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for Alzheimer’s disease sub‑scores
Kaida Ning1, Pascale B. Cannon2, Jiawei Yu2, Srinesh Shenoi2, Lu Wang2, Alzheimer’s Disease Neuroimaging 
Initiative and Joydeep Sarkar2* 

Abstract 

Different aspects of cognitive functions are affected in patients with Alzheimer’s disease. To date, little is known 
about the associations between features from brain-imaging and individual Alzheimer’s disease (AD)-related cogni-
tive functional changes. In addition, how these associations differ among different imaging modalities is unclear. Here, 
we trained and investigated 3D convolutional neural network (CNN) models that predicted sub-scores of the 13-item 
Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS–Cog13) based on MRI and FDG–PET brain-imaging 
data. Analysis of the trained network showed that each key ADAS–Cog13 sub-score was associated with a specific 
set of brain features within an imaging modality. Furthermore, different association patterns were observed in MRI 
and FDG–PET modalities. According to MRI, cognitive sub-scores were typically associated with structural changes 
of subcortical regions, including amygdala, hippocampus, and putamen. Comparatively, according to FDG–PET, cog-
nitive functions were typically associated with metabolic changes of cortical regions, including the cingulated gyrus, 
occipital cortex, middle front gyrus, precuneus cortex, and the cerebellum. These findings brought insights into com-
plex AD etiology and emphasized the importance of investigating different brain-imaging modalities.

Keywords  Alzheimer’s disease, Neural network, Brain imaging, Cognitive function

1  Introduction
Alzheimer’s disease (AD) is the most frequent cause of 
dementia [1]. AD pathology is characterized by the accu-
mulation of toxic species, such as amyloid beta plaques 
and tau tangles, alterations in glucose metabolism, as well 
as brain atrophy [2]. The progression of AD impacts an 
individual’s cognitive functions, such as memory, lan-
guage, and spatial navigation [3, 4]. The pathological 
changes of AD brain is best captured through neuroim-
aging techniques, such as magnetic resonance imaging 
(MRI) for brain structural changes, positron emission 

tomography (PET) for metabolic and chemical composi-
tion changes [5, 6], etc. On the other hand, the cognitive 
function of AD patients can be evaluated via Alzheimer’s 
Disease Assessment Scale–Cognitive subscale (ADAS–
Cog), which quantifies cognitive functions from different 
aspects (e.g., word recall, orientation, comprehension, 
etc.) with continuous values, and is frequently used in 
research and clinical settings [7, 8].

Study of brain-imaging data is important for under-
standing AD etiology and improving AD diagnosis, prog-
nosis [9, 10], and development of treatments. To date, 
researchers have identified brain-imaging biomarkers 
that are strongly associated with AD diagnosis: atro-
phy in the hippocampus and the medial temporal lobe, 
hypometabolism of glucose in the cingulate cortex, etc. 
[10–13]. Furthermore, advanced statistical models have 
been trained to accurately classify AD vs. healthy control 
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brains based on imaging data [14, 15]. However, most 
studies focused on AD diagnosis instead of individual 
components of cognitive function, which assesses brain 
functions from various aspects (e.g., as quantified by 
ADAS–Cog13 sub-scores). Associations between indi-
vidual cognitive functions and brain-imaging features 
remain unclear. Furthermore, how these associations 
vary in different imaging modalities such as MRI vs. PET 
remains to be studied. To the best of our knowledge, 
no previous study has systematically investigated these 
questions.

To understand the relationship between ADAS–Cog13 
sub-scores and brain-imaging features, we first linked 
these two types of data through a statistical model. Here, 
we chose to use a three-dimensional (3D) convolutional 
neural network (CNN) model to predict ADAS–Cog13 
sub-scores, since CNNs demonstrated to have superior 
performance in classification and regression when deal-
ing with imaging data [16, 17]. We trained the model, 
validated it, and further investigated the model. While 
neural networks (NNs) were commonly used as “black-
box” tools in the past, recent advances in methods for 
interpreting NNs allow researchers to identify features 
important for the models’ performance [18–20]. In this 
study, we applied occlusion [18–20], a commonly used 
method, to investigating the trained model and identi-
fied brain features most important for predicting ADAS–
Cog13 sub-scores.

