? The study  assesses  the robustness 
of the feature vectors retrieved in terms of ‘accuracy’ 
and ‘F1 score’ performance metrices.

It also investigates the number of effective EEG elec-
trodes, appropriate brain region, and advisable frequency 
range that could be preferred to study emotion identifica-
tion in the future.

2  Materials and methods
The methodology diagram in Fig. 1 illustrates the essen-
tial phases of the research proposed. It consists of 4 steps 
each of which is explained in further subsections.

2.1  Experimental data
We analyzed the publicly accessible data set SEED (SJTU 
emotion EEG data set) [46]. The SEED data set comprises 
of 62-channel EEG data which are collected from 15 test 
subjects (Seven males and eight females aged between 
20 and 30  years), The experiment were repeated on the 
participants three times and the subjects’ emotions are 
induced using approximately four minutes long 15 film 
clips. The videos are organized in such a way that three 
emotions (positive, neutral, negative) classes can be 
examined with five corresponding film clips. In this study, 
only positive and negative data sets are used to evaluate 
feature’s performance for binary classification employed 
a one-minute-long data extracted from the middle part of 
each trial in the SEED.

Fig. 1 Illustration of proposed feature engineering (Tsallis entropy)-based human emotion recognition framework
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2.2  Data preprocessing
EEG data sets are  high-dimensional neurophysiological 
signal which comprises redundant and noisy data. After 
data acquisition, electrooculogram (EOG) and electro-
myogram (EMG) artifacts and line interference were 
removed in the pre-processing step. This data was  then 
downsampled to the sampling frequency of 200  Hz  to 
eradicate the computational complexities in extract-
ing the features. Then the one-minute-long signal was 
extracted from the central part of each SEED trial, which 
is the data of ~ 4 min duration.

This work also intends to study the emotion recognition 
in different frequency bands/rhythms of EEG rather than 
just the fundamental frequency, which is 0–75 Hz in our 
data case. Here, the FIR filter is used to extract different 
EEG rhythms, i.e., θ (4–7 Hz), α (8–15 Hz), β (16–31 Hz), 
and γ (32–55 Hz). Delta rhythm is not considered in this 
study, because it is mainly related to deep sleep activity. 
Before extracting features from these EEG rhythms, data 
were normalized using the z-score method, which for a 
random variable ‘Y’ with the mean ‘Ῡ’ and standard devi-
ation ‘δ’ is stated as.

Z = (Y- Ῡ) / δ.
This process contributed to eliminating subject bias 

and generating more comparable features between sub-
jects while preserving the variability of different chan-
nels. Then the required feature was extracted.

2.3  Feature engineering
2.3.1  Tsallis entropy
Entropy, in general, depicts the unpredictability of any 
signal. The idea is to obtain a temporal variation of Tsal-
lis entropy by incorporating a sliding time window in the 
input signal, then calculating the mean of the entropy 
obtained from the buffered signal. Suppose [X(n): n = 1,…, 
L]  is the input signal. A sliding window  W  is designed 
such that the width of window ‘w’ is w ⩽ L, and the slid-
ing step  is δ ⩽ w. Above defined time-dependent Tsallis 
entropy in Eq. (2) is then computed in each sliding win-
dow where Pi is the probability. The probability defined 
here is the ratio of the number of X(i)-values of the slid-
ing window  and the total number of  X(i)-values in the 
window. The mean and variance of this Tsallis entropy 
serve as the average local abnormality marker of the EEG 
signal to be analyzed and help differentiate the positive 
and negative emotions in different EEG rhythms (Fig. 2).

2.3.2  K‑nearest neighbor classifier
K-nearest neighbor algorithm is the simplest of all 
machine learning algorithms. It is a non-parametric 
algorithm based on a supervised learning method. It 
classifies unknown data based on its neighboring data 

points, as shown in Fig. 2. The classification takes two 
steps; taking the assigned number of nearest neigh-
bours first, then utilising the results of the first step to 
categorize the data point into a specific class:

Hence, the performance of the KNN classifier 
depends on two factors i. ‘k’—the number of neigh-
bors considered, ii. the distance to calculate the near-
est data points. Various distance matrices could be 
used, such as ‘Cityblock,’ ‘Chebyshev,’ ‘Correlation,’ 
‘Cosine,’ ‘Euclidean,’ ‘Hamming,’ ‘Jaccard,’ ‘Mahalano-
bis,’  ‘Minkowski,’  ‘Seuclidean,’ and  ‘Spearman’. The 
parameter ‘k’ which is the number of neighbors could 
majorly depend on the size of the data considered. 
Upon computational optimization for the data con-
sidered in this work, we opted for ‘k = 10’—number of 
neighbors and ‘Euclidean’—distance defined in Eq. 4, to 
build our classifier.

