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Abstract 

In the field of audiology, achieving accurate discrimination of auditory impairments remains a formidable challenge. 
Conditions such as deafness and tinnitus exert a substantial impact on patients’ overall quality of life, emphasizing 
the urgent need for precise and efficient classification methods. This study introduces an innovative approach, utiliz-
ing Multi-View Brain Network data acquired from three distinct cohorts: 51 deaf patients, 54 with tinnitus, and 42 
normal controls. Electroencephalogram (EEG) recording data were meticulously collected, focusing on 70 electrodes 
attached to an end-to-end key with 10 regions of interest (ROI). This data is synergistically integrated with machine 
learning algorithms. To tackle the inherently high-dimensional nature of brain connectivity data, principal compo-
nent analysis (PCA) is employed for feature reduction, enhancing interpretability. The proposed approach undergoes 
evaluation using ensemble learning techniques, including Random Forest, Extra Trees, Gradient Boosting, and Cat-
Boost. The performance of the proposed models is scrutinized across a comprehensive set of metrics, encompass-
ing cross-validation accuracy (CVA), precision, recall, F1-score, Kappa, and Matthews correlation coefficient (MCC). 
The proposed models demonstrate statistical significance and effectively diagnose auditory disorders, contributing 
to early detection and personalized treatment, thereby enhancing patient outcomes and quality of life. Notably, they 
exhibit reliability and robustness, characterized by high Kappa and MCC values. This research represents a significant 
advancement in the intersection of audiology, neuroimaging, and machine learning, with transformative implications 
for clinical practice and care.

Keywords Neurological disorders, Auditory impairments, Deafness, Tinnitus, Multi-View Brain Networks, EEG-based 
diagnosis, Ensemble learning, Feature reduction, Diagnostic modeling

1 Introduction
Audiological disorders, including deafness and tinni-
tus, represent significant challenges to individuals and 
healthcare systems worldwide [1]. These conditions can 
lead to profound and often debilitating consequences, 
affecting auditory perception and overall quality of life. 
Deafness, complete loss of hearing, and tinnitus, the per-
ception of phantom sounds are major health concerns 
[2]. Identifying auditory disorders early is key to person-
alized treatment and better outcomes [3]. Traditional 
methods for diagnosing hearing disorders are limited due 
to subjective assessments and variability in interpreta-
tion. As a result, there is a growing interest in leveraging 
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advanced neuroimaging techniques and machine learn-
ing approaches to provide more objective and accurate 
means of diagnosis. Integrating Multi-View Brain Net-
work data with state-of-the-art machine learning algo-
rithms shows promising results [4]. This organ is the 
product of successful evolution, allowing us to perceive, 
understand, and interact with the world in ways that sur-
pass all other species [5]. The brain’s intricate network of 
neurons, synapses, and signaling pathways directs human 
cognition and behavior [6]. The brain networks are like 
a massive communication network, with interconnected 
areas constantly transmitting signals [7]. Neural net-
works sustain our consciousness, emotions, and memo-
ries, creating unique human experiences. These networks 
intricately weave together to create a tapestry that sets us 
apart as unique individuals [8]. Advanced technologies 
are crucial for neuroscience to comprehend the intrica-
cies of neural networks, such as functional magnetic 
resonance imaging (fMRI) and EEG, to peek into the 
real-time dynamics of brain activity [9]. Brain network 
analysis tools reveal how our cognitive and emotional 
faculties work. The study of connections between neu-
rons and humans provides insight into consciousness, 
self-determination, and human nature [10].

Deafness is a sensory impairment that exerts a con-
siderable impact on the organization of human brain 
networks, leading to neuroplasticity [11]. Changes in 
sensory input or experiences can trigger the brain’s reor-
ganization ability. This is especially true for individuals 
who experience hearing loss, such as those who are deaf. 
As a result, they often possess superior visual processing 
skills, including improved visual acuity, motion detec-
tion, and spatial abilities [12]. Changes in connectivity 
among different brain regions, including the left hemi-
sphere responsible for sign language processing, occur 
in patients with hearing loss due to the reorganization 
of brain networks [13]. Acknowledging sign language as 
a legitimate language significantly influences the brain 
regions that manage language processing. The cognitive 
system responsible for short-term memory and informa-
tion manipulation is often enhanced in deaf individuals 
[14]. Hearing loss can have a significant impact on social 
and emotional processing. It is widely acknowledged 
that people with normal hearing process emotional sig-
nals differently than those with hearing impairment [15]. 
Understanding neural adaptations and developing tar-
geted interventions and assistive technologies are essen-
tial to improve the quality of life for individuals with 
hearing impairments [16]. Tinnitus is a common medical 
condition that causes individuals to experience sounds in 
their ears even when there is no external auditory stimu-
lus. This condition affects millions worldwide and should 
not be taken lightly [17]. Tinnitus has many factors that 

interact in complex ways, leading to its cause. Although 
the cause may not always be clear, it is believed that alter-
ations in brain networks could play a role in its develop-
ment [18]. Any changes within the auditory system will 
undoubtedly affect its ability to hear and process sound 
effectively [19].

Machine learning in audiology is indispensable for 
the Automated Diagnosis of auditory disorders through 
Multi-View Brain Networks. With their remarkable abil-
ity to process vast amounts of data and identify intricate 
patterns, Machine Learning algorithms are highly effec-
tive in accurately and efficiently classifying auditory dis-
orders [20].

