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Abstract 

Background:  The integration of the information encoded in multiparametric MRI images can enhance the per-
formance of machine-learning classifiers. In this study, we investigate whether the combination of structural 
and functional MRI might improve the performances of a deep learning (DL) model trained to discriminate subjects 
with Autism Spectrum Disorders (ASD) with respect to typically developing controls (TD).

Material and methods  We analyzed both structural and functional MRI brain scans publicly available 
within the ABIDE I and II data collections. We considered 1383 male subjects with age between 5 and 40 years, includ-
ing 680 subjects with ASD and 703 TD from 35 different acquisition sites. We extracted morphometric and functional 
brain features from MRI scans with the Freesurfer and the CPAC analysis packages, respectively. Then, due to the mul-
tisite nature of the dataset, we implemented a data harmonization protocol. The ASD vs. TD classification was carried 
out with a multiple-input DL model, consisting in a neural network which generates a fixed-length feature repre-
sentation of the data of each modality (FR-NN), and a Dense Neural Network for classification (C-NN). Specifically, we 
implemented a joint fusion approach to multiple source data integration. The main advantage of the latter is that the 
loss is propagated back to the FR-NN during the training, thus creating informative feature representations for each 
data modality. Then, a C-NN, with a number of layers and neurons per layer to be optimized during the model train-
ing, performs the ASD-TD discrimination. The performance was evaluated by computing the Area under the Receiver 
Operating Characteristic curve within a nested 10-fold cross-validation. The brain features that drive the DL classifica-
tion were identified by the SHAP explainability framework.

Results  The AUC values of 0.66±0.05 and of 0.76±0.04 were obtained in the ASD vs. TD discrimination 
when only structural or functional features are considered, respectively. The joint fusion approach led to an AUC 
of 0.78±0.04. The set of structural and functional connectivity features identified as the most important for the two-
class discrimination supports the idea that brain changes tend to occur in individuals with ASD in regions belonging 
to the Default Mode Network and to the Social Brain.

Conclusions  Our results demonstrate that the multimodal joint fusion approach outperforms the classification results 
obtained with data acquired by a single MRI modality as it efficiently exploits the complementarity of structural 
and functional brain information.
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1  Introduction
Autism spectrum disorders (ASD) are a heterogeneous 
group of neurodevelopmental disorders characterized 
by persistent deficits in reciprocal social interaction, 
communication, and the presence of restricted, repeti-
tive behaviors and interests, which can include sensory 
processing difficulties [7]. Prevalence data from the most 
recent investigation conducted by the American Centers 
for Disease Control and Prevention reported that ASD 
occurs in about one in every 36 children aged 8 years in 
U.S. [53].

ASD is currently diagnosed through a multidiscipli-
nary and comprehensive direct evaluation of the individ-
ual with suspected ASD, associated with gold-standard 
behavioral observation [51] and interview [71] performed 
by clinicians expert in neurodevelopmental disorders 
[46]. However, methods based on observation of the 
patient and/or interview with the parents are subjective. 
Therefore, neuroimaging plays a key role in identifying 
the neural correlates of this condition. Machine learn-
ing (ML) and deep learning (DL) techniques are gaining 
considerable importance in supporting the diagnosis of 
ASD on the basis of magnetic resonance imaging (MRI) 
[44, 57], though these modalities do not have yet a clini-
cal application. The aggregation of large data collections 
from multiple centers is often used to overcome the 
problems of appropriate ML training, related to the typi-
cal limited size of datasets in this field.

For ASD research, the Autism Brain Imaging Data 
Exchange (ABIDE) dataset is a public neuroimaging col-
lection that is well characterized at the phenotypic level. 
Two world-wide multi-site and large-scale collections 
were released so far, ABIDE I [22] and ABIDE II [23], 
jointly consisting in more than a thousand cases and 
as many controls. In spite of the greater sample sizes, 
analyses based on the ABIDE collections report highly 
variable classification performances [77]. Moreover, it 
was pointed out that multi-center MRI data suffer from 
significant confounding due to batch-related technical 
variation, called batch effects [26]. In effect, MRI acquisi-
tions made with different scanners and/or with dissimilar 
acquisition protocols encode confounding information in 
data which, if not accounted for, may obscure the tiny dif-
ferences between controls with typical development (TD) 
and ASD subjects [25].