2.3.3  DATA split and validation method
Any machine learning classifier is built with cross-vali-
dation partition methods. The cross-validation partition 
function is used to specify the type of cross-validation, and 
indexing is used to divide input data in training and testing 
sets, which depend on the research objectives. The three 
most basic strategies are ‘holdout,’ ‘k-fold,’ and ‘leave out. 
This work adapts the ‘hold out’ method for validation. In 
this method, a fraction of data specified as a scalar value in 
the range [0 1] is held for testing the model, and the rest 
of the data is used to train the classifier. We have used 0.2 
holdouts in the present work, which means 80% of the fea-
tures are used for training the k-NN classifier, and 20% is 
used for the method testing.

(4)Distance
(

x, y
)

=

√

∑

i

(

xi − yi
)2

Fig. 2 K-nearest neighbor classification model
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2.3.4  Performance evaluation metric
Designed classifiers are commonly evaluated using a con-
fusion matrix-based approach, as shown in Fig. 3, to ensure 
acceptable and reliable classification outcomes. Four clas-
sification metrics—accuracy, sensitivity, specificity, and 
F-score—can be obtained from the confusion matrix for 
performance comparison. For our study that undertakes a 
binary classification problem, the four metrics are defined 
by Eq. 5. The acronyms TP, FP, TN, and FN, stand for true 
positive, false positive, true negative, and false negative, 
respectively:

TP and TN are the number of true positive and nega-
tive samples correctly classified as positive and negative, 
respectively. Similarly, FN and FP are the number of true 
positive and negative samples misclassified as negative 
and positive, respectively. Accuracy and F-score is con-
sidered for the present study (Fig. 3).

3  Results and discussion
All the computations explained above in the material 
and methods sections were carried out in MATLAB. 
Initially, the data was pre-processed, and the defined 
rhythms were extracted and normalized. Further, the 
Tsallis entropy feature for Tsallis parameter q = 2, 3, 4 
was computed the classification of binary emotion was 
done through the KNN classifier. Finally, hold-out cross-
validation was used by splitting each participant’s sam-
ples into an 80% training set and a 20% test set, keeping a 
roughly constant percentage of each class in each set rel-
ative to the original data. The classification process was 
run ten times to decrease the unpredictability induced 
by the data set’s random partition, and the average clas-
sification accuracy was calculated. As indicated, KNN 
machine learning algorithms were utilized for categori-
zation work. A hyperparameter optimization approach 
was used to adjust the parameters of the classifiers. The 
study aims to find how well the Tsallis entropy performs 

in determining subject independent emotions. It consid-
ers the perspectives of different channel locations, all the 
brain regions, and certain rhythms. The results are shown 
in Figs. 4, 5, 6.

Overall Evaluation In this study, the performance of 
62 channels from the SEED data set was evaluated for 
Tsallis parameters 2, 3, and 4, with accuracy and F-score 
presented in Figs.  4A, 5A, and 6A. The top-performing 
channels (one-fourth of the total) were marked on the 
brain diagram in Figs. 4B, 5B, and 6B. The results show 
that electrodes from the temporal lobe on both sides of 
the brain exhibited superior performance in differenti-
ating positive and negative emotions, irrespective of the 
subjects.

Furthermore, the study explored the performance of 
different EEG rhythms. Figures  4D, 5C, and 6D reveal 
that the gamma rhythm (31–55  Hz frequency range) 
achieved the best performance, followed by the beta 
rhythm. All frequency bands showed comparable results 
as well. This indicates that higher frequency rhythms, 
specifically beta (β) and gamma (γ), play a more criti-
cal role in emotion study compared to lower frequency 
rhythms like theta (θ) and alpha (α).

In the study, the performance of different brain regions 
was analyzed separately and presented in Figs.  4C, 5D, 
and 6C. Figure  6B shows the partitioning of the brain 
regions into eight distinct regions of interest. When 
evaluating the four quadrants, namely left anterior, right 
anterior, left posterior, and right posterior regions, elec-
trodes from the intersecting regions were excluded from 
consideration. The analysis of lower gamma bands from 
the left and right profiles of the brain revealed that the 
left anterior and posterior regions exhibited superior per-
formance compared to the right anterior and posterior 
regions, respectively.

Furthermore, the left hemispheres consistently out-
performed the right hemispheres across all frequency 

Fig. 3 Confusion matrix illustration
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bands and cases. Moreover, when comparing the 
results between posterior and anterior regions, the fea-
tures from the anterior hemispheres consistently dem-
onstrated better classification performance across all 
frequency bands.