In this study, we obtained 9862 brain MRI and PET 
imaging data, along with ADAS–Cog13 sub-scores for 
subjects from Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database (http://​adni.​loni.​usc.​edu). We 
used a same pipeline to train CNN models for predict-
ing key ADAS–Cog13 sub-scores with different imaging 
modalities. We further investigated these trained models 
to identify brain regions strongly associated with ADAS–
Cog13 sub-scores. Our analytical pipeline brought new 
insights for associations between brain features and indi-
vidual cognitive functions and can be applied to studying 
other brain diseases, where imaging data are available.

2 � Materials and methods
2.1 � ADNI data
The data used was obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (http://​adni.​
loni.​usc.​edu). Data used in the preparation of this article 
were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). The 
ADNI was launched in 2003 as a public–private partner-
ship, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). 
For up-to-date information, see www.​adni-​info.​org. As 
specified by the ADNI protocol, each participant within 
the study was willing, spoke English or Spanish, was able 
to perform all test procedures described in the protocol 
and had a study partner able to provide an independent 
evaluation of functioning. In this study, we included all 
T1 images from ADNI 1, ADNI 2, ADNI GO, and ADNI 
3 cohorts, totaling 9862 unique imaging entries with 
cognitively normal (CN), mild–cognitive impairment 
(MCI) or AD diagnosis. The detailed imaging acquisition 
parameters are available on the ADNI website (https://​
adni.​loni.​usc.​edu/​metho​ds/​mri-​tool/​mri-​acqui​sition/). 
Diagnosiswise, there were 3314 CN, 4412 with MCI, and 
2136 with AD. Regarding imaging modality, 4014 were 
MRI, 3953 were FDG–PET, and 1895 were AV45–PET. 
Demographic and clinical characteristics of these entries 
are shown in Table 1.

2.2 � Random forest (RF) classifier for Alzheimer’s disease 
(AD) vs. non‑AD (nAD)

A random forest model [21] was used to classify AD vs. 
nAD with 13 ADAS–Cog13 sub-scores as predictors. 
MCI and CN participants were grouped into the nAD 
class. To balance the weights of the 13 ADAS–Cog13 
sub-scores, each sub-score was normalized to a scale of 
0 to 1 using min–max scaling. Train/test splitting with 
a ratio of 80:20 was carried out before model training 
process. The training and testing sets were balanced by 
random sampling to adjust for the ratio of nAD and AD. 
During the training process, model hyperparameters 
were optimized using grid search [22]. The top ADAS–
Cog13 sub-scores scores that were representable of the 
AD cognitive performance were used as regression out-
puts of the subsequent 3D CNN models.

Table 1  Demographic information of ADNI samples

Normal cognition MCI Alzheimer’s 
disease

(n = 3314) (n = 4412) (n = 2136)

Count (%) Count (%) Count (%)

Sex F 1722 (52) 1747 (39.6) 909 (42.6)

M 1592(48) 2665(60.4) 1227(57.4)

Mean (stdev) Mean (stdev) Mean (stdev)

Age 76.9 (6.6) 75.1 (7.8) 76.7 (7.5)

Total ADAS–Cog13 9.4 (4.6) 16.3 (7.5) 32.5 (11.2)

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
https://adni.loni.usc.edu/methods/mri-tool/mri-acquisition/
https://adni.loni.usc.edu/methods/mri-tool/mri-acquisition/
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2.3 � Imaging data pre‑processing
3D brain images used in this study underwent multiple 
preprocessing steps in FreeSurfer [23], as illustrated in 
Additional file  1: Fig. S1. First, images were registered 
with the MNI152 standard space structural brain tem-
plate [24]. Brain volumes and positions were standard-
ized. Second, a standardized brain mask was applied to 
strip the cranium and brain stem, retaining only the cer-
ebrum and cerebellum.