The primary objective of this study is to create a system 
that can improve the diagnosis of auditory disorders such 
as deafness and tinnitus. This is achieved by analyzing the 
complex relationships between different brain regions 
using a clustering coefficient based on triangle motifs. 
The feature reduction technique PCA is utilized to man-
age the high-dimensional nature of brain connectivity 
data. The study employs ensemble learning techniques 
to produce accurate and reliable predictive models. The 
main contributions of this work can be summarized as 
follows:

Use machine learning for early and accurate diagnosis 
of deafness and tinnitus to enhance patient outcomes 
and quality of life. Apply Multi-View data and combine 
different views in EEG data and 10 ROI to achieve bet-
ter diagnosis results. Build a Robust model by leveraging 
the strengths of ensemble learning algorithms. Assess the 
effectiveness of classification findings by evaluating pro-
posed models using a variety of metrics. Compare our 
findings results with existing state-of-the-art approaches. 
The remaining sections of this paper are arranged in the 
following: Sect. 2 provides a comprehensive overview of 
pertinent research concerning identifying auditory disor-
ders through Multi-View Brain Networks. Section 3 cov-
ers the proposed research methodology, which includes 
the creation of multi-view brain networks, exploratory 
data analysis, and data visualization. In section  5, the 
details of our experimental hypothesis modeling and 
setup are outlined. The experimental findings and results 
are detailed in Sect. 6. Section 7 gives the work conclu-
sion and recommendations for future work that can be 
implemented to achieve positive outcomes.

2  Related work
In recent years, the intersection of audiology, neuroim-
aging, and machine learning has prompted various inves-
tigations to advance the understanding and diagnosis of 
auditory disorders. A survey of relevant literature reveals 
several pertinent studies that contribute to developing 
similar methodologies.
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Chen et al. [21] explored the application of fMRI data 
in characterizing functional brain network alterations 
associated with tinnitus. Their study underscored the 
utility of resting-state fMRI data in identifying distinc-
tive connectivity patterns within the auditory networks 
of tinnitus patients.

Smith and Jones [22] conducted an extensive review of 
neuroimaging studies focused on deafness-related plas-
ticity in the auditory cortex. Their synthesis highlighted 
the remarkable capacity of the brain to reorganize neural 
pathways in response to auditory deficits, a phenomenon 
contributing to the establishment of novel diagnostic 
frameworks.

In machine learning, Li et al. [23] explored the efficacy 
of Support Vector Machines in classifying individuals 
with tinnitus based on their neuroimaging profiles. Their 
results demonstrated promising classification accuracy, 
motivating further exploration of diverse machine learn-
ing techniques as we undertake in this study.

Moreover, Johnson et  al. [24] intersects with our 
methodology by utilizing Multi-View Brain Network 
data to differentiate neurological disorders. While not 
confined to auditory disorders, their successful integra-
tion of multi-view data offers a model for a multi-modal 
approach.

EEG data were used in [25] to build a brain networks 
model and detect functional connectivity patterns for 
individuals with auditory disorders. By analyzing func-
tional connectivity in brain networks, another study 
[26] sought to differentiate between prelingually deaf 
infants with and without cochlear implants. Using a 
novel method for dividing regions of interest (ROIs), the 
study obtained significant enhancements in classification 
accuracy.

In addition, machine learning has been used to predict 
normal and pathological phenotypes from large-scale 
human brain networks by comparing various brain net-
work kernels for classification purposes [27]. Moreo-
ver, functional near-infrared spectroscopy (fNIRS) and 
machine learning have been used to differentiate indi-
viduals with and without tinnitus, with significant 
differences between tinnitus patients and controls in rest-
ing-state measures of connectivity and evoked responses 
[28]. While fMRI studies have examined brain activation 
in tinnitus patients, cognitive control, and default mode 
networks may be involved in non-auditory aspects of the 
disorder [29].

The structure of the human cerebral cortex can be 
estimated using intrinsic functional connectivity. Using 
resting-state functional connectivity magnetic reso-
nance imaging (MRI), the configuration of networks in 
the human cerebrum was investigated [30]. Local net-
works confined to the sensory and motor cortices and 

distributed networks of association regions were dis-
covered. Functional connectivity within the sensory and 
motor cortices followed topographic representations 
across adjacent areas, whereas connectivity patterns in 
the association cortex frequently exhibited abrupt net-
work boundary transitions [31]. According to another 
study, three interdependent architectural gradients 
underline the organization of intrinsic functional con-
nectivity in the human cerebral cortex. These gradients 
correlated with external versus internal information 
sources, content representation versus attentional modu-
lation, and central versus peripheral brain regions [32]. In 
addition, intrinsic functional connectivity MRI was used 
to compare rodent and human cortico-hippocampal con-
nectivity. The results demonstrated preferential connec-
tivity of sensory cortical networks in rats, as opposed to 
association cortical networks in humans [33].

