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Abstract 

The basal ganglia (BG) is part of a basic feedback circuit regulating cortical function, such as voluntary movements 
control, via their influence on thalamocortical projections. BG disorders, namely Parkinson’s disease (PD), character-
ized by the loss of neurons in the substantia nigra, involve the progressive loss of motor functions. At the present, PD 
is incurable. Converging evidences suggest the onset of PD-specific pathology prior to the appearance of classical 
motor signs. This latent phase of neurodegeneration in PD is of particular relevance in developing more effective 
therapies by intervening at the earliest stages of the disease. Therefore, a key challenge in PD research is to identify 
and validate markers for the preclinical and prodromal stages of the illness. We propose a mechanistic neurocomputa-
tional model of the BG at a mesoscopic scale to investigate the behavior of the simulated neural system after several 
degrees of lesion of the substantia nigra, with the aim of possibly evaluating which is the smallest lesion compromis-
ing motor learning. In other words, we developed a working framework for the analysis of theoretical early-stage 
PD. While simulations in healthy conditions confirm the key role of dopamine in learning, in pathological conditions 
the network predicts that there may exist abnormalities of the motor learning process, for physiological alterations 
in the BG, that do not yet involve the presence of symptoms typical of the clinical diagnosis.
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1 Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder 
inducing several motor symptoms (tremor, rigidity, aki-
nesia) and cognitive deficits (regarding procedural learn-
ing and decision making).

PD is characterized by the death of dopaminergic neu-
rons projecting to the Basal Ganglia (BG), a group of 
nuclei part of several anatomical and functional loops, 
involving the cerebral cortex and the thalamus.

The BG is involved in, among others, voluntary move-
ments control, procedural learning, decision making, 
cognition, and emotion. Its primary function is that of 
controlling and regulating the activities of the motor 
and premotor cortical areas for executing smooth move-
ments. Various authors [1–6] agree on the role of BG in 
selectively facilitating the execution of a single elemen-
tary motor command while suppressing all competing 
others. Current theories of motor learning claim that 
early learning is controlled by dopamine-modulated plas-
ticity in the BG, which trains parallel cortical pathways 
through unsupervised plasticity at corticostriatal syn-
apses [7, 8].

Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Brain Informatics

*Correspondence:
Ilaria Gigi
ilariagigi@outlook.com
1 Institute of Cognitive Sciences and Technologies (ISTC), National 
Research Council of Italy (CNR), Via Beato Pellegrino 28, Padova 35137, 
Veneto, Italy
2 Natural Intelligent Technologies Ltd, Piazza Vittorio Emanuele 10, 
Fisciano 84084, Campania, Italy
3 Department of Information Engineering, Electrical Engineering, 
and Applied Mathematics (DIEM), University of Salerno, Via Giovanni 
Paolo II 132, Fisciano 84084, Campania, Italy

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40708-023-00215-6&domain=pdf


Page 2 of 20Gigi et al. Brain Informatics            (2024) 11:4 

After more than a century of work on the motor func-
tions of BG, in the last decades, researchers have focused 
on the function in learning habits and acquiring motor 
skills. Much evidence [7, 9–11] has been collected on the 
role of BG in refining action selection according to an 
optimization process and shaping skills as a modulator of 
motor repertoires; this learning mechanism supported by 
striatal circuitry generalizes to other domains, including 
cognitive skills.

People affected by PD show a degradation of motor 
learning performance [12–14]. As a consequence, many 
researchers are investigating the features of motor degra-
dation in PD, with the aim of determining specific thera-
pies and technologies to counteract, at least partially, the 
symptoms of the disease. Manipulations of dopamine 
levels in the striatum in animal models have been shown 
to affect the activation of behavior and the development 
of skilled motor responses [15]. It has also been shown 
that the BG participates in cognitive decision-making, 
similarly to the context of motor control, since the loops 
linking the BG with frontal systems are very similar, and 
because of cognitive deficits observed in PD patients [16, 
17], so naturally extending the role of action selection to 
high-level cognitive decisions.

Given its key role in the motor and cognitive context, 
the functional role of the BG and the dopaminergic sys-
tem represents an issue of particular interest. Further-
more, as no definitive biomarker of PD has been defined, 
an urgent need exists to develop early diagnostic bio-
markers for two reasons: (1) to intervene at the onset of 
the disease and (2) to monitor the progress of therapeu-
tic interventions that may slow or stop the course of the 
disease.

When system-level interactions of multiple brain 
regions are involved, or when these structures are sub-
cortically located, computational investigations provide 
a valuable complement to experimental brain research. 
Exploration of the neural interactions through a compu-
tational model could gain some insights about the func-
tional dynamics of information processing within the 
simulated brain areas, in normal as well as in diseased 
brains, providing also some guidelines for developing 
more efficacious therapies for diseases in which these 
areas are involved. Indeed, modeling approaches could be 
applied to develop testable “computational biomarkers” 
to support diagnostic, prognostic, or treatment efforts, 
particularly, on the path to “digital twin” approaches in 
brain medicine.

In this light, we have developed a biologically inspired 
mechanistic model of the cortico-BG-thalamo-
cortical loop, based on neuroanatomical studies, 
experimental findings, and computational studies, 
that mimics information processing in the BG and 

simulates the performance of motor tasks at some level 
of abstraction.

2  The Basal Ganglia and the dopaminergic system: 
anatomical and functional aspects

The BG is a group of subcortical nuclei, situated at the 
base of the forebrain and top of the midbrain. These 
nuclei are strongly interconnected with several brain 
areas and associated with a variety of functions, includ-
ing control of voluntary motor movements, procedural 
and habit learning, cognition, and emotion.

2.1  The Basal Ganglia
In the context of motor control, the BG facilitates the 
execution of appropriate actions and suppresses the 
inappropriate ones; in other words, the BG modulates 
motor responses rather than encoding any detail of them, 
releasing the brake on the motor command winning the 
competition (i.e., getting executed). Action selection by 
the BG, i.e. the choice of the motor responses, is imple-
mented by a sequence of parallel loops of connectivity. 
Each region of the cortex has a corresponding BG circuit 
for gating proper initiation of a specific movement. The 
motor circuit has been examined in experimental studies 
and has been implicated in a wide range of motor behav-
iors, particularly in the high-level aspects of movement, 
such as the preparation of movement or the control of 
kinematic parameters. The BG integrates information 
from different brain structures into an appropriate motor 
response, e.g., in the reaction to sensory stimuli or also in 
everyday movement and the fine control of all our move-
ments, such as walking, writing, and so on.

Therefore, the BG modulates the efficacy of responses 
being selected in the cortex. This suggests that the BG 
does not initiate motor responses, but rather facilitates 
or gates responses that are being considered in the pre-
motor cortex. Looking at it another way, the BG modu-
lates elementary actions, which are then pieced together 
by the nervous system to generate a complex motor 
behavior, that results from the concatenation of elemen-
tary movements. In this complex system, the BG acts by 
enhancing the most appropriate command at any given 
portion of the sequence of actions.