For MRI imaging data, white stripe normalization 
[25] was applied. The normal-appearing white matter 
(NAWM) with least pathological variation was selected 
as the reference tissue [25]. All MRI images were then 
transformed by matching their distributions of NAWM 
to that of the reference MRI with a fixed mean (µref) and 
standard deviation (σref), as shown in Additional file  1: 
Fig. S1. Note that some MRI images failed white stripe 
normalization, showing a mismatched NAWM peak fol-
lowing normalization (Additional file 1: Fig. S1). Abnor-
mal and low-quality MRI images were excluded from 
subsequent experiments.

For PET imaging data, normalization was done follow-
ing the ADNI protocol, where the intensities were pre-
normalized by the ratio between the radiotracer and the 
body weight [26]. In addition, we applied a customized 
“cohort normalization” to scale PET images into a range 
between 0 to 1 at a cohort level. Mathematically, all PET 
images were divided by the maximum of nstats from the 
training cohort, where nstats was the voxel intensity at the 
99.9 percentile from the PET image from an individual 
patient. We used 99.9 percentile instead of the maximum 
intensity value was to avoid the influence from outliers.

2.4 � Building 3D convolutional neural networks (3D CNNs)
We built a 3D convolutional neural network (3D CNN) 
with skip connection and inception units to analyze 
3D brain-imaging data (Fig.  1). The backbone of the 
3D-CNN is based on Python Tensorflow VGG16 model 
[27, 28], which consists of 14 convolutional (conv) lay-
ers (including 4 max pooling layers), followed by 2 fully 
connected layers (FC1 and FC2) and a final output layer 
which generates predictions of four ADAS–Cog13 sub-
scores as in a multi-task feature learning process [29]. 
When training the model, a batch size of 8 imaging sam-
ples was used. Rectified linear unit (ReLU) was applied 
as the activation functions for all the conv layers. Batch 
normalization (BN) was applied before the activation 
function. The channel number (nchannel) for the conv lay-
ers inside Conv 1, Conv 2, Conv 3 and Conv 4 were 16, 
32, 64 and 128. At the end of Conv 1, Conv 2, Conv 3 and 
Conv 4, a max pooling operation with kernel size of 2 
were applied to reduce the spatial size of activation maps 
into half. Conv 3 and Conv 4 were modified into residual 

blocks [30] with skip connections which aggregate the 
output of the 1st and 2nd conv layers in the group before 
feeding the results into the 3rd conv layer. The output of 
the Conv 4 with a size of (nbatch, 7, 7, 7, 128) was flattened 
into an array with size (nbatch, 43,904) before proceeding 
to the fully connected (FC) layers: FC1 and FC2. Both 
FC1 and FC2 contained 1024 neurons which converted 
the input array into arrays of size (nbatch, 1024). The tanh 
activation function was applied to both FC layers. Finally, 
the output layer with a customized sigmoid activation 
function (  1

1+e−ηx , where η was a trainable parameter) that 
converts the FC2 layer output into the final predictions of 
size (nbatch, 4).

To train the model, the samples were split into train-
ing and test sets with a ratio of 80:20. The mean squared 
error (MSE) between the true ADAS–Cog13 scores 
and the predicted scores were used as the loss func-
tion. Model parameters were then optimized using the 
Adam algorithm [31] to minimize the MSE of the train-
ing set. Cosine annealing [32] was used as the learn-
ing rate scheduler to help the model converge rapidly to 
a local minima and at the same time prevent the model 
from getting stuck in one single local minima by abruptly 
increasing the learning rate to maximum at the begin-
ning of each cycle. The maximum and minimum learning 
rate used in our study were 0.01 and 0.0001, respectively. 
To boost the model accuracy, ensemble technique was 
applied by selecting 5–7 best models (models with min-
imum MSE on the test set) from the saved models and 
calculated the mean of predictions from multiple models 
for each ADAS–Cog13 sub-score.

To evaluate model performance, we used multiple met-
rics, including the mean absolute error (MAE) and R2. 
The MAE for each ADAS–Cod sub-score was defined 
as the mean of |ytrue–ypred| across the cohort, where ytrue 
and ypred are the true and predicted ADAS–Cog13 scores.