Using machine learning techniques, human brain net-
works can be analyzed [34]. These techniques employ 
various algorithms, including K-Nearest Neighbor, Sup-
port Vector Machine, and Artificial Neural Network, to 
analyze brain images and identify connectivity patterns 
[35]. Machine learning methods can also be used to 
develop fMRI network inference methods, such as Brain-
NET, which quantify the contributions of various brain 
regions [36]. Deep learning techniques, such as Graph 
AuTo-Encoding (GATE), have been devised to character-
ize the population distribution of brain graphs and infer 
their relationships with human characteristics [37]. In 
addition, deep learning methods have been applied to 
classify brain networks for detecting Alzheimer’s disease 
(AD) [38]. Several statistical and machine learning link 
selection methods have been evaluated for brain func-
tional networks, resulting in better utilization of network 
representations. Multimodal neuroimaging can present 
valuable information in the diagnosis of dementia. How-
ever, the small size of complete multi-modal data limits 
the ability of representation learning. In Ref. [39], the 
authors proposed a novel framework for the AD diag-
nosis called Multimodal-Representation-Learning and 
Adversarial Hypergraph-Fusion. This framework com-
bines distribution-based GraphGAN and CNN-based 
GraphAE to extract features in the representation space. 
An adversarial strategy is utilized in modal fusion to 
improve the accuracy of AD detection. Results obtained 
on the ADNI dataset show that prior information can 
help enhance discrimination of representation learning. 
Also, adding more modalities can improve the detection 
performance.

In Ref. [40], the authors proposed a novel Consistent 
Perception Generative Adversarial Network (CPGAN) 
for semi-supervised stroke lesion segmentation. The pro-
posed CPGAN can reduce the reliance on fully labeled 
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samples. Specifically, a Similarity Connection Module 
(SCM) was designed to capture the information of multi-
scale features. The proposed SCM can selectively aggre-
gate the features at each position by a weighted sum. An 
assistant network was constructed using a consistent per-
ception strategy to improve meaningful feature represen-
tation learning to enhance brain stroke lesion prediction 
accuracy for unlabeled data. They employed the assistant 
network and the discriminator to decide whether the 
segmentation results were real or fake. The CPGAN was 
evaluated on the Anatomical Tracings of Lesions After 
Stroke (ATLAS). The experimental results demonstrated 
that the proposed network achieves superior segmenta-
tion performance.

3  Proposed research methodology
3.1  Data insights
The multi-layer brain network dataset was collected by 
Sun Yat-sen University [41]. The dataset includes three 
distinct groups, consisting of 51 deaf cases, 54 with tin-
nitus, and 42 healthy individuals. The study thoroughly 
analyzed their respective brain network function.

Resting-state EEG data can provide valuable informa-
tion on neural processes. Extracting multi-layered brain 
network datasets from this data helps us understand how 
the brain functions. Complex datasets require advanced 
analysis methods, including varied subjects, electrodes, 
and frequency bands. These data examine the brain net-
work dynamics in individuals with deafness, tinnitus, 
and those without hearing problems using 70 electrodes. 
Data acquisition and preprocessing are explained.

The dataset features nine different frequency bands, 
namely Delta, Theta, Alpha1, Alpha2, Beta1, Beta2, 
Beta3, Gamma1, and Gamma2. Pearson’s correlation 
coefficients calculate the interconnections of the elec-
trodes for each frequency band. Based on EEG data, 
the network highlights significant disparities in neural 
networks between the three subject types. The dataset 
provides vital insights into the characteristics of brain 
networks in deafness and tinnitus patients compared to 
normal controls.

3.2  Exploratory data analysis and visualization
Exploratory data analysis (EDA) is crucial in data science 
as it helps understand data patterns and gain insights. 
Visualizations and plots play a significant role in mak-
ing complex data more accessible. In this EDA, we have 
employed various visualization techniques to elucidate 
the multi-layer brain network datasets obtained from 
EEG data. Graphical representations and data visualiza-
tions are essential for transforming intricate numerical 
data into easily understandable graphics. During this 
EDA process, we have tailored these visualizations to 

meet the unique requirements and characteristics of the 
multi-layer brain network datasets.

Histograms display how connection strengths are dis-
tributed within brain networks, such as the ’alpha1’ and 
’alpha2’ connections in the normal category. These his-
tograms group connection strengths into bins to reveal 
whether the networks consist predominantly of weak or 
strong connections. This visualizes the connections in 
the brain, where varying cell sizes indicate strength and 
color intensity represents patterns like clusters. Adja-
cency matrices offer a comprehensive network topology 
view by revealing how nodes are interconnected.

The clustering coefficient, based on triangle motifs or 
transitivity, measures how tightly knit a network is [42]. It 
is calculated as shown in Eq. 1:

where Ci is the clustering coefficient of node i, Ti is the 
number of triangles node i is part of and ki is the degree 
of node i.

A node’s local clustering (per class) coefficient meas-
ures how well its neighbors are connected. It is calculated 
as shown in Eq. 2:

where Ci is the local clustering coefficient of node i, Ei is 
the number of edges between the neighbors of node i and 
ki is the degree of node i. Figure 1 shows the clustering 
coefficients for the frequency band of the three cases and 
their corresponding averages. Provides a visual represen-
tation of clustering coefficients in EEG data that can be 

(1)Ci =
2Ti

ki(ki − 1)
,

(2)Ci =
Ei

ki(ki − 1)/2
,

Fig. 1 The clustering coefficients obtained from EEG scan data 
for three different auditory diagnosis cases: ”Normal”, ”Tinnitus”, 
and ”Deafness. Each bar in the plot represents the clustering 
coefficient for a specific scan channel and a particular diagnosis case
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used as features to understand neural dynamics in audi-
tory disorders better [43].