Several techniques can be employed to mitigate 
batch effects. During the study design phase, efforts 
can be made to mitigate batch effects by restricting 

data collection to a single scanner, manufacturer, field 
strength, acquisition protocol, or a combination of 
these criteria. However, this approach may limit the 
capacity to collect large datasets. Furthermore, even 
when acquisition conditions and scanner manufactur-
ers are carefully checked, residual differences (result-
ing from factors such as hardware imperfections, site 
or operator characteristics, or software or hardware 
updates) can still introduce batch effects. In the image 
pre-processing stage, standardizing images through 
techniques such as gradient distortion correction, bias 
field correction, and intensity normalization can help 
to remove batch effects. However, it is important to 
note that these normalization methods primarily target 
inter-subject variability. Consequently, they can only 
mitigate batch effects that overlap with inter-subject 
variability. In the last few years, a number of advanced 
strategies, which employ statistical or mathematical 
concepts, were developed with the aim of removing 
the batch effect in neuroimaging studies [36]. Fortin 
et al. developed a harmonization algorithm [29], as an 
adaptation of the ComBat method developed by John-
son et  al. [40] to remove batch effects in genomics 
data. Even if DL approach has been recently applied on 
ABIDE dataset [61], at the moment, ComBat appears 
to be the most used harmonization approach in the 
field of ASD research to reduce effect size in ABIDE 
data collections [28, 38, 68, 80]. However, Pomponio 
et  al. [64] have recently presented a modified version 
of the harmonization protocol, the NeuroHarmonize 
tool, which is suitable to harmonize pooled dataset in 
the presence of non-linear age trends. In a recent study 
published by our group [72], we demonstrated that the 
implementation of NeuroHarmonize preprocessing [64] 
in a multi-center analysis conducted on structural MRI 
(sMRI) data from ABIDE I and II collections results in 
a significant increase in the ASD vs. TD discrimination 
performance of ML classifiers.

Multi-modal machine learning is a subfield of ML 
that aims to develop and train models that can exploit 
different types of data and combine them in order to 
improve prediction performance [2]. Indeed, combin-
ing data from multiple modalities allows to extract 
more comprehensive and complementary informa-
tion, resulting in better performing models compared 
to using a single data modality [37, 81, 83]. In particu-
lar, the joint fusion approach employs a neural network 
model to extract feature representations from each 
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modality, which are then combined and used as inputs 
to another model. The fusion model’s prediction loss 
is back propagated to the feature extracting models to 
enhance the learned feature representations.

In the research field of neurogenerative disorders, 
fusion strategies were frequently employed in the diag-
nosis and prediction of Alzheimer’s disease. Neither 
imaging or clinical data alone are sufficient for accurately 
diagnosing Alzheimer’s disease in clinical practice. How-
ever, leveraging DL fusion techniques has consistently 
shown improvements in diagnostic performance [65, 
75, 78]. Some studies reported good results in applying 
DL models using functional and structural MRI images 
demonstrating that a DL framework for multi-modality 
data fusion outperforms single-modality DL [1, 5, 67]. In 
this work, we developed a multi-modal joint fusion DL 
model, which combines structural and functional MRI to 
distinguish between ASD and TD subjects. Although DL 
models are highly efficient and accurate, their complexity 
makes the rationale behind their decisions unclear, thus 
limiting their use in clinical applications such as disease 
diagnosis. To address this issue in recent years, differ-
ent algorithms were proposed to explain which features 
contribute the most to the classification results. In this 
work we implemented the SHapley Additive exPlana-
tions (SHAP) [52], which utilizes optimal Shapley values 
derived from game theory, in order to pointing out the 
most important feature involved in the identification of 
ASD subjects.

2 � Materials and methods
2.1 � Participants and data description
We analyzed the T1-weighted sMRI and resting-state 
fMRI (rs-fMRI) data of the ABIDE  I [22] and ABIDE  II 
[23] publicly available collections. Since 97% of the sub-
jects were under the age of 40 years, we limited our study 
to subjects aged 5 to 40 years only, similarly to other 
studies in the field [33, 42]. Moreover, we restricted our 
analysis to male subjects, due to both the limited rep-
resentation of female subjects in the ABIDE collection 
(less than 20% of subjects, spread over different sites and 
a wide age-range), and the sex differences in functional 
brain connectivity, characterized by predominant under-
connectivity in ASD males as compared to TD males and 
extensive overconnectivity in ASD females as compared 
to TD females [6]. Since our goal is to propose a classi-
fication strategy dealing with both structural and func-
tional information, we excluded subjects with missing 
multimodal MRI data after using the preprocessing pipe-
lines. Thus, we obtained a final sample of 1383 subjects 
(680 ASD and 703 TD) from 35 sites. A summary of the 
sample sizes of the ABIDE  I and II cohorts included in 
this study and of the participants’ average age is reported 