To compare the model performance with clinical prac-
tice, we calculated the inter-test variability (ITV) for each 
ADAS–Cog13 sub-score on a complete ADNI ADAS–
Cog13 data set with 9862 unique samples (the same 
cohort as listed in Table  1). ITV was calculated as the 
maximum difference in recorded score for each ADNI 
participant within a period of ± 3  months. Mathemati-
cally, the ITV for entry i ( ITV i ) was defined as:

where qi,1, qi,2, . . . , qi,j were the ADAS–Cog13 cog sub-
score (Q1, Q4, Q7 or Q8) from all the visits that were 
within ± 3 months with regard to entry i. The mean ITV 
for each sub-score represents the mean of all ADNI par-
ticipants’ ITV.

(1)ITVi = max
(
qi,1, qi,2, . . . , qi,j

)
−min

(
qi,1, qi,2, . . . , qi,j

)
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2.5 � Diagnostic extension and validation of 3D CNN models
The diagnostic extension of the 3D CNN predicted AD 
vs. nAD, where the penultimate layer (FC2) output with 
a size of (nentries, 1024) was utilized to train a binary 
classification model, where nentries was the number of 
entries. Classification models, including logistic regres-
sion [33], k-nearest neighbor (KNN) [34] and random 
forest [21], were trained to predict diagnosis using the 
values in the penultimate layer. Similar to the main AI 
model, multiple sub-models with the same architecture 
were ensembled and a voting classifier was applied to 
generate final predictions.

The validation data set for nAD and AD diagno-
sis was obtained from the Rush Alzheimer’s Disease 
Center (RADC) Religious Order Study (ROS) [35], a 
clinical–pathologic study of aging and dementia. The 

demographic information of samples from RADC is 
summarized in Additional file 1: Table S1. MRI images 
from RADC were processed in the same way as for 
ADNI images.

2.6 � Identifying features important for 3D CNN model
We estimated feature importance scores of 56 brain 
regions using occlusion method as described in previ-
ous studies [18–20]. The feature importance of a spe-
cific brain region quantifies its importance that was 
not encoded in other brain regions. In the analyses, we 
used Harvard–Oxford cortical and subcortical struc-
tural atlases from the Center for Morphometric Analy-
sis (https://​cma.​mgh.​harva​rd.​edu). With the occlusion 

Fig. 1  3D CNN model architecture. The CNN model is composed of 10 convolutional layers grouped: Conv 1 (2 layers), Conv 2 (2 layers), Conv 3 (3 
layers) and Conv 4 (3 layers). This model processes brain-imaging data and can predict both AD diagnosis (yellow box) and ADAS–Cog13 sub-scores 
(grey box)

https://cma.mgh.harvard.edu


Page 5 of 11Ning et al. Brain Informatics            (2024) 11:5 	

method, the change of model prediction error after 
removing a brain region was measured. More specifi-
cally, the CNN feature importance score of brain region 
i was defined as

where �MAEi is the absolute change of CNN MAE after 
removing the ith brain region from model input.

2.7 � Calculating pairwise correlation among ADAS–Cog13 
sub‑scores

We calculated pairwise correlation among ADAS–Cog13 
sub-scores Q1, Q4, Q7, and Q8 based on their asso-
ciations with 56 brain regions. To be specific, for each 
ADAS–Cog13 sub-score we obtained feature importance 
scores of 56 brain regions in a CNN model. We then cal-
culated Spearman’s correlation between each pair of sub-
scores based on the 56-dimentional feature importance 
scores. The pairwise correlations among sub-scores were 
obtained for MRI and FDG–PET-based CNN models 
separately.

3 � Results
3.1 � Identifying ADAS–Cog13 sub‑scores important for AD 

diagnosis
We identified the ADAS–Cog13 sub-scores most impor-
tant for AD diagnosis by training a random forest (RF) 
model for classifying AD vs. non-AD (nAD) patients 
based on these sub-scores using ADNI sample (see 
Methods section and Table 1). The RF classifier was able 
to classify the AD diagnosis with an accuracy of 95% 
(98% precision and 90% recall). In this model, top four 
ADAS–Cog13 sub-scores were responsible for 82% of the 
RF feature importance: word recall (Q1), 16%; delayed 
word recall (Q4), 29%; orientation (Q7), 25%; word rec-
ognition (Q8), 11% (Additional file 1: Table S2). These top 
four sub-scores scores are representable of the AD cog-
nitive performance and are, therefore, used as regression 
outputs of the subsequent 3D CNN models.