3.1  Comparative study of Tsallis parameter q‑based 
performance

The study acknowledges the significance of different val-
ues of q in entropy computation for EEG research, as 
extensively discussed in the literature [47–50]. The pro-
posed method’s performance is compared based on accu-
racy and F-score metrics. While accuracy represents the 

Fig. 4 Subject independent emotion recognition performance A On different channels. B Brain topology indicating 1/4th of the total channels 
that performed the best. C of different brain hemispheres, D of different rhythms, all taking Tsallis entropy as feature for q = 2
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proportion of correct predictions made by the classifica-
tion model, it can be misleading when used as the sole 
criterion for assessing performance. This is because accu-
racy depends on correctly predicted positive and nega-
tive classes, and higher accuracy with a higher number of 

incorrect predictions may indicate poor performance. To 
address this limitation, the study incorporates the F-score 
matrix for performance evaluation. The F-score considers 
the impact of false negatives and false positives, making 

Fig. 5 Subject independent emotion recognition performance A On different channels. B Brain topology describing channel location 
and nomenclature and indicating 1/4th of the total channels that performed the best. C Performance of different brain hemispheres, D 
Performance of different rhythms, all taking Tsallis entropy as feature for q = 3
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it particularly relevant when studying negative emotions 
and providing a more comprehensive assessment of the 
proposed method’s performance. By considering both 
accuracy and F-score, the study aims to provide a more 
robust evaluation of the classification method’s effective-
ness in emotion differentiation using EEG data.

The findings from Figs. 4, 5, and 6 highlight the supe-
rior performance of the gamma band in comparison to 
other frequency bands. Further analysis focuses on the 
numbers obtained from the gamma band’s performance 
matrices. For ‘q = 2’, the maximum accuracy–F-score pair 
is 79%–0.83, and the best average accuracy–F-score pair 
is 71%–0.69. For ‘q = 3’, the maximum accuracy–F-score 
pair is 84%–0.87, and the best average accuracy–F-score 

Fig. 6 Subject independent emotion recognition performance A On different channels. B Brain topology indicating 1/4th of the total channels 
that performed the best. C of different brain hemispheres, D of different rhythms, all taking Tsallis entropy as feature for q = 4
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pair is 79%–0.81. For ‘q = 4’, the maximum accuracy–
F-score pair is 80%–0.82, and the best average accuracy–
F-score pair is 71%–0.68. The study reveals that ‘q = 3’ 
outperforms the other values of q, although the differ-
ences between ‘q = 2’ and ‘q = 3’ are not substantial. The 
presence of relatively low F-scores compared to accuracy 
for ‘q = 2’ and ‘q = 4’ indicates higher false negative and 
false positive rates in the predictions, emphasizing the 
need for cautious interpretation of results based solely on 
accuracy. On the other hand, ‘q = 3’ exhibits competitive 
accuracy and F-score, making it an excellent choice for 
further study. This underscores the importance of care-
fully selecting the nonextensive parameter q and the need 
for additional research to optimize its value for different 
studies.

A comparative analysis of Figs. 4B, 5B, and 6B identifies 
common electrode positions that consistently performed 
well across all cases of q. These electrodes include FT7, 
FT8, T7, C5, C6, T8, TP7, CP5, TP8, P7, and P8. These 
positions can be considered for further emotion studies 
using the SEED data set.

4  Conclusion
In this work, we have explored a novel emotion recog-
nition method based on Tsallis entropy and the KNN 
Classifier, using the SEED (EEG) data set. The study suc-
cessfully addressed the research questions outlined in 
Sect. 1.6.

The proposed method achieved the best average accu-
racy of 79% and a maximum accuracy of 84%, accompa-
nied by F-scores of 0.81 and 0.87 for q = 3. This finding 
confirms that Tsallis entropy is effective in assessing cha-
otic situations in EEG signals, encompassing inconsist-
encies, complexities, and unpredictability. As a result, 
Tsallis entropy holds significant relevance in emotion 
recognition tasks.

Our study further found that the model’s performance 
is influenced by the Tsallis parameter q, although the var-
iation is not deemed significant, as discussed in response 
to the second research question. However, the paper does 
not delve into the detailed explanation for this variation, 
considering it beyond the scope of the current study. 
Nevertheless, a comparison of the present study’s results 
with previous works presented in Table  1 demonstrates 
that Tsallis entropy indeed yields competitive perfor-
mance compared to various state-of-the-art techniques, 
thereby addressing the third research question. The study 
highlights the crucial role of the gamma rhythm in gen-
erating efficient features that lead to higher performance 
in emotion recognition, aligning with previous literature. 
This reaffirms the significance of the gamma rhythm in 
EEG-based emotion studies. The proposed method’s 
advantage lies in the simplicity of Tsallis entropy, which 

possesses low computational complexity and nonlinear-
ity. The TsEn features effectively extract hidden complex-
ities in EEG signals, resulting in improved accuracy.

However, the study also acknowledges several limita-
tions. One major limitation is the necessity to optimize 
the entropy index ‘q’ for each specific research task, 
which can be a challenging and time-consuming process. 
In addition, the classification accuracy achieved by the 
proposed method is not very high, indicating the need 
for further modifications and improvements. In future 
work, the authors plan to enhance the model’s perfor-
mance by integrating the extracted features with deep 
learning models. This could potentially lead to increased 
accuracy and more robust emotion recognition. The 
proposed method will also be evaluated on other emo-
tion data sets to ensure its reliability and generalizability 
across different data sets and scenarios. This will provide 
a comprehensive assessment of the method’s effective-
ness in real-world emotion recognition applications.
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