in Table 1. To allow the reproducibility of the analysis, the 
identification numbers (IDs) of the participants selected 
in the final sample are reported in Additional file 1.

2.2 � Image processing and feature extraction
2.2.1 � Structural MRI scan
As in our previous work [72], the sMRI scans were pro-
cessed with Freesurfer [27] version 6.0 with the recon-all 
pipeline.1This procedure includes cortical surface model-
ling, spherical coordinate transformation, non-linear cur-
vature registration, automated volumetric segmentation 
and cortical reconstruction. Among the outputs gener-
ated by the Freesurfer processing pipeline, the following 
brain features were selected: the global measures and the 
subcortical features available in the file aseg.stats and the 
cortical features available in the bilateral files aparc.stats. 
In this way, a total number of 221 brain morphometric 
features were obtained. These brain descriptive charac-
teristics can be grouped into:2

•	 9 global quantities: left (L) and right (R) mean thick-
ness, L and R cortex volumes, L and R cerebral white 
matter volume, cerebrospinal fluid volume, total gray 
volumes and the volume of segmented brain without 
ventricles;

•	 26 volumes of sub-cortical structures and corpus cal-
losum;

•	 186 measures, including the volume, the mean and 
standard deviation of the thickness of 62 structures 
(31 per hemisphere) from the Desikan-Killiany-
Tourville Atlas [45]: 14 in the temporal lobe, 20 in the 
frontal lobe, 10 in the parietal lobe, 8 in the occipital 
lobe and 10 in the cingulate cortex.

2.2.2 � Resting‑state fMRI scan
The rs-fMRI scans selected from ABIDE I and ABIDE II 
cohorts were processed with the Configurable Pipe-
line for the Analysis of Connectomes (C-PAC) [20], 
that includes motion correction, slice timing correc-
tion, band-pass filtering, spatial smoothing and reg-
istration. The Harvard-Oxford (HO) atlas was used to 
extract time series from brain regions, obtaining 110 
timeseries for each subject. Seven regions were elimi-
nated because they were not associated with any time 
series in a significant number of patients. In order to 
maximize the population of the dataset, the region 
was removed instead of discarding the patient’s exam. 
Thus, we obtained 103 timeseries for each subject. 

1  https://​surfer.​nmr.​mgh.​harva​rd.​edu/​fswiki/​recon-​all
2  The extensive list of analyzed brain features can be found in the supple-
mentary materials.

https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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The Pearson correlation was calculated between the 
timeseries of pairs of regions to derive a functional 
connectivity (FC) matrix. The correlation values were 
normalized according to Fisher transformation [16] in 
order to make them approximately normally-distrib-
uted. Moreover, the correlation values were multiplied 
by 

√

(N − 3) (where N is the number of timepoints) to 
have a unitary standard deviation. From the symmetric 

FC matrix, we used N (N − 1)/2 non-redundant values 
as features, obtaining 5253 connectivity features for 
each subject.

2.3 � Harmonization
Due to the multisite nature of the dataset, we separately 
harmonized the Freesurfer structural features and the 

Table 1  Number of subjects of the ABIDE I and II cohorts considered in this study. Only male subjects in the age range of [5–40] years 
(y) are considered.