3.2 � Predicting key ADAS–Cog13 sub‑scores with CNNs 
based on brain images

We trained 3D CNNs that utilized brain images to pre-
dict 4 ADAS–Cog13 sub-scores (Q1, Q4, Q7, and Q8) 
based on MRI, FDG–PET, and AV45–PET imaging 
modalities (see Methods section for details). We found 
that the MRI-based CNN model performed the best 
in predicting sub-scores, with R2 of 78%, 80%, 64%, and 
62% for Q1, Q4, Q7 and Q8, respectively (Fig. 2D). The 
FDG–PET-based 3D CNN performed similar to the MRI 
model, except for poor performance on Q8 (49%). The 

(2)feature importance =
�MAEi

MAE
,

AV45–PET-based model had the lowest prediction accu-
racy (Fig. 2D).

To assess the models’ accuracy in predicting ADAS–
Cog13 sub-scores, we compared the mean absolute error 
(MAE) of our model predictions with the inter-test vari-
ability of sub-scores (ITV), which reflects natural fluctua-
tions of ADAS–Cog13 (see Methods section for details). 
The MAEs of MRI and FDG-based 3D CNN model did 
not show significant difference from ITVs for Q1, Q4, 
Q7, or Q8 (Fig. 2A, B, D). This indicated that errors in the 
model predictions are comparable to intrinsic variations 
in the sub-scores. As a comparison, AV45–PET-based 
model performed worse, with MAEs significantly higher 
than ITVs for Q1 and Q4 (Fig. 2C, D).

To further assess the 3D CNN models’ accuracy, we 
extended them for classifying nAD vs. AD (i.e., AD 
diagnosis). The deep learning features from the final 
fully connected layer (FC2) were used for AD classifi-
cation (Fig.  1). The highest classification accuracy was 
achieved by the FDG–PET model with a k-nearest neigh-
bor (KNN) extension (AUROC = 90%), followed by the 
MRI model (AUROC = 89%) and AV45–PET model 
(AUROC = 84%) (Additional file  1: Fig. S2, Additional 
file  1: Table  S3). To further test the generalizability of 
the 3D CNN models, an external validation was done by 
applying our models to the RADC data set (see Methods 
section and Additional file 1: Table S1) to classify nAD vs. 
AD. Despite significant differences in age, overall patient 
populations and scanning protocols between ADNI and 
RADC data sets, our model achieved an AUROC of 0.74 
for RADC data.

3.3 � Identifying brain regions associated with ADAS–Cog13 
sub‑scores

After model training, we investigated MRI and FDG–
PET-based models with occlusion method to identify 
brain regions important for predicting ADAS–Cog13 
sub-scores (see Methods section for details).

We found that the MRI and FDG–PET CNNs utilized 
different brain regions for predicting ADAS–Cog13 
sub-scores. Furthermore, each ADAS–Cog13 sub-score 
was associated with a specific set of brain features. In 
the MRI-based 3D CNN model, sub-score Q1 was most 
strongly associated with brain structural changes in the 
hippocampus and the putamen, etc. Q4, Q7, and Q8 were 
strongly associated with changes in the hippocampus 
and the amygdala, etc. (Fig.  3A–D). Three regions (the 
amygdala, the hippocampus, and the putamen) appeared 
among the top ten for all four ADAS–Cog13 sub-score. 
Additional file  2: Table  S4 lists feature importance 
scores of all brain regions in the MRI-based CNN. In the 
FDG–PET-based 3D CNN model, Q1 and Q4 were most 
strongly associated with brain metabolic changes in the 
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cerebellum and the cingulate gyrus (posterior division), 
etc. Q7 was strongly associated with changes in the cin-
gulate gyrus (posterior division) and the thalamus, etc. 
Q8 was associated with changes in the cingulate gyrus 
(posterior division) and the putamen, etc. (Fig.  3E–H). 
Five brain regions appeared among the top ten for all 
four ADAS–Cog13 sub-scores: the cingulate gyrus (pos-
terior division), middle frontal gyrus, precuneous cortex, 
lateral occipital cortex (inferior division), and cerebel-
lum. Additional file  3: Table  S5 lists feature importance 
scores of all brain regions in the FDG–PET-based CNN. 
Figure 3I–L visualizes the top five regions associated with 

each ADAS–Cog13 sub-score in MRI model (red) and 
FDG–PET model (green), respectively. A few important 
brain regions overlap between MRI and FDG–PET-based 
CNNs, as highlighted in yellow color.