The nuclei composing the BG receive (send) connec-
tions from (to) several brain areas. In the motor loop, the 
associated striatum (putamen) receives input primarily 
from the motor cortex, namely, the supplementary motor 
area (SMA), cingulate motor area, premotor cortex 
(PMC), and primary motor (M1), and also from parietal 
cortex, mostly primary somatosensory cortex (S1). These 
input signals, coming from a large region of the frontal–
parietal areas, properly contextualize motor actions. A 
high-level diagram of the motor loop is reported in Fig. 1.
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The inputs converging into the BG are processed and 
reissued, through the thalamus, to the cortex. The thala-
mus projects principally to frontal lobe areas (prefrontal, 
premotor, and supplementary motor areas) which are 
concerned with motor planning. From the motor cortex, 
ultimately the BG affects the planning and execution of 
the movement by synapsing with the neurons of the cor-
ticospinal and corticobulbar tracts in the brainstem and 
spinal cord [18, 19].

The BG system involves the following subregions: stria-
tum, subthalamic nucleus (STN), substantia nigra pars 
compacta (SNc), the internal globus pallidus (GPi) and 
the external globus pallidus (GPe). These nuclei are inter-
connected by different pathways (see Fig. 2).

The input structure of the BG is the striatum (puta-
men) and receives inputs from two main sources: cortical 
areas (including the motor cortex), and the SNc (through 
dopaminergic projections).

Two main projection pathways go from the striatum to 
the output segment of BG, the GPi, up to the thalamus 
and back to the cortex, which have opposing effects on 
the excitation/inhibition of the thalamus (i.e., execution/
suppression of the action). These pathways are named 

direct and indirect, respectively. The direct pathway facil-
itates the execution of responses, whereas the indirect 
pathway suppresses them.

Neurons from the direct pathway project from the 
striatum through an inhibitory connection to GPi, which 
is tonically active and inhibiting the thalamus. Thus, the 
excitation of the direct pathway results in the inhibition 
of the activity of GPi, which in turn ceases to inhibit the 
thalamus; the thalamus is enabled to get excited from 
other excitatory projections and thalamocortical pro-
jections propagate the excitation to the cortex, enhanc-
ing the activity of the motor response represented in the 
motor cortex, so that it can be executed (i.e., the brake is 
released).

Fig. 1 Basal Ganglia functional loop: motor circuit for body 
movement. Primary motor cortex (M1), premotor cortex (PMC), 
primary somatosensory cortex (S1), supplementary motor area 
(SMA), cingulate motor area (CMA), internal globus pallidus (GPi), 
ventrolateral (VL) thalamus

Fig. 2 Topology connection diagram of the model. The 
corticostriatal–thalamocortical loop, including the direct, 
indirect, and hyperdirect pathways of the BG, is represented. 
The direct pathway-projecting Go neurons in the striatum 
project directly to the GPi, having the effect of disinhibiting 
the thalamus and executing a motor response represented 
in the cortex. The indirect pathway-projecting NoGo neurons have 
the opposite effect and suppress actions from getting executed. 
Dopamine from the Substantia Nigra pars compacta (SNc) projects 
to the striatum, exerting excitation of Go cells via D1 receptors, 
and inhibition of NoGo cells via D2 receptors. The Subthalamic 
nucleus (STN) receives excitatory projections from the cortex 
in the hyperdirect pathway and excites GPi; the external Globus 
Pallidum (GPe) provides an inhibitory effect on STN activity. Areas 
not belonging to BG are marked in italic
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Neurons in the indirect pathway inhibit the GPe, toni-
cally active and inhibiting the GPi. Therefore, the excita-
tion of the indirect pathway releases the tonic inhibition 
of GPe onto GPi, which in turn is more active and then 
further inhibits the thalamus, suppressing actions from 
getting executed, thereby having an opposite effect.

The output structure of the BG, the GPi, acts like the 
volume dial on a radio, because its output determines 
whether a movement will be weak or strong. This mecha-
nism accounts for the interpretation, from a functional 
point of view, of direct pathway neurons sending a Go 
signal to execute a response, and indirect pathway neu-
rons a NoGo signal to suppress all the others.

It is still controversial whether the direct and indirect 
pathways compete with each other, or are functionally 
independent. That is, ultimately only one of Go or NoGo 
pathways activity predominates in the excitation/inhibi-
tion of the GPi/thalamus, thus amplifying or decreasing 
the force of movement. As in other studies [2, 5, 20], here 
we adopt the distinction between two sub-populations 
of neurons in the striatum, based on differences in bio-
chemistry and efferent projections.

Through the interaction of the direct and indirect path-
way, the BG serves as a gate on the thalamocortical cir-
cuit, in that it modulates the execution or inhibition of a 
motor command by acting on the thalamus.

Another important BG pathway, involving the activity 
of the STN, is the hyperdirect pathway, so called because 
cortical projections toward the STN directly excite GPi, 
bypassing the striatum. The cortico-STN pathway has 
a substantial effect on modulating the time of response 
execution. The activation of STN enhances GPi activity 
and its inhibition of the thalamus, therefore reducing 
the probability of facilitating a specific response. As a 
consequence, the hyperdirect pathway represents a non-
specific (with respect to response) excitatory process to 
cancel (all) inappropriate actions. The STN may be essen-
tial to allow all information required to make decisions 
to be integrated before facilitating one, and thereby pre-
vents premature responding [4, 21–24].

2.2  Learning function of the BG: the role of dopamine
Dopamine (DA) plays a crucial role in a variety of pro-
cesses, including reinforcement learning, motivation, and 
working memory. Compelling evidence has shown that 
DA is the central player in the induction of plasticity at 
corticostriatal synapses on striatal neurons, in concert 
with other neurotransmitters [25, 26].

DA firing patterns fluctuate between two different 
modes: phasic and tonic. The phasic signal is fast-time-
scale and spans milliseconds, whereas the tonic signal is 
slow-timescale and can span minutes or hours. Phasic 
changes in DA play a key role in synaptic plasticity and 

reinforcement learning, as are thought to occur during 
error feedback (e.g., [2, 5, 20, 27]), causing the two sub-
populations of striatal neurons (direct and indirect) to 
independently learn positive and negative reinforcement 
values of responses. In particular, phasic increases in DA, 
due to positive feedback, result in increased activity in 
the direct pathway and suppression of the indirect path-
way. On the contrary, phasic dips in DA, due to negative 
feedback, have the opposite effect, releasing the indirect 
pathway from suppression.

Therefore, the phasic changes in DA are critical for 
modulating Go/NoGo representations in the BG and 
ultimately facilitate or suppress the execution of motor 
commands. In other words, DA phasic levels correspond 
to a non-specific reward-mediated trial-by-trial training 
signal, as it strengthens the synapses active on correct tri-
als and weakens the synapses active on incorrect trials.

Striatal Go/NoGo associations are learned through 
phasic changes in simulated DA firing during positive 
and negative feedback, resulting in the modulation of 
synaptic plasticity and supporting learning. Bursts of DA 
lead the BG to learn to facilitate rewarding behaviors and 
sharpen representations in the Go pathway. Dips of DA 
allow the BG to learn NoGo representations to the incor-
rect responses, and suppress disadvantageous behaviors.