The number of participants is provided per site and per diagnostic group, together with the average age and standard deviation of each group. Abbreviation: STD - 
standard deviation

Centers N Average age (y) STD age (y)

ASD TD ASD TD ASD TD

BNI_A 14 11 22.1 22.5 5.6 6.3

CALTECH 12 11 24.5 24.6 6.9 6.8

CMU 7 9 25.8 27.1 4.4 6.5

EMC_A 21 22 8.2 8.3 1.2 1.0

ETH_A 10 22 20.4 23.8 3.9 4.5

GU_A 37 26 11.0 10.8 1.5 1.6

IP_A 13 8 15.5 23.3 5.2 7.1

IU_A 8 9 20.7 24.2 3.7 5.0

KKI 13 18 10.2 10.4 1.3 1.3

KKI_A 30 62 10.4 10.4 1.6 1.3

LEUVEN_A 9 11 22.6 22.5 4.7 2.6

LEUVEN_B 10 13 13.7 14.5 1.4 1.7

MAX_MUN 15 26 20.5 23.3 9.5 7.8

NYU 62 73 14.0 16.0 6.5 6.3

NYU_A 41 27 9.5 9.2 4.6 1.8

OHSU 13 15 11.7 10.1 2.2 1.1

OHSU_A 29 27 12.1 10.3 2.2 1.7

OILH_B 7 7 21.3 23.8 2.9 4.1

OLIN 16 13 16.1 16.8 3.1 4.0

PITT 26 21 19.9 20.0 7.3 6.9

SBL 10 12 29.8 33 3.5 6.3

SDSU 10 13 14.4 14.5 1.7 1.4

SDSU_A 23 22 12.6 13.5 3.1 3.2

STANFORD 15 14 10.1 10.3 1.6 1.7

TCD_A 19 15 14.4 14.8 3.1 3.1

TRINITY 24 25 17.3 17.1 3.6 3.8

UCD_A 12 8 14.6 14.8 1.9 2.0

UCLA_A 33 26 13.2 13.4 2.3 2.3

UCLA_B 10 9 12.5 12.0 1.6 1.2

UM_A 33 33 12.4 13.6 2.3 3.3

UM_B 12 18 14.7 17.1 1.5 4.2

USM 46 36 21.0 20.9 5.7 8.1

USM_A 14 12 16.0 23.1 3.8 8.5

U_MIA_A 7 9 10.8 9.9 2.2 2.0

YALE 19 20 12.5 12.3 3.1 2.8

Total 703 680 15.7 14.9 7.0 6.2
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functional connectivity measures using the publicly 
available Python package NeuroHarmonize,3 which is 
the state-of-the-art tool for multi-site neuroimaging 
analysis developed by Pomponio et  al. [64]. We esti-
mated the NeuroHarmonize model parameters on the 
entire cohort of control subjects, by specifying the age 
as a covariate, whose effect is to be preserved during 
the harmonization process. Finally, we applied the esti-
mated model on the entire sample of subjects with ASD 
and TD controls.

2.4 � Neural network architecture: a joint fusion approach
We developed a multi-modal DL classification model 
that integrates both structural and functional informa-
tion. The fusion of different data modalities can be per-
formed at different stages of the classification process. 
There are three main fusion strategies: early fusion, joint 
fusion, and late fusion, as discussed in Huang et al. [37] 
and Acosta et al. [2]. Early fusion is the simplest approach 
where input modalities or features are concatenated 
before training a single model. Instead, the joint fusion is 
a more advanced technique that combines and co-learns 
representations of different modalities during the train-
ing process. In contrast, late fusion involves training sep-
arate models for each modality and then combining their 
output probabilities.

In this study, the ASD vs. TD classification was carried 
out with a DL model, consisting in a feature dimension-
ality reduction neural network (FR-NN) which generates 
a fixed-length feature representation of the data for each 
modality. The two vectors are then merged and passed 
through a classification neural network (C-NN). Spe-
cifically, we implemented the joint fusion approach [37], 
whose main advantage is that the loss is propagated back 
to the FR-NN during the training, thus creating informa-
tive feature representations for each data modality. The 
C-NN, with several layers and neurons per layer, is opti-
mized during the model training and performs the ASD-
TD discrimination. In Fig.  1 a simplified scheme of our 
model was shown. Moreover, in order to evaluate the 
improvement of using a multimodal joint fusion model, 
we also implemented models based on single data modal-
ity. Only structural or connectivity features were consid-
ered using similar NN to perform the classification. We 
implemented the DL model using Keras [18], a Python 
DL API that uses Tensorflow as backend. The model was 
trained using Stochastic Gradient Descent (SGD) opti-
mizer with a learning rate of 0.001 and a momentum of 
0.9 and a ReLU as the activation function. During train-
ing we minimised the binary cross entropy between the 
model’s predictions and the true labels for ASD and TD 

subjects. The model was trained for 150 epochs, moreo-
ver standard DL techniques were adopted to reduce over-
fitting. In particular, we used:

•	 batch normalisation [39], a technique which normal-
ises the outputs of each layer for each batch of data, 
thus accelerating the rate of training and acting as a 
regularizer, reducing the internal covariate shift;

•	 dropout [76] which works by randomly dropping 
units and their connections during training. Dropout 
was set to 0.5 and 0.2;

•	 L1 regularisation which adds a penalty to the loss 
function and, hence, it shrinks the less important fea-
tures’ coefficients, allowing for a better feature selec-
tion. The L1 regularisation hyperparameter was 0.01.