We further investigated the brain-imaging associa-
tions in three disease sub-groups: cognitively normal 
(CN), MCI, and AD. We observed that within different 
disease sub-groups, the importance scores of a specific 
brain region varied. For example, the hippocampus was 
a most important region in the MRI-based CNN model 
in CN subjects for all ADAS–Cog13 sub-scores, while 
its importance in the model diminished in MCI and AD 

Fig. 2  Accuracy of CNN models on predicting ADAS–Cog13 sub-scores. A–C Graphical representation of the mean absolute error (MAE) 
across ADAS–Cog sub-scores for the MRI (A), FDG–PET (B) and AV45–PET (C) CNNs. The inter-test variabilities (ITVs) for four ADAS–Cog13 sub-scores 
are represented by the red horizontal line. One-tailed t tests was performed to compare MAEs and ITVs for each ADAS–Cog13 sub-score. ‘n.s.’ 
means there is no significant difference between MAE and ITV. D Test set MAE and R2 for the MRI, FDG–PET and AV45–PET-based CNN models, 
along with the mean ITV and scale of each ADAS–Cog13 sub-score
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Fig. 3  Important brain regions in MRI and FDG–PET-based 3D CNN models. A–D Feature importance scores of top five brain regions for ADAS–
Cog13 sub-scores Q1, Q4, Q7, and Q8 in the MRI-based CNN. E–H Feature importance scores of top five brain regions for Q1, Q4, Q7, and Q8 
in FDG–PET-based CNN. I–L Coronal views of top five important brain regions for each ADAS–Cog13 sub-scores in the MRI (red) and the FDG–PET 
(green) 3D CNNs. Regions that are important for both MRI and FDG–PET models are highlighted in yellow color
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patients. The cerebellum was a most important region in 
the FDG–PET model in AD subjects for sub-score Q7, 
while its importance was much lower in CN and MCI 
subjects (Additional file 1: Fig. S3).

3.4 � Pairwise correlation among ADAS–Cog13 sub‑scores
We also calculated pairwise correlation among ADAS–
Cog13 sub-scores Q1, Q4, Q7, and Q8 in terms of their 
associations with brain features (see Methods section for 
details). In both MRI and FDG–PET modalities, pair-
wise correlation among these sub-scores were significant 
(FDR adjusted p value < 0.05). In the MRI-based model, 
the strongest correlation was between Q1 and Q4 (Spear-
man’s correlation = 0.94), followed by Q4 and Q8 (Spear-
man’s correlation = 0.91). In comparison, Q7 had lower 
correlations with other sub-scores. All pairwise correla-
tions are shown in Fig. 4A. Note that Q1 measures func-
tion for word recall, Q4 measures delayed word recall, 
Q7 measures orientation, and Q8 measures word rec-
ognition. The pairwise correlations of sub-scores based 
on brain feature importance scores were higher within 
language-related sub-scores than those between language 
and orientation sub-scores. In the FDG–PET model, the 
strongest pairwise correlation of cognitive functions was 
between Q1 and Q4 (Spearman’s correlation = 0.96), fol-
lowed by Q4 and Q8 (Spearman’s correlation = 0.95). 
All pairwise correlations are shown in Fig.  4B. Like the 
observation for the MRI-based model, the pairwise cor-
relations were higher within language-related sub-scores 
than those between language and orientation-related 
sub-scores.

4 � Discussion
In this study, we made a first attempt to train 3D CNN 
models based on brain-imaging data for predicting 
ADAS–Cog13 sub-scores that were crucial for AD diag-
nosis. We then investigated the CNN models to identify 
brain regions strongly associated with these sub-scores.