The clustering coefficient measures how tightly con-
nected nodes are in a network, reflecting the degree of 
local connectivity in the EEG data. Across all scan chan-
nels, the ”Deafness” case tends to have slightly higher 
clustering coefficients compared to the ”Normal” and 
”Tinnitus” cases. Additionally, the ”delta” scan chan-
nel exhibits the highest clustering coefficients among all 
cases. Furthermore, scan channels ”alpha1” and ”alpha2” 
demonstrate relatively high clustering coefficients for all 
diagnosis cases. The clustering coefficients obtained from 
the EEG scan data for the three cases of auditory diagno-
sis have ignited a strong motivation to explore machine 
learning for classification. These coefficients provide a 
unique perspective on local connectivity patterns within 
the EEG data, offering insights into the intricate relation-
ships between different scan channels and diagnostic 
outcomes. The higher clustering coefficients associated 
with the ”Deafness” case across various scan channels 
hint at distinctive network properties that may indicate 
auditory disorders. This observation sparks curiosity 
about the underlying neural dynamics and its potential 
role in auditory conditions.

Moreover, the clustering coefficients shed light on the 
complex interplay between brain regions and their con-
nectivity patterns. This intricate network of connections 
can be harnessed as valuable features for machine learn-
ing models to classify auditory diagnosis cases. Variations 
in clustering coefficients between different scan channels 
highlight the potential for discriminative features that 
capture the essence of each diagnostic category. We aim 
to create accurate machine learning models that classify 
individuals by auditory diagnosis for early detection to 
get accurate treatment.

4  Ensemble learning classifiers
Identifying auditory impairments is challenging but cru-
cial to improving quality of life. Efficient classification 
methods are needed to distinguish between affected and 
healthy individuals. Ensemble learning classifiers in audi-
ology combine multiple models to improve classification 
accuracy and reduce variability and noise in auditory 
data [44, 45]. To effectively address auditory impair-
ments, classification methods must be able to identify 
and understand subtle patterns and relationships within 
the data. Ensemble learning classifiers inherently cap-
ture diversity by incorporating distinct base classifiers, 
each specialized in recognizing specific patterns within 
the auditory features [46]. By using techniques such as 
bagging, boosting, and stacking, ensemble classifiers can 
better utilize the complex nature of auditory data [47]. 
Ensemble learning classifiers can accurately diagnose and 

treat auditory impairments using multiple models, pro-
viding better care for those with auditory disorders.

Given an annotated dataset {(
−→
X i, yi)}

N
i=1 , where 

−→
X i 

represents the input features and yi is the corresponding 
target label to build the ensemble.

4.1  Extra Trees classifier
The Extra Trees classifier is known for effectively cap-
turing complex patterns within intricate datasets [48]. 
Furthermore, brain networks provide a comprehensive 
display of functional connectivity across various neu-
ral regions. The Extra Trees classifier is a random forest 
algorithm that seeks to improve diversity and generali-
zation by creating a group of decision trees [49]. It uses 
the input features and their corresponding target labels 
to build the ensemble, which involves training several 
decision trees. A single decision tree in the Extra Trees 
ensemble is grown using a random subset of features 
and training samples [50]. The splitting process aims to 
reduce the variance and overfitting inherent in individual 
trees [49]. The prediction of the tth tree is represented 
by ht(x) , which is based on the input feature vector x 
provided. The ensemble prediction for an input x is cal-
culated by averaging the predictions of all trees as pre-
sented in Eq. 3:

The variable T represents the total number of trees in the 
ensemble. To create a prediction model, several decision 
trees are generated by training them in various random 
subsets of the data. The final prediction is made by com-
bining the predictions of these trees. The randomness in 
the training process helps increase the model’s diversity 
and prevents overfitting [51]. This algorithm is simple 
and works as an ensemble. The algorithm’s simplicity 
and ensemble approach make it effective for various clas-
sification tasks, including diagnosing auditory disorders 
such as deafness, tinnitus, and normal auditory func-
tion. By enhancing the diversity among decision trees 
and considering the multi-view aspect of brain networks, 
the Extra Trees classifier holds the potential to enhance 
the accuracy and reliability of complex medical classifica-
tions. The combination of Extra Trees can lead to prom-
ising results in diagnosis.

4.2  CatBoosting classifier
The CatBoosting classifier is a tool that can identify 
complex patterns within various datasets [52]. One area 
where it has been particularly useful is in analyzing the 
multi-view nature of brain networks. This allows for a 
detailed understanding of how different parts of the brain 

(3)F(x) =
1

T

T∑

t=1

ht(x).
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are connected and function together. The CatBoosting 
classifier is designed to improve an objective function by 
creating a sequence of decision trees. It achieves this by 
repeatedly building an ensemble of decision trees. The 
main function for CatBoosting can be expressed as in 
Eq. 4:

where θ represents the model parameters, F(xi) is the 
ensemble prediction for input xi , L is the loss function 
measuring the discrepancy between predicted and true 
labels, and �(ft) is a regularization term for the t-th deci-
sion tree ft . Each decision tree is constructed by recur-
sively partitioning the feature space based on binary 
splits. The splitting process minimizes the loss function 
by determining optimal threshold values for each fea-
ture. Furthermore, CatBoosting uses a category-specific 
enhancement mechanism to effectively handle categori-
cal characteristics [53]. When building trees with Cat-
Boost, it is crucial to follow a step-by-step approach. 
Each new tree should be trained to learn the residu-
als of the previous ensemble’s predictions. This is done 
through gradient boosting, where new trees are added to 
reduce the gradient of the loss function. Combining the 
CatBoosting classifier with the multi-view approach can 
create a more accurate diagnostic model for identifying 
auditory disorders.