We implemented a feature scaling function (the Scikit-
learn RobustScaler), that consists in the subtraction of 
the median and the scaling with respect to the interquar-
tile range (IQR). The model has been trained according 
to a nested 10−fold cross-validation scheme preserving 
the matching proportions of diagnosis (ASD/TD). The 
training of the model was performed in the inner CV 
loop. The performances were evaluated in the outer CV 
loop by computing the Area under the Receiver Operat-
ing Characteristic (ROC) curve (AUC) and accuracy. The 
metrics were computed within each fold; then, results 
across the test folds were used to calculate the mean and 
the standard deviation of accuracy and AUC.

2.5 � Explainability: identify important features
In order to identify the most significant features able 
to discriminate between ASD and TD, the explainable 
method SHAP [52], based on Shapley values compu-
tation, was adopted. SHAP is a local model-agnostic 
approach, since it uses only the input and the output of a 
classifier. The explanation of each feature is quantified in 
Shapley values ( � ) and the importance of each feature in 
the DL model can be calculated by averaging the absolute 
values of the Shapley values for all instances as:

where N is the number of instances in the dataset. We 
implemented the Gradient SHAP method, offered by 
the Python package SHAP4; this method uses the gradi-
ents of the model output with respect to input features 
to approximate Shapely values. Because we implemented 
a multimodal model using different inputs with different 

(1)S =

1

N
·

N∑

i=0

�i

3   https://​github.​com/​rpomp​onio/​neuro​Harmo​nize.

4    https://​shap-​lrjba​ll.​readt​hedocs.​io/​en/​latest/​gener​ated/​shap.​Gradi​entEx​
plain​er.​html.

https://github.com/rpomponio/neuroHarmonize.
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.GradientExplainer.html.
https://shap-lrjball.readthedocs.io/en/latest/generated/shap.GradientExplainer.html.
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dimensionality, it was necessary to make comparable the 
SHAP values, by rescaling them in the same numerical 
range. Therefore, we performed a normalization with 
respect to the total sum of SHAP values and with respect 
to different number of input features (Ns,f  ). The normal-
ized values were calculated as follows:

The SHAP method was applied on the inner CV loop. 
To increase the robustness of results, the Shapely values 

(2)Snorm =

S
∑Ns,f

i=0 Si

·

Ns,f

[2 · (Ns + Nf )]

were calculated using 100 different fold and the impor-
tance score were obtained as the average of the scores 
from 100 folds.

As the most important features, we selected the scores 
above the 99th percentile of importance features selected 
by SHAP. Moreover, the effect size of ASD vs. TD group 
difference was quantified using Cohen’s d coefficient. 
It consists in the standardized difference between two 
mean values µ defined as ( µASD-µTD)/SDpooled , where 
SDpooled is the weighted average of the standard devia-
tions of the two groups [19].

Fig. 1  Multimodal DL model with joint fusion approach. The model contains a feature-reduction neural network (FR-NN) and a classification 
neural network (C-NN). The main advantage of this strategy is that the loss is propagated back to the FR-NN during the training (black arrows). The 
solid blue and cyan circles represent a starting feature set, while the shaded circles represent the fixed-length feature vectors extracted from all 
modalities
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3 � Results
3.1 � Model performances
The model was trained to distinguish subjects with ASD 
from TD according to a nested 10-fold cross-validation 
scheme. The classification performance was estimated 
both on the single data modality model (structural NN 
and functional NN) and on the multimodal joint fusion 
model in order to evaluate the improvement in dis-
crimination capability. Figure  2 shows the ROC curves 
obtained by averaging the ROC curves computed on each 
of the 10 folds of the cross validation. The mean AUC val-
ues and the standard deviations are reported. The perfor-
mance in the ASD vs. TD discrimination is reported in 
term of AUC and accuracy in Table 2.