Current theories of motor learning pose that early 
learning is controlled in the BG by DA-modulated plas-
ticity, which trains parallel cortical pathways through 
unsupervised plasticity as a motor task becomes well-
learned. In human trial-and-error learning tasks, phasic 
bursts and dips of DA have been proved to occur during 
positive and negative feedback, respectively, and these 
changes in extracellular levels of DA during feedback are 
thought to be critical for learning because they modify 
synaptic plasticity; in other words, DA acts as a “teach-
ing signal”, leading to the learning of rewarding behaviors 
and discouraging unrewarding ones [20, 28]. It has been 
widely agreed that learning impairment in PD is linked to 
damaged DAergic neurons in the BG and DA deficiency 
[25, 26, 29].

The core features of the functional role of the BG nuclei 
in motor learning are

• The cortex generates multiple competing candidate 
actions for a given sensory context, which are kept 
inhibited by tonic activity in the output structures of 
BG. The striatum can release the inhibition on one of 
these channels, such that the most rewarding one is 
chosen to be activated.

• Competitive dynamics between striatal cells in the 
direct and indirect pathways of the BG facilitate or 
suppress a given response in the cortex. The cells 
that detect conditions to facilitate a response provide 
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a Go signal, whereas those that suppress responses 
provide an NoGo signal.

• DA has a key role in modulating both activity and 
plasticity in the BG. Phasic changes (bursts and dips) 
in DA during error feedback are critical for learning 
stimulus–response associations and for allowing Go/
NoGo representations to facilitate or suppress the 
execution of a command.

• Less DA (as in the PD state) leads to less contrast 
enhancement and impairs the ability to resolve Go/
NoGo association differences needed for discrimi-
nating between different responses.

• Hebbian learning enhances associated cortical repre-
sentations in a learning process slower than the rein-
forcement-based one.

• The STN provides a global NoGo signal that sup-
presses all responses. By this account, cortico-sub-
thalamic-pallidal pathways modulate the dynamics of 
action selection by regulating the threshold for exe-
cuting a response.

3  Materials and methods
We propose a biophysically detailed mechanistic model 
at a mesoscopic scale, which incorporates

• The competing processes of the direct and indi-
rect pathways, that allow to gate (Go) the cor-
rect response and suppress (NoGo) the competing 
responses.

• The SNc, so that the role of DA can be implemented 
and manipulated, with simulated D1 and D2 recep-
tors in the striatum. In particular, the model includes 
DA bursts and dips (increase of SNc unit firing 
for correct responses and decrease for incorrect 
responses) and the corresponding DA-based learning 
mechanism (based on a reinforcement learning para-
digm inspired by the learning algorithm of Leabra 
[30]).

• The STN, which allows us to explore its contribution 
to providing a global modulatory signal on the facili-
tation and suppression of all responses.

• The STN dynamic effects, as the response selection 
process evolves, both within the trial and with the 
advance of learning.

• The M1 and the mechanisms of cortical synaptic 
plasticity.

• The procedural motor learning hypothesis, allowing 
the BG to initially learn which response to gate via 
phasic changes in DA, and then this learning trans-
fers to the cortex. In other words, BG and DA criti-
cally mediate the acquisition of behavior, but they 
play a diminishing role in executing well-learned 
behaviors.

The implementation of the model includes four com-
peting responses but can be extended proportionally to 
include more alternatives.

In the following we describe the computational features 
of our BG model interconnected with the other corti-
cal (S1, PMC, and M1) and subcortical (thalamus) areas, 
including the key learning mechanisms, connectivity, and 
general simulation methods. The model, shown in Fig. 2, 
is derived from validated models of decision-making [3, 
20, 31], and associates a motor command to a particular 
sensory state through a learning process; its neural ele-
ments interact to yield this emergent behavior.

3.1  General methods
The neural network is implemented within NEST (NEu-
ral Simulation Tool) framework, using an implementa-
tion of a basic point-neuron conductance model, the 
conductance-based leaky integrate-and-fire (LIF) neuron 
model, which provides a standard biophysically grounded 
model of individual neuron dynamics.

The adoption of NEST enables an in-depth analysis, 
more extensively than other simulators, as it allows to set-
ting and measuring of the firing pattern of a population 
of neurons and examining in detail the behavior of both 
the externally manipulated neurons and the intermedi-
ate ones in the network in terms of their neuronal activity 
(i.e., firing rate, synapse strength, or timing delay). Thus, 
it becomes possible to simulate neuronal lesions to vari-
ous degrees, acting on the firing rate of neurons rather 
than simulating only the presence/absence of a neuron.

There are simulated excitatory and inhibitory synaptic 
input channels. Synaptic connection weights have been 
trained using a reinforcement learning algorithm.

The cortico-basal ganglia-thalamo-cortical loop archi-
tecture in Fig.  2 is synthesized by a spiking neural net-
work model (Fig.  3). The network learns to select one 
of four responses to different input stimuli. Direct and 
indirect pathways enable to learn the conditions that 
are appropriate for gating as well as those for suppress-
ing. Differing sub-types of neurons are organized within 
separate layers; within layers, parallel reverberating acti-
vation loops for each action are represented in a column 
of units; such sub-loops independently modulate each 
response, allowing selective facilitation of one response 
with concurrent suppression of the others. Projections 
from the SNc to the striatum incorporate the modula-
tory effects of DA. Simulated phasic bursts and dips in 
SNc firing ensue from correct and incorrect responses, 
respectively, and drive learning by preferentially activat-
ing the direct pathway after a correct response and the 
indirect pathway after an incorrect response. The net-
work is trained on a simulated version of a long-term 
motor skill training task.
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The number of neurons in each sub-population and the 
number of connections were chosen according to Frank 
[3, 20], and are provided in Table 1.

In the following, the layers and their synaptic con-
nections are described (see Fig.  3). We provide for 
each layer the description of its input/output synapses 

contextualized to their functionality, whereas we deal 
with exogenous sources in a separate subsection.

Striatum
Direct (Go) and indirect (NoGo) pathways start from 

two distinct populations of neurons in the striatum, 

Fig. 3 Network structure. Different brain areas are represented in separate layers. Internally, neurons are optionally grouped in columns. Dashed 
lines indicate plastic connections. The line end represents the influence of a neurotransmitter on the downstream group of neurons: glutamate 
is excitatory, GABA (gamma-aminobutyric acid) is inhibitory and dopamine is a modulatory neurotransmitter. The process of action selection 
is expressed by the direct, indirect, and hyperdirect pathways of the BG, modulated by dopamine. The premotor cortex (PMC) selects a response 
via direct projections from the input gated by BG through the thalamus



Page 7 of 20Gigi et al. Brain Informatics            (2024) 11:4  

expressing D1 and D2 receptors, respectively. In our neu-
ral network, the four leftmost columns of the striatum 
represent the direct pathways or Go, whereas the four 
rightmost columns represent the indirect pathways or 
NoGo. Each column is involved in the selection/inhibi-
tion of a particular response (R1–R4). The Go columns 
project to the corresponding columns in the GPi, whereas 
the NoGo columns project to the corresponding columns 
in the GPe. Striatal interneurons are responsible for tonic 
inhibitory activity in the striatum and are critical for shap-
ing neuronal circuit activity in it, particularly for modulat-
ing the activity of medium-sized spiny neurons [32]. These 
interneurons have been modeled as synaptically weak 
inhibitory connections among striatal neurons.