4.3  Gradient Boosting classifier
The Gradient Boosting algorithm is a powerful classifier 
that can detect complex patterns in complicated datasets 
[54]. Combined with the multi-view analysis of brain net-
works, it comprehensively represents functional connec-
tivity across different brain regions. Gradient Boosting 
combines weak learners to create a powerful predictive 
model [55]. The objective is to find an additive model as 
denoted in the Eq. 5:

where F(x) is the final prediction for input x, T is the total 
number of weak learners, βt is the weight assigned to 
weak learner ht(x) which represents the output of the tth 
weak learner. Gradient Boosting minimizes the difference 
between predicted and actual labels using a loss func-
tion as denoted L(y, F(x)). This is done by adding weak 
learners to the ensemble in an iterative manner. In each 
iteration, a new weak learner denoted ht(x) , is trained to 
estimate the negative gradient of the loss function related 

(4)Obj(θ) =

N∑

i=1

L(yi, F(xi))+

T∑

t=1

�(ft),

(5)F(x) =

T∑

t=1

βtht(x),

to the predictions of the current ensemble. This negative 
gradient is represented by the Eq. 6:

The weight βt is determined by minimizing the loss func-
tion when the new weak learner is presented as in Eq. 7:

where Ft−1(xi) represents the ensemble’s prediction up to 
the (t − 1)-th iteration. The ensemble prediction is then 
updated as in Eq. 8:

Gradient Boosting uses weak learners and adjusts their 
weights to create an accurate predictive model. This 
method combines the strengths of multiple learners for 
more accurate results [56]. To diagnose auditory disor-
ders effectively, use gradient boosting and multi-view 
network data in the proposed model.

4.4  Random Forest classifier
The Random Forest algorithm is a trustworthy machine 
learning technique that uses ensemble learning to achieve 
accurate classifications [57]. This classifier is essential for 
managing large and complex data, which has been widely 
used in various fields [50, 58, 59]. The Random Forest 
classifier is an ensemble learning technique that aims to 
improve the predictive accuracy and robustness of indi-
vidual decision trees [60]. The proposed algorithm con-
structs an ensemble of decision trees to make predictions. 
In a Random Forest ensemble, each decision tree is built by 
dividing the feature space using binary splits. To introduce 
randomness, only a subset of features is considered for 
each split during training. The output of a decision tree for 
a given input feature vector is denoted as ht(x) . The ensem-
ble prediction for input x is obtained by aggregating the 
predictions of all trees as presented in Eq. 3. The Random 
Forest algorithm mitigates the overfitting often associated 
with individual decision trees. The ensemble approach 
leverages the diverse perspectives of individual trees to 
improve generalization performance. By introducing ran-
domness in the feature selection process and aggregating 
the predictions, Random Forest balances bias and variance, 
leading to robust and accurate predictions.

5  Experimental modeling hypothesis
Developing a robust classification model to differenti-
ate between individuals with auditory disorders requires 
the integration of Multi-View Brain Networks. These 

(6)−
∂L(y, F(x))

∂F(x)
.

(7)βt = arg min
β

N∑

i=1

L(yi, Ft−1(xi)+ βht(xi)),

(8)Ft(x) = Ft−1(x)+ βtht(x).
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complex neural connectivity patterns captured by Multi-
View Brain Networks provide a rich source of informa-
tion for the classification process. Therefore, leveraging 
these multi-dimensional brain network representations 
can potentially build an effective and accurate classifica-
tion model. This model can distinguish between different 
auditory diagnosis classes and underlying neural mecha-
nisms associated with these conditions. This can be a sig-
nificant step in enabling early diagnosis and treatment of 
auditory disorders.

5.1  Evaluation metrics
To rigorously assess the performance and efficacy of our 
classification model, we employ a comprehensive set of 
evaluation metrics, each offering unique insights into its 
capabilities. These metrics include: 

1. Accuracy: The main measure for performance by 
computing the proportion of instances that are cor-
rectly classified and provides an overall model per-
formance.

2. Cross-validation accuracy (CVA): An important met-
ric that measures the performance of a model across 
multiple iterations of cross-validation. It ensures that 
the classification model is consistent and can make 
accurate predictions across diverse data.

3. Precision: A measure that quantifies the proportion 
of true positive predictions relative to the total posi-
tive predictions when evaluating the model’s ability 
to make accurate positive classifications.

4. Recall: The appropriate measure to evaluates the 
model’s ability to identify all actual positive instances 
by calculating the proportion of true positives identi-
fied correctly.

5. F1-score: A measure balances precision and recall by 
considering false positives and negatives, providing a 
robust measure of accuracy.

6. Kappa: A measure provides a reliable measure of 
classification understanding between the model’s 
predictions and actual labels.

7. MCC: A useful metric for imbalanced data. It meas-
ures the correlation between a model’s predictions 
and the actual labels.

8. Zero-one loss: A measures for the ratio of misclassi-
fied instances and highlights the severity of misclas-
sifications.