The MRI and FDG–PET-based 3D CNN models pre-
dicted the ADAS–Cog13 sub-scores with R2 above 60%, 
except for low performance of FDG–PET-based model 
on predicting sub-score Q8. The MAEs of these models’ 
prediction on ADAS–Cog13 sub-scores were compara-
ble to the ITVs of these sub-scores, indicating that errors 
in CNN models’ prediction were comparable to natural 
variations of the ADAS–Cog13 sub-scores. We provided 
additional internal validation of the MRI and FDG–PET-
based models by demonstrating that they can be applied 
to classifying nAD vs. AD subjects accurately (with an 
AUROC of 0.89 and 0.9, respectively). Furthermore, the 
MRI-based model performed well in classifying nAD vs. 
AD subjects when applied to an external test data set, 
RADC, without any modifications. Compared to MRI 
and FDG–PET-based CNN models, the AV45–PET–
CNN model performed worse in predicting ADAS–
Cog13 sub-scores but had comparable performance in 
identify AD vs. nAD. As revealed in previous studies, 
amyloid deposition as measured by AV45–PET has an 
impact on cognition in early stages, while ADAS–Cog13 
is not sensitive enough for measuring changes in early 
cognitive stage of MCI or AD [36, 37]. This is a potential 
explanation for poor performance of AV45–PET-based 
model in predicting ADAS–Cog13 sub-scores. In real-
world practice, many clinical trials for AD drugs monitor 
cognitive endpoints such as ADAS–Cog13 and amyloid 
beta based on AV45–PET imaging [38]. Our observation 
suggests that cognitive functions had a stronger asso-
ciation with MRI and FDG–PET imaging signals than 
with AV45–PET imaging signals. In addition, MRI and/
or FDG–PET neuroimaging biomarker monitored dur-
ing drug treatments can provide valuable information on 
change in brain structure and metabolism in response to 
treatment and overall progression of disease.

After training MRI and FDG–PET-based 3D CNN 
models, we identified brain regions associated with key 
ADAS–Cog13 sub-scores through investigating these 
models with occlusion method. Thanks to the statistical 
nature of this method, we were able to quantify the con-
tribution of each brain region on prediction of ADAS–
Cog13 sub-scores that was not encoded in other brain 
regions. We found that these models utilized distinct sets 
of brain regions for predicting the sub-scores. For exam-
ple, the hippocampus region had a high importance score 
in predicting all ADAS–Cog13 sub-scores in MRI-based 
CNN model (Fig. 3, Additional file 3: Table S4). This is a 
subcortical region important for memory formation and 
is well-known to undergo atrophy in AD patients [10, 13]. 
In comparison, the hippocampus region did not appear 
to be highly important for the FDG–PET-based CNN 
model. Instead, a network of cortical regions, led by cin-
gulate gyrus, appeared to be highly important for all the 

Fig. 4  Pairwise correlations among ADAS–Cog13 sub-scores Q1, 
Q4, Q7, and Q8, calculated based on each sub-score’s association 
with brain regions reflected in CNN. A Correlations in MRI-based CNN. 
B Correlations in FDG–PET-based CNN
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sub-scores in the FDG-based model (Additional file  4: 
Table S5). This finding corroborated previous studies that 
reported abnormal metabolism in cingulate cortex of AD 
patients [11, 12]. Furthermore, we found that cerebellum, 
which is essential for motor activity and motor learn-
ing, was an important region associated with cognitive 
functions, especially Q1, Q4, and Q8, in the FDG–PET 
modality. Previous studies have reported that metabo-
lites of cerebellar neurons promote amyloid-β clearance, 
and that cerebellar glucose metabolism was significantly 
lower in AD patients compared to control subjects [39, 
40].