GPi
Each column in the GPi tonically inhibits the associ-

ated column of the thalamus, which is reciprocally con-
nected to the PMC. If Go activity is stronger than NoGo 
activity for a response, the corresponding column of the 
GPi will be suppressed, removing the tonic inhibition 
of the corresponding thalamus unit, and facilitating its 
execution in the motor cortex. The inhibitory connection 
between cortex–striatum–GPi–thalamus–cortex imple-
ments the direct pathway.

Table 1 Network and connection parameters

Parameter Value Description

Nnetwork 131 Network size

Nstriatum-Go 36 Size of striatum-Go population

Nstriatum-NoGo 36 Size of striatum-NoGo population

NGPi 8 Size of GPi population

NGPe 4 Size of GPe population

NSTN 9 Size of STN population

NSNc 4 Size of SNc population

Ninput 18 Size of input population

Nthalamus 4 Size of thalamus population

NPMC 8 Size of PMC population

NM1 4 Size of M1 population

K
input
striatum-Go

432 Number of input connections on striatum-Go neurons

K
input
striatum-NoGo

432 Number of input connections on striatum-NoGo neurons

K striatumstriatum
5184 Number of striatal interneurons connections

KPMC
striatum-Go

288 Number of PMC connections on striatum-Go neurons

KPMC
striatum-NoGo

288 Number of PMC connections on striatum-NoGo neurons

K SNcstriatum-Go
144 Number of SNc connections on striatum-Go neurons

K SNcstriatum-NoGo
144 Number of SNc connections on striatum-NoGo neurons

K striatum-Go
GPi

288 Number of striatum-Go connections on GPi neurons

KGPeGPi
32 Number of GPe connections on GPi neurons

K STNGPi
72 Number of STN connections on GPi neurons

K striatum-NoGo
GPe

144 Number of striatum-NoGo connections on GPe neurons

KGPeSTN
36 Number of GPe connections on STN neurons

KPMC
STN

72 Number of PMC connections on STN neurons

K
input
PMC

96 Number of input connections on PMC neurons

K thalamus
PMC

32 Number of thalamus connections on PMC neurons

KPMC
thalamus

32 Number of PMC connections on thalamus neurons

KGPithalamus
32 Number of GPi connections on thalamus neurons

KPMC
M1

32 Number of PMC connections on M1 neurons
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GPe
GPe columns inhibit the associated columns in GPi, so 

that striatal Go and NoGo activity have opposing effects 
on the GPi. The inhibitory connection between cortex–
striatum–GPe–GPi–thalamus–cortex represents the 
indirect pathway.

STN
In our model, the excitatory projections from the STN 

to the GPi convey cortical excitation and represent the 
hyperdirect pathway, which prevents premature choices 
suppressing movement through the elevation of GPi 
activity. The indirect pathway interacts within the STN 
with an inhibitory connection.

SNc
The BG nuclei receive the reward signal from the SNc 

through the nigrostriatal DAergic projections, which 
incorporate the modulatory effects of DA. All the units of 
SNc excite Go columns (D1 receptors) and inhibit NoGo 
columns (D2 receptors).

Cortex and thalamus
In line with the hypothesis that the BG modulates the 

execution of “actions” (e.g., motor responses) being con-
sidered in different areas of the cortex, we consider a sim-
ple cortical hierarchy, consisting of a single input layer, 
conveying the aggregated information, or encoding states, 
derived from different cortical contexts (sensory, motor 
programs, etc.), and a two-level output hierarchy com-
prising PMC and M1. Two sets of synapses are plastic: (1) 
connections from the input cortex to the PMC (to learn 
category–response associations) and (2) connections 
from the input cortex to the striatum (to learn stimulus–
response associations). The synapses of the first group 
are based on a Hebbian learning mechanism and those of 
the second group on DA-mediated reinforcement learn-
ing. The thalamocortical system models the reverberating 
activation from BG to the cortex without plasticity.

3.2  External inputs
The input stimulus is modulated through a simulated 
distinct activation of columns in the input layer, repre-
senting the condensed information of a contextualized 
environment state.

Tonic levels of DA are simulated by setting the SNc 
units to be semi-active (0.5 spikes/ms) in the response 
phase. Then, if the response given by the network is 
correct, a phasic increase in SNc firing occurs in the 

feedback phase, with all SNc units set to have a high fir-
ing rate (1.0 spikes/ms), causing a burst of DA, represent-
ing the reward. For an incorrect response, a phasic dip 
of DA occurs, with all SNc units set to zero activation (0 
spikes/ms).

Throughout the network, neuronal populations receive 
external excitatory synaptic input according to Poisson’s 
distribution, to achieve realistic baseline firing rates and 
simulate both noise and background activity originating 
from other brain structures. In particular, the mean fir-
ing rate of the Poisson generator to induce noise for PMC 
is 0.5 spikes/ms, for GPi 16 spikes/ms, and for GPe 4 
spikes/ms.

3.3  Neurons and synapses
All neurons in the network were realized using the LIF 
model with exponential function-shaped postsynaptic 
conductance, which has been shown to be consistent 
with experimental data on the parameters characterizing 
in vivo-like activity of cortical neurons [33–35] and being 
adopted in several models of the BG using spiking neu-
rons [6, 36, 37]. The standard value of the model param-
eters are given in Table 2.

The projections from input to the striatum and to 
the PMC are plastic. All remaining connections of the 
direct, indirect, and hyperdirect pathway and the recur-
rent interactions within BG are static conductance-based 
synapses determined to assure the fulfillment of a set of 
functional restrictions by a robustness analysis and are 
in line with those used in Frank’s models [3, 20]. The 
value of the synaptic connectivity parameters are given in 
Table 3.

3.4  Learning rule
The projections from the cortical input layer to the BG 
(striatum) and to the cortex (PMC) are learnable by two 

Table 2 Standard LIF Neuron parameters

Parameter Value Description

Cm 2.0 Membrane capacitance

gL 0.2 Leaky conductance

EL −70.0 Leak reversal potential

Vreset −70.0 Reset potential of the membrane

Vth −40.0 Spike threshold

tausyn_ex 0.5 Rise time of excitatory synaptic conductance

tausyn_in 10.0 Rise time of inhibitory synaptic conductance

Eex 0.0 Excitatory reversal potential

Ein −85.0 Inhibitory reversal potential

Ie 0.0 Constant input current

tref 1.0 Duration of refractory period
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different learning mechanisms adopting the same learn-
ing rule. While early in training the BG learns the cor-
rect association between input and output to ensure that 
the correct motor plan in PMC is consistently activated 
shortly after the stimulus is presented (using DA-medi-
ated reinforcement learning), the consistent association 
between input and PMC activity triggers Hebbian learn-
ing between input and premotor areas, and the direct 
cortico-cortical connections eventually become strong 
enough so that the BG is no longer required to produce 
a response. When the response process becomes purely 
cortical, the skill is said to be “automatic”.