From the Table 2, it can be noticed an improvement of 
the performance using a multi-modality with joint fusion 
approach model, which outperforms the model based 
on functional features only ( p < 0.001 ). The superior 

performance is due to its ability to extract relationships 
among features from different modalities. Moreover, if 
we consider the single data modality, we can conclude 
that the functional model significantly outperforms the 
structural one, as known in the literature.

Fig. 2  ROC curves obtained for the ASD vs. TD classification within 10-fold cross-validation scheme for the three different approaches: a structural 
DL model, a functional DL model and joint fusion DL model

Table 2  Classification performances obtained in the ASD vs. TD 
discrimination for the structural, functional and multi-modality 
model.

The average value and the standard deviation of each metric are computed 
according to a nested 10-fold cross validation scheme

Type of model AUC​ Accuracy

Structural model 0.66± 0.05 0.75± 0.08

Functional model 0.76± 0.04 0.83± 0.12

Joint fusion model 0.78± 0.04 0.85± 0.12
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3.2 � Relevant brain features in the ASD vs. TD 
discrimination problem

The most important features in the ASD vs. TD discrimi-
nation problem were identified using Shapely values. The 
top 40 important features selected by SHAP are reported 
in Fig. 3. A list of the features whose importance scores 
exceeded the 99th percentile are reported in Table  3. In 
addition to the specification of the feature name, the 
table reports the sign of the Cohen’s d, thus indicating 
whether a feature mean is larger/smaller ( +/− ) in the 
sample of subjects with ASD with respect to TD controls. 
It can be noticed that the features identified as impor-
tant in the ASD vs. TD discrimination problem were 
mainly from functional MRI data. A visual represen-
tation of the relevant features is shown in Fig.  4, which 
allows an immediate identification of the set of signifi-
cant functional connections. We found out a long-range 

inter-hemispheric hypo-connectivity and an intra-hemi-
spheric hyper-connectivity in ASD subjects with respect 
to TDs.

4 � Discussion
We developed a multi-modality DL model with a joint 
fusion approach that uses the combination of structural 
and functional MRI data to discriminate subjects with 
ASD with respect to TDs. This DL model outperforms 
those based on each single modality. Several works dem-
onstrated that better performance can be achieved by 
combining the results from structural and functional 
MRI data.

The work by Dekhil et  al. [21] proposes a computer-
aided diagnosis system that integrates features from 
sMRI and fMRI to predict autism diagnoses. They utilized 
traditional ML models, in particular, a local classifier 

Fig. 3  Boxplot of the top 40 importance features selected by SHAP. The functional labels are defined by the Harvard-Oxford cortical and subcortical 
atlases [48]
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(K-nearest neighbors) and a global classifier (Random 
Forest). The system was tested on 18 datasets from the 
ABIDE consortium, and the results demonstrated high 
accuracy ( 0.75− 1.00 on sMRI and 0.79− 1.00 on fMRI 
data). However, the reported performances are specific to 
individual modalities and sites, lacking a comprehensive 
evaluation of the performance of the algorithm on com-
bined data.

In their study, Aghdam et al. [5] utilized a deep belief 
network (DBN) to classify ASD subjects using both rs-
fMRI and sMRI data. The study included participants 
aged 5 to 10 years from the ABIDE I and ABIDE II data-
sets. By combining rs-fMRI, gray matter, and white mat-
ter (WM) data, the study achieved an accuracy of 0.65, 
demonstrating that there were significant correlations 
between rs-fMRI and sMRI in diagnosing ASD. However, 
they employed an early fusion approach by combining 
the multi-modal features prior to the classification pro-
cess. Despite a direct comparison between their work 
and ours cannot be done because of the different choice 

made in the selection of paticipants’ age range, we 
obtained substantially higher performances (an accuracy 
of 0.85± 0.12 ) which may be attributable to the use of a 
joint fusion approach instead of an early fusion one.

Rakic et  al. [67] propose a network consisting of 
autoencoders and multilayer perceptrons for the classi-
fication of ASD. The model was tested on both rs-fMRI 
and sMRI data from the ABIDE I dataset, both separately 
and in combination. They implemented both an early and 
a late fusion strategy, where connectivity and structural 
feature vectors were concatenated prior to classification 
(early approach) or classified separately and then the 
obtained label were fused (late approach). The best result 
was obtained using the late fusion approach, achieving a 
mean accuracy of 0.85, using an ensemble of 5 functional 
and 5 structural data classification models. This result is 
consistent with the performance obtained by our joint 
fusion model. However, late approach may potentially 
obscure valuable information that could be extracted 
from the interaction between modalities.