9. Hamming loss:A measures computes the proportion 
of incorrectly assigned labels, providing insight into 
multi-class classification accuracy.

We use Multi-View Brain Networks to classify auditory 
diagnostic cases through a hypothesis-based method-
ology. By incorporating essential metrics and diverse 

evaluation techniques, we aim to conduct a thorough 
assessment of the classification model’s effectiveness by 
leveraging a comprehensive suite of evaluation metrics 
(Table 1).

5.2  Proposed modeling: experimental setup
To create accurate classification models for individuals 
with auditory disorders, a comprehensive experimental 
setup was designed to ensure reliable and meaningful 
results. This involved fine-tuning the hyperparameters 
and optimizing the preprocessing steps to enhance the 
performance of the ensemble learning model. The study 
used extra trees, random forest, gradient boosting, and 
CatBoost due to their proven efficacy in complex classi-
fication tasks. Due to their intrinsic capacity to capture 
complex relationships within the data, these models 
were considered suitable for diagnosing auditory disor-
ders from Multi-View Brain Networks data. An essential 
step in the experimental process was to preprocess the 
raw data, improving its suitability for model training and 
evaluation. PCA was used to reduce the dimensional-
ity of brain connectivity data effectively. This technique 
reduces feature space while retaining influential patterns. 
The data were then divided into training and testing sub-
sets for model evaluation. Normalization was applied 
as an essential preprocessing step to ensure all features 
were on the same scale. This minimized the influence of 
varying scales on model performance and accelerated the 
convergence of iterative optimization algorithms. As a 
result, the training process was more efficient and effec-
tive. Table 2 shows the selected hyperparameters for each 
model after tuning.

5.3  Wilcoxon signed‑rank test
The Wilcoxon signed-rank test is a non-parametric sta-
tistical test used to determine whether there are statisti-
cally significant differences between two related or paired 

Table 1 The hypothetical formulation of the model’s evaluation 
metrics based on the classifier outputs and sample true label

Measure Mathematical formula

Accuracy Accuracy = TP+TN

Total samples

Precision Precision = TP

TP+FP

Recall (sensitivity) Recall = TP

TP+FN

F1-score F1-score = 2×Precision×recall

Precision+Recall

Kappa Kappa =
Accuracy−Expected accuracy

1−Expected accuracy

MCC MCC = TP×TN−FP×FN√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)

Zero-one loss Zero-one L = Number of Misclassified samples
Total samples

Hamming loss HL = Number of incorrect label assignments
Total number of labels
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groups or conditions [61]. It is widely used for experi-
ment evaluation purposes such as in [62–64]. This test 
is particularly useful when the assumptions of normality 
and equal variances still need to be met or when dealing 
with ordinal or non-normally distributed data. The Wil-
coxon signed-rank test compares two sets of related or 
paired observations [65]. These paired observations can 
represent measurements taken before and after an inter-
vention or any other related data points.

Hyperparameters were fine-tuned through grid search 
and cross-validation technique (K=5 folds) to optimize 
performance and improve generalization while mitigat-
ing overfitting. The combined approach of preprocess-
ing, hyperparameter tuning, and ensemble learning was 
tested. Models trained on preprocessed data with opti-
mized hyperparameters showed better performance in 
classifying individuals with auditory disorders.

6  Experimental findings and results
In audiology, it can be challenging to differentiate individ-
uals who suffer from hearing loss or tinnitus from normal 
cases. It demands careful identification and comprehen-
sive analysis, which cannot be underestimated. Patients 
suffering from auditory disorders experience a significant 
reduction in their quality of life. Therefore, it is essential 
to develop accurate and efficient classification methods. 
This study presents a novel approach that utilizes Multi-
view Brain Networks data and various ensemble learning 
technologies. Analyzing brain connectivity data obtained 
from EEG measurements can be difficult due to the many 
dimensions involved. This study effectively overcomes 
the challenge by implementing PCA. PCA can decrease 
the number of dimensions of features but also enhance 
the accuracy of the diagnosis process [66].

6.1  Classification results
Table  3 provides a comprehensive overview of the per-
formance of each of the four ensemble learning models 
per class. As an instance, the Extra Trees model indicates 

CVA rates of 89.58% for individuals with deafness and 
86.96% for those tinnitus cases. These metrics reflect 
the model’s capability to diagnose the respective classes 
accurately. Moreover, the recall values, which measure 
the model’s accuracy in correctly identifying instances 
from each class, are closely aligned with the precision 
values.

When evaluating the performance of different models, 
the F1-score is a useful metric that considers both preci-
sion and recall. Specifically, it measures how well a model 
balances correct classifications by minimizing false posi-
tives and negatives. For instance, the Gradient Boosting 
model has an F1-score of 88.22 for the deafness class, 
indicating its ability to achieve this balance effectively.