For cortico-striatal learning, we have used a reinforce-
ment learning version of Leabra, the rule proposed by 
Frank [3], which is more biologically plausible than stand-
ard error backpropagation. To simulate feedback effects, 
the learning algorithm involves the response and feed-
back phases. In the response phase, the network settles 
into activity states based on input stimuli and network 
synaptic weights, ultimately choosing a response. In the 
feedback phase, the network resettles in the same man-
ner, with the only difference being a change in simulated 
DA release (i.e., SNc activity) depending on the selected 
response: DAergic neurons increase from tonic to phasic 
(i.e., high) level of activity, whereas an incorrect response 
causes a decrease from tonic to zero level of activity.

In specific, the rule uses a combination of error-
driven and Hebbian learning. The error-driven compo-
nent computes a simple difference between a pre- and 
post-synaptic activation product across the two phases. 
For Hebbian learning, we use the same learning rule 
used in competitive learning. The error-driven and 
Hebbian learning components are combined additively 
at each connection to produce a net weight change.

The equation for the Hebbian weight changes adopted 
is

where x is the presynaptic activation, y is the postsynap-
tic activation, and −/+ represents the response/feedback 
phase, respectively. The equation for the error-driven 
component is

which is subject to a soft-weight bounding to keep within 
the 0–1 range:

The two terms are then combined additively:

where ǫ represents the learning rate parameter and k
hebb

 
is a parameter that controls the associated proportion of 
the two types of learning.

The equations point out that plasticity depends only 
on the reward value. Therefore, the mechanism is a 
reward value-based learning that triggers plasticity 
regardless of what was expected. Note that an explicit 
supervised training signal is never presented; striatal 
connection weights change depending on the difference 
between activity states in the response and feedback 
phases, which only differ due to phasic changes in DA. 
The striatum learns over time which responses to facili-
tate and which to suppress in the context of incoming 
sensory input. Long-term potentiation (LTP) or long-
term depression (LTD) occurs if the neuronal activity 
is increased (or decreased) with respect to the response 
phase.

In addition, the PMC itself learns to favor a given 
response for a particular input stimulus, via Hebbian 
learning from the input layer (Eq. 1).

The values of the parameters regarding the learning 
mechanism result from neurophysiological findings 
and are reported in Table 4.

(1)�hebbwij = x+i y
+

j − y+j wij = y+j (x
+

i − wij),

(2)�errwij = (x+i y
+

j )− (x−i y
−

j ),

(3)�sberrwij = [�err]
+(1− wij)+ [�err]

−wij .

(4)�wij = ǫ[k
hebb

(�
hebb

)+ (1− k
hebb

)(�
sberr

)],

Table 3 Synaptic parameters in healthy condition

Weight Value (nS) Model

w
input
striatum-Go

U(0.02, 0.12) exc

w
input
striatum-NoGo

U(0.02, 0.12) exc

wstriatum
striatum

U(0.01, 0.04) inh

wPMC
striatum-Go

U(0.4, 0.5) exc

wPMC
striatum-NoGo

1.0 exc

wSNc
striatum-Go

0.15 exc

wSNc
striatum-NoGo

0.3 inh

wstriatum-Go
GPi

1.5 inh

wGPe
GPi

1.0 inh

wSTN
GPi

6.0 exc

wstriatum-NoGo
GPe

1.0 inh

wGPe
STN

0.35 inh

wPMC
STN

U(0.45, 0.85) exc

w
input
PMC

U(0.0045, 0.055) exc

wthalamus
PMC

2.0 exc

wPMC
thalamus

1.5 exc

wGPi
thalamus

1.0 inh

wPMC
M1

2.0 exc
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In short, the BG initially learns which response to 
gate via phasic changes in DA ensuing from random 
cortical responses, and then this learning transfers to 
the cortex once it starts to select the correct response 
more often than not. This implements the idea that the 
BG modulates the gating of responses that are selected 
in the cortex.

4  Experimental settings
The BG is crucial in learning the cortico-striatal asso-
ciation to accurately control and execute complex move-
ments, which involve the combination of elementary 
motor elements in a particular order with certain timing. 
This mechanism strictly depends on the structural integ-
rity and functional activity of the cortico-striatal loop. 
To simulate these processes in the BG, we have simu-
lated a motor program by providing the network with a 
set of input stimuli and evaluated the neural activation 
within the network and the provided neural answers. The 
simulations were repeated 30 times for each group (each 
network starts with different initial random weights) to 

improve the robustness of the results. Statistical analysis 
was carried out through paired t-tests corrected with the 
Bonferroni procedure.

4.1  Task description
The network is provided with four different input stim-
uli, each corresponding to an associated cortical motor 
response. In each trial, one of the four stimuli is pre-
sented for the whole duration of the simulation and the 
network has to learn the correct action to perform. Thus, 
the execution of the whole task includes four trials, one 
for each stimulus. Consequently, one epoch of the net-
work learning process corresponds to one execution of 
the task, and we assume that the task has been perfectly 
learned once the network provides the correct actions 
in 10 successive executions. The sequence of stimu-
lus–response presented to the network is that reported 
in Fig. 4, from stimulus 1 to stimulus 4. However, a dif-
ferent sequence of stimuli or a random presentation of 
them does not influence the network learning curve, as 
for each network simulation, according to the initial state 
of the network (in terms of initial neural weights) and 
background neural activity, each one of the available neu-
ral pathways becomes specialized for one of the 4 stim-
uli presented. As a consequence, the learning capability 
of the network does not depend on the order of stimuli 
presentation.

4.2  Healthy and pathological conditions: simulations 
and performance evaluation

The simulations have been carried out for 300 epochs to 
dynamically assess the behavior of the networks and the 
steady-state level for different conditions.

To qualitatively measure the trend of the learning 
curve, we have defined three successive phases of the 
learning process as follows: (i) an early phase, going from 
the beginning of the simulation to the time when the 
average error falls below chance ( 50% ); (ii) a progressing 
phase, from the end of the early phase to the fulfillment 

Table 4 Learning rule parameters for the connection between 
the input cortex (PMC) and the BG (striatum) and associated 
simulation parameters

Description Value

k
hebb

0.01

ǫcor 0.00001

Cortico-striatal learning rate for LTD 0.1

Cortico-striatal learning rate for LTP 0.1

Step size of simulation 2 ms

Minimum time of simulation 400 ms

Maximum time of simulation 800 ms

Time window for firing activity 60 ms

Threshold firing rate 0.25

Duration of the feedback phase 200 ms

Time window for striatal learning 60 ms

Time window for cortical learning 60 ms

Fig. 4 Simulated motor task. Given an input signal, the network has to learn the most appropriate motor command in response to each stimulus. 
The task can be schematized either as (a) or (b), and it is correctly performed when the network selects the appropriate sequence of motor 
commands for the whole sequence of stimuli. The sequence of stimulus–response presented to the network is that reported in the figure, 
from stimulus 1 to stimulus 4



Page 11 of 20Gigi et al. Brain Informatics            (2024) 11:4  

of learning, defined as the time when the average error 
remains below 5% for 10 consecutive epochs; (iii) a con-
solidation phase, from the end of the progressing phase 
and continuing for the remaining time of the simulation. 
It follows that the time for perfectly learning the task, 
here referred to as learning time, is given by the number 
of epochs to complete the early and progressing phases 
mentioned above. The response time is the time (in mil-
liseconds) the network takes to choose an answer.