Table 3  The most important features (importance scores over the 99th percentile).

The reported sign indicates whether the feature mean is larger/smaller ( +/− ) in the group of subjects with ASD with respect to TD controls. The structural features are 
highlighted in italics

Brain Regions (Measurement) Cohen’s d

Right Postcentral Gyrus - Left Juxtapositional Lobule Cortex -

Right Thalamus - Right Middle Temporal Gyrus +

Right Middle Temporal Gyrus (posterior division) - Left Angular Gyrus -

Right Inferior Frontal Gyrus (pars triangularis) - Right Frontal Operculum Cortex -

Right Temporal Pole - Left Angular Gyrus -

Right Middle Temporal Gyrus (posterior division) - Left Middle Temporal Gyrus -

Right Frontal Orbital Cortex - Left Middle Temporal Gyrus -

Left Occipital Pole - Left Subcallosal Cortex +

Right Superior Frontal Gyrus - Left Cuneal Cortex -

Left Occipital Fusiform Gyrus - Left Subcallosal Cortex +

Left Inferior Temporal Gyrus (temporooccipital part) - Left Planum Temporale -

Right Frontal Orbital Cortex - Left Angular Gyrus -

Superior Temporal (ThickAvg) +

Left Middle Temporal Gyrus (posterior division) - Right Middle Temporal Gyrus (posterior division) -

Left Superior Parietal Lobule - Left Superior Temporal Gyrus (posterior division) -

Left Frontal Pole - Right Inferior Frontal Gyrus (pars triangularis) +

Right Superior Parietal Lobule - Right Central Opercular Cortex +

Left Planum Temporale - Right Frontal Operculum Cortex +

Right Cingulate Gyrus (posterior division) - Left Cingulate Gyrus (posterior division) -

Left Angular Gyrus - Right Inferior Frontal Gyrus (pars triangularis) -

Right Middle Temporal Gyrus (anterior division) - Left Superior Temporal Gyrus (anterior division) +

Left Frontal Pole - Left Temporal Pole -

Medial Orbitofrontal (ThickAvg) +

Left Heschl’s Gyrus (H1 and H2) - Left Superior Temporal Gyrus (anterior division) -

Right Cingulate Gyrus (posterior division) - Right Temporal Occipital Fusiform Cortex +

Pericalcarine (GrayVol) -
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In their study, Abbas et al. [1] implemented a 3D model, 
which is completely different from ours and strongly 
more demanding from the computational point of view. 
The authors stated that they had implemented a subject 
partitioning criterion in the training, validation and test 
sets aimed at balancing the contribution of the different 
sites and diagnostic groups to each set. This approach to 
data partitioning may account for the fact that the ASD 
vs control classification performance they achieved is 
sensibly higher (AUC of 92.35) than ours.

Niu et  al. [60] developed a multichannel deep atten-
tion neural network (DANN) model using functional 
neuroimaging data and personal characteristic data (e.g. 
sex, handedness, full-scale intelligence quotient) from 
ABIDE dataset. They achieved an accuracy of 0.73± 0.02 
in classifying subjects with ASD with respect to TDs. 
The results by Niu et  al. [60] suggest that integrating 
additional data modalities can facilitate the utilization of 
ML in the context of computer-aided diagnosis of ASD. 
This work employed a joint fusion approach, however, 
the authors did not incorporate structural information. 
In our study, we obtained an improvement of the perfor-
mance combining sMRI and rs-fMRI data.

To the best of our knowledge, our work is the first 
study to utilize a joint fusion approach on harmonized 
sMRI and rs-fMRI data, involving data from all 35 ABIDE 
sites. However, the diagnostic performance might be fur-
ther improved by incorporating phenotype information. 
Additionally, we introduced the SHAP analysis within 

the framework of the multimodal model. This approach 
allows us to explore both the relative relevance and the 
interplay between structural and functional information 
in the ASD vs control DL discrimination task.