Our analyses further showed that within an imag-
ing modality (MRI or FDG–PET) each ADAS–Cog13 
sub-scores were associated with a specific set of brain 
regions. In the MRI-based model, sub-score Q1 was most 
strongly associated with brain structural changes in the 
hippocampus and the putamen, etc. Q4, Q7, and Q8 were 
strongly associated with changes in the hippocampus and 
the amygdala, etc. In the FDG–PET-based model, Q1 
and Q4 were most strongly associated with brain meta-
bolic changes in the cerebellum and the cingulate gyrus 
(posterior division), etc. Q7 was strongly associated with 
changes in the cingulate gyrus (posterior division) and 
the thalamus, etc. Q8 was associated with changes in the 
cingulate gyrus (posterior division) and the putamen, etc. 
These findings indicate a complex underlying relation-
ship between structural and functional changes in brain 
regions (as measured by brain biomarkers) and changes 
in specific cognitive functions as observed in AD etiology. 
Nevertheless, the cognitive function pairs that were simi-
lar to each other were highly correlated in terms of their 
associations with brain regions (as shown in Fig. 4). We 
further made a first attempt to investigate the CNN mod-
els within each disease sub-group and found that ranks of 
brain region importance scores were different among dis-
ease sub-groups (Additional file 1: Fig. S3). For example, 
the hippocampus, a most important region in the MRI-
based model in CN subjects for all ADAS–Cog13 sub-
scores, showed lower importance score in MCI and AD 
patients. This indicated that AD etiology is dynamic, with 
different brain regions becoming strongly associated with 
cognitive function as the disease progresses.

Our study had some limitations. First, when identi-
fying the most important AD sub-scores, we grouped 
MCI and CN participants into the nAD class to 
increase the sample size. While we acknowledge there 
is difference between MCI and CN brains, this group-
ing approach will not impact our finding on the asso-
ciation between cognitive function and brain structure. 
In our CNN model, we included cognitive function, 
instead of diagnosis, as response variable. Second, we 
chose our 3D CNN model structure and parameters 

based on previous knowledge on training CNNs. CNNs 
have lots of variations in their structures and parame-
ters. Exploring more combinations of CNN structures 
and parameters may improve the model’s accuracy 
in predicting ADAS–Cog13 sub-scores. Third, our 
definition of brain feature importance was based on 
occlusion method, while alternative definitions such 
as GRAD–RAM are available and may reveal other 
insights [20, 41]. Fourth, our current model predicted 
cognitive functions collected at a single timepoint. A 
natural extension of this model would be to incorporate 
time factor, so that it predicts the change of cognitive 
function in the future.

In clinical practice, our findings may help to refine the 
process of AD early interventions and clinical trials. It 
is known that the changes of the brain, although associ-
ated with cognitive function changes, can occur a long 
time before changes in cognitive function. For exam-
ple, it was reported that brain structural changes were 
detectable in the hippocampus and the medial temporal 
lobe up to 10 years before any AD symptom arises [42]. 
In addition, researchers were able to predict progres-
sion from mild cognitive impairment to AD 2 years in 
advance using FDG–PET or MRI data [14, 43]. Based 
on our analyses, we further suggest that brain features 
identified in our model, along with the cognitive scores 
predicted based on brain-imaging data, may assist AD 
risk assessment before diagnoses, allowing early disease 
intervention. During patient enrollment for clinical trials, 
our model may also help to stratify the patients in terms 
of their disease progression risk and increase the power 
of these trials. Most such current applications use more 
traditional radio-imaging features, such as volume, aver-
age grey value etc., which ignore the deeper associations 
in the grey values across the 3D space. CNN models can 
capture deeper associations and generate more nuanced 
brain feature-based patient stratification. We further 
propose that brain structural and metabolic features be 
monitored after initiation of drug intervention: changes 
of these features, while highly associated with ADAS–
Cog sub-scores, may occur well before any change of 
cognitive functions and can, therefore, suggest AD stabi-
lization (or even reversion) and help clinicians to better 
understand and evaluate drug efficacy.

5 � Conclusions
In summary, we developed 3D CNN models for analyzing 
3D brain-imaging data. These models predicted ADAS–
Cog13 sub-scores based on different imaging modalities. 
Through investigating the trained CNN model, we gained 
a comprehensive view of imaging modality-specific brain 
features that are associated with key ADAS–Cog scores 
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for the first time. Our models can accelerate clinical trials 
for AD and be further expanded to analyze imaging data 
for different types of brain diseases.
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