To simulate the diverse PD stages, different levels of 
SNc lesions have been simulated in the network. As 
reported in Chen et  al. [38], in Parkinson’s disease the 
surviving neurons in SN exhibit altered firing activity, 
such as decreased spontaneous firing rate and reduced 
number of firing neurons. The firing rate reduction is 

achieved by setting to specific values the rate of the Pois-
son process driving the SNc unit, considering a range 
of values from 1 to 0, as a rate multiplier (with 1 corre-
sponding to a healthy condition and 0 corresponding to 
absent firing rate in the neural population of SNc, respec-
tively). We set the DA levels to 1.0 and 0.5 to tune the 
model into healthy and PD-symptomatic conditions 
respectively. In particular, DA levels ranging from 1.0 
to 0.6 simulate preclinical stages (before PD diagnosis 
and motor symptoms), which correspond to a degree of 
lesion from 0% to 40%, and from 0.5 to 0.3 simulate the 
late stages of the disease, which correspond to 50–70% in 
terms of lesion.

Figure  5 shows a positive feedback trial, for both 
healthy and PD networks. The cue of this trial is 

Fig. 5 A positive feedback trial in the motor learning task, for both healthy and Parkinson networks. Red corresponds to low activation, yellow 
to medium, and green to high
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represented by the active units in the input layer. In the 
healthy network, early in training, the BG has not learned 
to gate a response, and GPi is active, while the thalamus 
is not active. The PMC is weakly active due to direct con-
nections from sensory input and SNc is tonically active. 
As the network guessed correctly, a phasic burst of DA 
firing occurs in the SNc. This has the effect of activating 
Go units associated with the selected response (via D1 
enhancement), and suppressing NoGo units (via D2 inhi-
bition). The enhanced Go representation in the feedback 
phase drives learning to gate the response. In the PD net-
work, the reduced activity of SNc units causes the NoGo 
units to be more active during response selection. As the 
network guessed correctly, a phasic burst of DA firing 
occurs, but lower levels of DA lead to smaller DA bursts; 
therefore, DA only weakly activates more Go units and 
weakly inhibits NoGo activity.

Network performance is then evaluated in terms of 
error rate, learning time, and response time. Other 
parameters, calculated over 30 epochs, are percent error 
in the early phase, percent error in the progressing phase 
of the healthy condition, and percent error in the consoli-
dation phase of the healthy condition.

5  Results
DA and its phasic changes are critical for learning and 
executing motor responses, and a reduced dynamic range 
of DA is associated with PD.

With the aim of investigating how different levels of DA 
depletion shape BG functions, we performed a computa-
tional exploration of the role of DA deficiency in motor 

learning and execution within the BG using numerical 
simulations of the BG network. The exploration has been 
carried out by systematically varying the DA level and 
studying how gradual reductions affect the behavior with 
respect to the healthy condition.

5.1  BG in healthy conditions
In healthy conditions, the activity within the striatum 
enables different Go and NoGo representations for var-
ious stimulus configurations, and physiological levels of 
dopamine allow to modulate the striatal learning. Fig-
ure 6 shows that the average learning time is 78 epochs.

5.1.1  Early phase
At the beginning of learning, random activity within 
the network causes the random selection of a motor 
response. Positive feedback (resulting from the selec-
tion of the correct motor response) leads to an increase 
in DA, whereas negative feedback (resulting from the 
selection of an incorrect motor response) leads to a 
decrease in DA. In turn, according to the mechanisms 
of synaptic plasticity within the striatum, DA increase 
reinforces the selection of the chosen response, 
whereas DA decrease prevents its selection. As long 
as the learning proceeds, the Go/NoGo connection 
weights are modeled based on the DA changes, and the 
network becomes able to steadily complete the task. As 
shown in Fig.  6, in healthy conditions the early phase 
lasts 30 epochs.

Fig. 6 Mean learning error curve in healthy networks (averaged over 30 networks). The early phase is represented in blue, the progressing phase 
in yellow, and the consolidation phase in green
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5.1.2  Progressing phase
During the progressing phase, the striatal weights are 
consistently reinforced to inhibit the GPi neurons that, 
in turn, disinhibit the thalamic neurons associated 
to the correct response. Thalamic activation results 
in the enhancement of PMC activation. During this 
phase, learning proceeds, until striatal weights become 
appropriate for systematically facilitating the correct 
responses. As shown in Fig.  6, the progressing phase 
lasts 50 epochs in healthy conditions.

5.1.3  Consolidation phase
During the consolidation phase, learning can be consid-
ered complete, as the network has acquired the correct 
associations for all the responses and the behavior is con-
sistent in time. For each stimulus presented, the inhibi-
tion of the associated column of the GPi is substantial 
and robust, as well as the activity in the thalamus and 
PMC, because Go pathway activation is massive for the 
correct response and inhibited for the other responses.

5.2  BG in pathological conditions
PD is associated with a decrease in the production of 
DA in the SNc, which affects the normal behavior of the 
BG [39]. In our model, the reduction of DA has been 
achieved by decreasing DAergic neurons firing rate, to 
reduce the dynamic range of the DA signal on the stria-
tum. Dynamic range is critical for learning appropri-
ate Go/NoGo representations from error feedback, as 
network weights are adjusted based on the differences 
in activity states in the two phases of network settling. 

Because tonic DA levels are low, PD networks have an 
overall propensity for NoGo learning, and Go learning 
is degraded because limited amounts of available DA 
reduce the potency of phasic bursts.

The simulation structure has been set up taking a look 
at clinical findings. In recent years, the Movement Dis-
orders Society (MDS) identified three PD phases: pre-
clinical, prodromal, and clinical PD. The preclinical phase 
and the prodromal phase are considered pre-diagnostic 
PD. The preclinical stage starts from the onset of neuro-
degeneration to the appearance of nonmotor symptoms; 
the prodromal stage represents the time interval from 
the onset of nonmotor symptoms to the appearance of 
motor symptoms (bradykinesia, rigidity, resting tremor); 
the clinical stage starts from the appearance of the motor 
symptoms to the death [40].