4.1 � Considerations of important features
Overall, our results revealed that individuals with 
ASD have poorer FC in brain regions spanning long, 
interhemispheric distances compared to TD controls, 
whereas FC seems to be increased in local, intrahemi-
spheric circuits. This pattern has been firstly identified 
by Belmonte and colleagues [11] and confirmed by sev-
eral subsequent independent investigations [8, 35, 41, 
43, 56]. Among the most involved circuits, the weaker 
connection between pivotal hubs of the Default Mode 
Network (DMN) [66] including right middle tempo-
ral gyrus and left angular gyrus, right and left middle 
temporal gyrus, right and left posterior cingulate gyrus 
greatly contributed to distinguishing ASD partici-
pants from TD peers. Crucially, DMN is implicated in 
social cognition [55], theory of mind [17], emotional 
processing [15], self-evaluation [32], autobiographical 
memory ([59], and its disruption has been consistently 
described in subjects with ASD [9, 10, 24, 34, 79, 82]. 
Indeed, under-functional connectivity in regions of the 
DMN might contribute to the social-cognitive impair-
ments associated with ASD. In addition, other brain 
regions that constitute the DMN, such as the supe-
rior frontal gyrus, the posterior cingulate gyrus, the 

Fig. 4  The most important features (see Table 3) in the ASD vs. TD discrimination are highlighted. Significant functional connections are reported 
in left box. The over-connectivity (in red) and under-connectivity (in blue) patterns are shown. In right box the brain regions whose features were 
identified as relevant are highlighted
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superior temporal gyrus, the middle temporal gyrus, 
and the angular gyrus are part of the weaker connec-
tions we detected in individuals with ASD. Moreover, 
we observed atypical functional activation of areas 
belonging to the social brain, a network specialized 
in processing social cues and encoding human social 
behaviors [3, 14, 30], which includes the inferior frontal 
gyrus, the anterior cingulate cortex (subcallosal region), 
the superior temporal cortex, the temporal poles, and 
the fusiform gyrus. In line with our findings, previous 
investigations detected altered neural substrates in 
social brain [31, 62], which in turn may underlie abnor-
mal processing of social cues, a hallmark of ASD.

It is also important to note a degree of overlap between 
the structural and functional findings of the current 
study: indeed, the left superior temporal gyrus (a crucial 
structure implicated in language and social cognition 
frequently impaired in ASD subjects [12, 13, 47]) is both 
increased in thickness and altered as far as FC is con-
cerned in ASD individuals compared with control partic-
ipants. This result support the notion that brain changes 
in ASD, even if subtle and diffuse, converge into specific, 
close localized areas of structural and functional altera-
tions [58, 63, 69].

In our study, the classical case–control approach was 
implemented. However, it is crucial to acknowledge the 
limitations and challenges associated with this approach. 
Despite its widespread use, the classical approach did 
not take into account the intrinsic heterogeneity of ASD 
[50], presuming that the group mean is representative of 
the entire population. This assumption may not be valid 
for heterogeneous populations like ASD [54]. Recog-
nizing the limitations of the classical approach, recent 
investigations tried to address the heterogeneity within 
ASD by exploring its biological underpinnings including 
neuroanatomical measures, with predominantly incon-
sistent results [4, 49, 85]. Moreover, a novel method for 
dealing with the neurobiological heterogeneity associ-
ated with ASD, and more broadly neurodevelopmental 
disorders, is normative modeling [70]. This method uti-
lizes the trajectory of the typical developing brain across 
relevant variables to predict brain measures for each 
individual, highlighting deviations from the typical pat-
tern for each individual. Normative modeling has been 
applied in previous investigations involving ASD individ-
uals, revealing widespread patterns of deviations [73, 74, 
84]. Given these considerations, it is evident that one of 
the most significant challenges in current ASD research 
is addressing and reducing the high heterogeneity at the 
neurobiological level in order to pave the way for more 
individualized treatment strategies for ASD individuals.

5 � Conclusions
In conclusion, our findings indicate that the DL-based 
joint fusion approach outperforms single modality DL 
models, as it can effectively exploit the complementary 
information encoded in each acquisition modality. The 
improvement in AUC demonstrated that sMRI and 
rs-fMRI images contain complementary information 
related to the ASD diagnosis. Furthermore, our work 
suggests that multi-modality DL models are promising 
tools for identifying potential neuroimaging biomark-
ers of neurodevelopmental disorders.
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