Table  4 presents the evaluation results of the pro-
posed models for classifying individuals with auditory 
disorders. The Extra Trees model demonstrated a bal-
anced performance with accuracy, precision, recall, 
and F1-score of approximately 89.5%, indicating con-
sistent accuracy across different classes. Moreover, 
CatBoost had slightly lower precision and recall values 
within the range of 89%. However, the Random Forest 
model outperformed the other models with accuracy 
and F1-score of 89.76%, accompanied by correspond-
ing precision and recall values of 89.74%. This shows 
a solid ability to minimize false positives and false 
negatives. Although Gradient Boosting had slightly 
lower metrics, it maintained competitive precision, 
recall, and F1-score scores above 89%. Also, Table  4 
displays the performance metrics that evaluate the 
effectiveness of the proposed models in handling the 
classification of auditory disorders. This analysis gives 
a complete overview of their performance. Interest-
ingly, Extra Trees had the highest Kappa and MCC 
values, reaching over 0.84. This highlights its strong 

Table 2 Hyperparameter settings for each model

Model Hyperparameters

Extra Trees N Classifiers=100
max depth=none

Random Forest N Classifiers=100
max depth=none

Gradient Boosting Learning rate=0.001
max depth=10
N Classifiers=50

CatBoost Learning rate=0.021
max depth=8
N Classifiers=100

Table 3 Classification results for each model per class

Model Class Precision (%) Recall (%) F1‑score

Extra Trees Normal 91.30 92.65 91.97

Deafness 89.58 87.16 88.36

Tinnitus 86.96 88.24 87.59

CatBoost Normal 92.54 91.18 91.85

Deafness 88.59 89.19 88.89

Tinnitus 86.86 87.50 87.18

Random Forest Normal 89.51 94.12 91.76

Deafness 92.20 87.84 89.97

Tinnitus 87.50 87.50 87.50

Gradient Boosting Normal 92.48 90.44 91.45

Deafness 87.92 88.51 88.22

Tinnitus 86.96 88.24 87.59
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ability to capture the underlying patterns accurately. 
Extra trees consistently displayed low values for zero-
one loss and hamming loss, with a score of 0.10476, 
highlighting its ability to minimize misclassifications 
across multiple classes. The Random Forest algorithm 
demonstrated exceptional performance, achieving 
Kappa and MCC values above 0.83. This highlights its 
ability to classify data and minimize prediction errors 
accurately. Even though CatBoost and Gradient Boost-
ing had slightly lower metrics than Extra Trees and 
Random Forest, they still had impressive Kappa and 
MCC values, exceeding 0.79. Furthermore, their zero-
one loss and hamming loss results were slightly ele-
vated but fell within an acceptable range. Based on the 
results, it is clear that ensemble learning models were 
successful in multiple performance metrics. In par-
ticular, Extra Trees and Random Forest demonstrated 
exceptional performance across all metrics, proving 
their ability to classify individuals with auditory disor-
ders while accurately minimizing classification errors. 
We have included mean and variance values, develop-
ing our model performance evaluation. Mean values 
provide an important direction measure, showing the 
average performance across different cross-validation 
folds. For instance, the mean classification results 
range from 89.02 to 89.75%, demonstrating our mod-
els’ consistency. Variance values provide insights into 
the spread or variability of the results, highlighting the 
stability of our proposed methodology. Low variance 
values, such as 0.00015, suggest a narrow distribution 
of performance metrics, increasing the robustness and 
reliability of our classification models. This accurate 
examination of mean and variance values enhances the 
clarity and completeness of our evaluation, contribut-
ing to a more slight understanding of our models’ per-
formance characteristics.

6.2  Proposed study findings and discussion
To accurately diagnose auditory disorders, evaluating 
the effectiveness of different methodologies is essen-
tial. Recent advancements in this field have the poten-
tial to significantly improve diagnostic and therapeutic 
approaches, ultimately leading to better patient care. Pei-
Zhen et al. [25] conducted a study using a Random For-
est algorithm-based classification model to enhance the 
precision of auditory disorder diagnoses. We performed 
a comparative analysis of our proposed methodology and 
the findings presented by Pei-Zhen et  al. in their study. 
Our results are shown in Fig. 2, where the bars and error 
indicators illustrate the superiority of our approach in 
terms of both performance and stability. Furthermore, 
our proposed model outperformed Pei-Zhen et al.’s study, 
indicating significant improvement in classification accu-
racy. This promising result could lead to the development 
of refined diagnostic frameworks and more effective 
therapeutic interventions for auditory disorders.

Table 5 compares the proposed approach and Pei-Zhen 
et al.’s method, indicating that the difference is significant 

Table 4 Comprehensive classification results for proposed models

Model Extra Trees CatBoost Random Forest Gradient Boosting

CVA (%) 89.52 89.52 89.76 89.05

Precision (%) 89.56 89.33 89.74 89.11

Recall (%) 89.52 89.29 89.76 89.05

F1-score 89.49 89.31 89.74 89.08

Kappa 0.84244 0.79155 0.83525 0.81382

MCC 0.84322 0.79363 0.83533 0.81385

Zero-one loss 0.10476 0.13810 0.10952 0.12381

Hamming loss 0.10476 0.13810 0.10952 0.12381

Mean 89.52 89.37 89.75 89.02

Variance 0.00015 0.00067 0.00031 0.00029

Fig. 2 Over 20 runs, the measures mean accuracy represented 
by bars with standard deviation as error bars for the proposed model 
and Pei-Zhen et al. using random forest classifier classification results
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with a p-value of 0.0001 and a test statistic of 210. There 
is a significant difference in performance between the 
two methods, with a test statistic of 210 and a p-value 
of 0.0001. Our approach outperforms Pei-Zhen et  al.’s 
method significantly. The test statistic reflects the mag-
nitude of this difference, and the low p-value indicates a 
high level of significance, further supporting the superi-
ority of our approach.