PD develops up to 30 years at the preclinical stage 
without manifestations of motor disorders. Neuropatho-
logical evidence suggests that motor symptoms only 
emerge with 60–80% depletion of DA in the striatum 
[41] (Fig.  7A) and 40–60% of neurons in the substantia 
nigra (SN) have been lost (Fig. 7B). The absence of motor 
symptoms until after a major degradation of the nigros-
triatal dopaminergic system is due to neuroplasticity, 
which compensates for the failure of degenerating neu-
rons [42].

In addition, Grosch et  al. [43] claim that the loss of 
DAergic striatal nerve terminals at motor symptoms 
onset is rather difficult to determine. They provide a 
regression analysis to estimate the proportion of lost stri-
atal DAergic neurons at the onset of motor symptoms 

Fig. 7 Schematic representation of the pathogenesis of PD in patients and animal models. A The manifestation of progressive degradation 
of the nigrostriatal DAergic system in patients with PD as a loss of DA in the striatum to a threshold level of dopamine, which is associated 
with the onset of motor disorders. B Progressive loss of DAergic neurons in the substantia nigra when modeling preclinical and clinical stages of PD 
in mice by subcutaneous injections. Reproduced from Ugrumov [40, Fig. 1A,D]
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comparing different studies, and it goes from 39% to 51%, 
in agreement with Ugrumov [40], Greffard et  al. [41]. 
Chen et al. [9] suggest that at the time of first diagnosis 
of PD, only 30% or so of DAergic neurons and 50–60% 
of their axon terminals have been lost. In other words, 
at motor symptoms onset, the extent of loss on the stria-
tum is more profound than that of DA neurons in the SN. 
Novel animal model studies (MPTP-treated mice) sug-
gest the appearance of motor disorders with a 70–80% 
depletion of striatal DA and treated animals are strikingly 
similar in phenotype to PD patients [42, 44].

Currently, PD is diagnosed after the appearance of 
motor symptoms, generally many years after the onset 
of the neurodegeneration, when the patient is already at 
the clinical stage, reducing the efficacy of the pharma-
cological therapy. Therefore, a priority in PD research is 
to study the early stages of the disease, to diagnose the 
disease at preclinical or prodromal PD state, as it has 
many important implications. First, understanding the 
timing and sequence of pathologic changes could provide 
important clues as to the etiology and pathogenesis of 
the disease. Second, a pathophysiological understanding 
of the pre-diagnostic PD is essential for the development 
of new therapeutic strategies. And, finally, being able to 
determine that a person has PD earlier than is currently 
possible would permit the introduction of a putative 
disease-modifying therapy at a time when it could have 
more profound and long-lasting effects.

In this framework, thus, we want to explore the pro-
gressive loss of DA and observe emerging behaviors. Our 
model allows to investigate to some extent the neurobio-
logically plausible alterations in the learning process of 
motor behaviors, acting on DA content in the striatum 
through manipulation of the firing rate of the neurons in 
SNc. Among the stages of the disease, we are particularly 
interested in analyzing the behavior of the model in pre-
clinical PD conditions. For this purpose, we consider the 
degree of lesion of 20%, 30%, and 40% as a simulation of 
the preclinical stage, while 50%, and 70% for simulating 
the clinical stage of the disease, as mentioned in Sect. 4.2. 
The results reported below are obtained with the lesion 
inflicted at the beginning of training.

5.2.1  Preclinical stage
Figure  8a–d shows the learning curve in preclinical PD 
conditions. To facilitate the comparison, Fig.  8a shows 
the learning curve in healthy networks of Fig.  6. They 
show that the duration of the early phase (blue area) is 
unaffected by the extent of the lesion, while the duration 

Fig. 8 Mean learning curves (averaged over 30 networks), 
from healthy to early PD. Regarding the degree of lesion: a 0%, 
healthy (b) 20%, preclinical PD (c) 30%, early prodromal PD (d) 40%, 
prodromal PD
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of the progressing phase (yellow area) grows with it. Sup-
porting our meta-analysis of the simulations, as we relate 
the range 20%, 30%, and 40% to the prodromal and pre-
clinical stages, learning is always completed.

5.2.2  Clinical stage
Figure  9b, c shows the learning curve in the clinical 
conditions, in comparison with the healthy one shown 
in Fig.  9a. The plots show that the knee of the curve 
becomes negligible with a DA depletion level of 50%, 
disappears with a level of 70%, and that in both cases the 
networks do not complete the learning. This is consist-
ent with the observations that under those conditions 
the damage produces evident motor misbehavior. In line 

with the prediction of Frank [3, 20], the model suggests 
that persistent heavy DA depletion affects the steady 
state of the BG networks, which were impaired, and also 
results in stronger activity along the indirect pathway. 
The progressing phase (yellow area) shows an exceedingly 
enlarged duration with the largest extent of the lesion.

5.2.3  Comparison
To investigate to which extent the different stages of the 
disease affect the performance, we focused on the behav-
ior of networks in the time frame corresponding to the 
total duration of the progressing stage in healthy con-
dition, i.e., from the 31st to the 80th epoch of the sim-
ulation, as reported in Fig.  10. As the figure shows, the 
healthy networks successfully learned to perform the 
task, i.e., achieved an error smaller than 5%. In contrast, 
and within the same lapse of time, PD networks were 
impaired, with an error ranging between 13% and 72%, 
depending on the extent of the lesion (Fig. 10). The differ-
ence in the performance is statistically significant even in 
the case of preclinical and early prodromal PD networks 
(P <.0001 for all conditions) (Figs. 10, 11).

To consider to what extent the lesions impair the learn-
ing dynamic, we compared the behavior of the networks 
in terms of the total learning time, and the performance 
of the networks across the three different phases of the 
learning. For this last purpose, we consider three differ-
ent time intervals, each lasting 30 epochs of the simu-
lation, but starting at the beginning of the early, the 
progressing, and the consolidation phase of the healthy 

Fig. 9 Mean learning curves (averaged over 30 networks), for healthy 
and late PD. Regarding the degree of lesion: a 0%, healthy, b 50%, 
clinical PD, c 70%, advanced PD

Fig. 10 Learning curves in different conditions (intact network 
and different PD stages). PD networks are impaired at learning 
the task, due to impoverished phasic changes in DA in response 
to feedback. Impairment occurs also for less damaged networks
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condition, respectively. Figure  12 reports the results of 
such a comparison in terms of the total learning time, 
while Fig.  13 reports the error rates in the early, pro-
gressing, and consolidation intervals. We observed a 
significant difference in the learning times as a result of 
the DA reduction (P <.001 for all conditions). The same 
conclusion applied to the difference in both the progress-
ing and the consolidation phases (P <.0001 for all condi-
tions). In contrast, no statistically significant difference 
was observed in the performance during the early phase 
(P >.1 for all conditions).

One way to assess the symptoms of PD related to motor 
control is the slowness of movement (bradykinesia), 

which we evaluated in the model with the response time. 
Results are illustrated in Fig. 14. We found no significant 
difference between healthy and preclinical PD networks 
(P >.1), while the difference is significant in the case of 
the clinical PD networks (P <.001).

The most interesting results of the experiments were 
revealed by the statistical analysis, which showed that 
there is a statistically significant difference between 
the healthy and the preclinical PD networks, even the 
ones with the smallest lesions, except in the case of the 
response time.

To investigate the internal dynamic of the network 
with the lesion of firing rate, we analyzed the activations 
of the modules of the network within each simulation. 
We examined the evolution of the striatal activity as the 
network is incrementally damaged. The activation rate 
of the columns in the direct and indirect pathway shows 
a progressive not significant degradation as the damage 
inflicted increases. As expected, in damaged networks we 
observed that Go learning is degraded, because reduced 
DA content results in reduced activation of Go neurons, 
and NoGo learning has proceeded, leading to the disin-
hibition of GPe neurons. More interestingly, the neurons 
in STN result overexcited, leading to the disinhibition of 
GPi and not to select the response. The activity of STN is 
in the form of occasional bursts, which cause the impair-
ment of learning.

Eventually, further experiments were aimed at evaluat-
ing the effect of DA lesions during and after learning. We 
observed that damaging the networks during learning 
slightly deteriorated network performance with respect 
to the healthy condition. Instead, by damaging the net-
works after learning, as the BG response is dominated 
by strengthened cortico-striatal synapses, we observed 
that there was no significant difference with the healthy 
condition. This is consistent with the findings that PD 

Fig. 11 Average learning curves emphasized for simulated 
preclinical PD, early prodromal PD and prodromal PD

Fig. 12 Learning times for levels of lesion ranging from 0% to 70%
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patients are able to continue performing already learned 
motor tasks, although not smoothly.

6  Discussion
It is well established that dopamine in the BG plays a key 
role in several cognitive and motor functions, by facili-
tating the normal BG activity during motor control and 
acting as a reward prediction error during motor skill 
acquisition [45]. The progressive degeneration of dopa-
minergic neurons in the pars compacta of substantia 
nigra and, consequently, the dysfunction of the BG, is the 
major neuropathological change characterizing PD.

PD affects millions of people worldwide and its treat-
ment and evolution are closely tied to the time of diagno-
sis. In terms of clinical manifestation, PD causes a variety 
of motor and non-motor symptoms and signs, such as 
bradykinesia, muscular rigidity, shuffled gain, resting 
tremors, apathy, anhedonia, depression, and anxiety. 

Non-motor symptoms can appear decades before the 
cardinal motor features of PD start to appear, at which 
point the disease is eventually diagnosed [46]. As motor 
control symptoms appear after the degeneration of most 
dopaminergic neurons [40], while non-motor symptoms 
appearing during the prodromal stage could be associ-
ated with other neurological diseases, it is important to 
develop novel strategies for the early diagnosis of the 
disease.

With the aim of addressing this issue, we have inves-
tigated whether other motor abilities, such as motor 
learning, which are impaired by the disease, could be 
analyzed to achieve an early diagnosis, at least in the 
prodromal stage. We have performed this investiga-
tion through a computational approach, by developing 
a neural network mechanistic model of the BG, which 
incorporates known biological constraints and simu-
lated different degrees of dopaminergic neuron degen-
eration. The BG model incorporates the three main 
pathways subserving the BG activity: direct, indirect, 
and hyperdirect pathways.

The behavior of the network in learning a simple 
novel motor task has been analyzed, and the model 
response, in terms of neural activation, was recorded 
and analyzed. The robustness of the network to small 
perturbations of the parameters was also verified, as we 
observed no significant difference in network behavior 
for realistic changes in the neural parameters.

The analysis of the model behavior in both healthy 
and pathological conditions provides a theoreti-
cal basis for motor learning dysfunctions associated 
with the alterations of the dopaminergic system in the 
BG. Consistent with other experimental and model-
based studies, the proposed model confirms the key 
role of dopamine and its phasic changes as a reward-
ing signal in motor skill acquisition and learning of 

Fig. 13 Error rates in action selection for levels of lesion ranging from 0% to 70%: a early phase, b progressing phase, c consolidation phase

Fig. 14 Mean response time for levels of lesion ranging from 0% 
to 70%
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stimulus–response association. Furthermore, the analy-
sis of the neural activation within the network, as well 
as of the response error rate during learning, and of the 
response time of the BG model in pathological condi-
tions, provides a working hypothesis that can be tested 
experimentally and behaviorally.

We have simulated different stages of the disease by 
reducing the amount of DA through the manipulation 
of the firing rate in SNc and, thus, of its modulatory 
effects on Go and NoGo representations. According 
to the learning behavior shown by the model, even a 
small lesion in the DA system ( 20% ) impairs the ability 
of the network to learn a novel motor task, as learning 
is slowed down and the dynamic properties observed 
in the learning curves significantly differ from those 
observed for the healthy networks. This behavior sug-
gests that learning symptoms arise already at the very 
early stage of the disease. As expected, higher levels of 
DA degeneration cause more evident learning deficits.

To investigate whether the model fits the experimental 
data regarding DA depletion and motor symptoms [40], 
we have also evaluated the response time of the model 
in both healthy and pathological conditions. Obtained 
results show that motor symptoms, in terms of response 
time, arise after 50% of DA depletion, as we observed a 
significant increase in the time interval needed for select-
ing a motor response compared to the physiological 
conditions.

Taken together, these results suggest that learning abili-
ties are affected by the disease before the motor ones, 
and therefore provide an important insight into develop-
ing novel diagnostic procedures, aimed at achieving early 
detection of the disease. Indeed, diagnostic tests aimed at 
evaluating motor learning abilities besides those related 
to motor control could be useful for achieving an early 
diagnosis of PD. This, in turn, would be very beneficial in 
adopting specific and more effective therapies at the ear-
liest stages of the disease.

In summary, the results obtained provide working 
computational feedback for the hypothesis of deterio-
rated behavior in motor learning tasks since preclinical 
PD condition, which can be further tested experimentally 
and behaviorally at different scales and more granular-
ity. Also, findings give an indication that subjects should 
be tested on the execution of novel and relatively com-
plex motor tasks, and that parameters of the dynamics 
producing the movement in the learning process should 
be evaluated to differentiate between healthy and non-
healthy undiagnosed subjects not only for an early diag-
nosis, but also for assessing the stage of the disease and 
the definition of novel rehabilitation protocols and other 
treatments.

7  Conclusion
The computational study of neurodegeneration in the BG 
revealed that motor skill learning is affected by DA deple-
tion and even a small loss of DA, which may be associ-
ated with the early stage of PD, interestingly alters the 
process. The model behavior in pathological conditions, 
with different levels of simulated DA degeneration, shows 
that motor learning impairments in PD arise before the 
onset of motor control deficits, suggesting that there may 
exist abnormalities of the motor learning process, due to 
alterations in the dynamics of the neuronal populations 
included in the cortex–basal ganglia–thalamus–cortex 
network, which do not yet involve the presence of symp-
toms that normally lead to the clinical diagnosis. This 
work provides the direction for further experimental 
studies investigating learning profiles, and biological and 
behavioral parameters in learning new motor skills. The 
characterization of those parameters may represent a sig-
nificant stepping stone toward the research of the issue.
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