Table 6 provides the statistical significance of proposed 
different classifiers used in diagnosing auditory disorders 
with Multi-View Brain Network data.

It presents the outcomes of the Wilcoxon signed-rank 
test, which includes test statistics, p-values, and corre-
sponding significance classifications. This information 
sheds light on the effectiveness of each classifier and 
their differences in the diagnosis of auditory disorders. 
The comparison between the ”Random Forest” clas-
sifier and other classifiers such as ”Extra Trees”, ”Gra-
dient Boosting”, and ”CatBoost” showed statistically 
significant differences in accuracy. The test statistic was 
22.5000 with a p-value of 0.0296 for ”Extra Trees”, 0.001 
with a p-value of 0.0039 for ”Gradient Boosting”, and 
12.200 with a p-value of 0.0002 for ”CatBoost”. These 
results highlight the significant differences in diagnos-
tic performance between ”Random Forest” and each of 
these classifiers, emphasizing the critical nature of clas-
sifier selection in influencing diagnostic accuracy. On 
the other hand, the comparison between ”Extra Trees” 
and ”Gradient Boosting” resulted in a ”Not significant” 
outcome with a test statistic of 48.0000 and a p-value of 
1.0000. This implies a lack of statistically discernible dif-
ferences in accuracy between these two classifiers, sug-
gesting a certain level of similarity in their diagnostic 

performance. The comparisons between ”Extra Trees” 
and ”CatBoost” (test statistic = 4.0000, p-value = 0.0156) 
and ”Gradient Boosting” and ”CatBoost” (test statistic = 
8.0000, p-value = 0.0010) produced ”Significant” results, 
indicating significant disparities in diagnostic accuracy 
between these classifier pairs. These findings highlight 
the important impact of classifier selection on diagnos-
tic outcomes, as the choice between ”Extra Trees” and 
”CatBoost” or ”Gradient Boosting” and ”CatBoost” sig-
nificantly influences the overall diagnostic performance 
in auditory disorders. In closing, the outcomes of the 
Wilcoxon signed-rank test provide a slight understanding 
of the statistical significance underpinning the compara-
tive performance of diverse classifiers in the diagnosis of 
auditory disorders using Multi-View Brain Network data. 
The discerned ”Significant” disparities in accuracy, pre-
sented in the comparisons involving Random Forest with 
Extra Trees, Gradient Boosting, and CatBoost, highlight 
the significant differences in performing Random Forest 
compared to these classifiers. Conversely, the observed 
”Not Significant” result for the Extra Trees vs. Gradient 
Boosting pairing explains the absence of a discernible dif-
ference in accuracy, emphasizing the similarity in their 
performance. The additional ”Significant” findings for the 
Extra Trees vs. CatBoost and Gradient Boosting vs. Cat-
Boost comparisons highlight the essential role of classi-
fier selection in auditory disorder diagnosis. These results 
highlight the significance of robust statistical analyses in 
guiding the selection of the most effective models, pre-
senting a promising avenue for advancing early detection 
and personalized treatment strategies and contributing 
to reducing the quality of life for individuals with audi-
tory disorders.

7  Conclusion and future scope
The main aim of this study is to address the essential chal-
lenges associated with differentiating individuals with hear-
ing impairments, such as deafness and tinnitus, from those 
with normal hearing. The study has contributed signifi-
cantly to the field by presenting an improved approach for 

Table 5 Comparison of proposed approach vs. Pei-Zhen et al.’s 
method

Method pair Test statistic p‑value Result

Proposed vs. Pei-Zhen et al. 210 0.0001 Significant

Table 6 Wilcoxon signed-rank test results for classifier comparisons

Using Wilcoxon signed-rank test to indicate if exists a statistically significant and reliability for differences in scored accuracy of each model, according to the test 
outcomes only significant comparisons with p-value<0.5 are marked Bold

Classifier pair Test statistic p‑value Result

Random Forest vs. Extra Trees 22.5000 0.0296 Significant
Random Forest vs. Gradient Boosting 0.001 0.0039 Significant
Random Forest vs. CatBoost 12.200 0.0002 Significant
Extra Trees vs. Gradient Boosting 48.0000 1.0000 Not significant

Extra Trees vs. CatBoost 4.0000 0.0156 Significant
Gradient Boosting vs. CatBoost 8.0000 0.0010 Significant
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accurately classifying auditory disorders. We achieved this 
by using Multi-View Brain Network data and leveraging 
advanced machine learning algorithms, including Random 
Forest, Extra Trees, Gradient Boosting, and CatBoost. Our 
research findings have revealed that our proposed model 
performs exceptionally well across multiple evaluation 
metrics, such as accuracy, precision, recall, and F1-score. 
Notably, the Random Forest model has shown outstand-
ing accuracy, precision, and F1-score values, highlighting 
its effectiveness in differentiating between different subject 
groups. These promising results have the potential to revo-
lutionize the early detection and personalized treatment of 
auditory disorders, leading to better patient outcomes and 
an enhanced quality of life. Our study investigates the per-
formance of different classifiers in diagnosing auditory dis-
orders and compares them using the Wilcoxon signed-rank 
test. This statistical analysis emphasizes the importance of 
selecting the appropriate classifier for accurate diagnosis. 
The significant differences in accuracy between various 
classifiers highlight the critical need to choose the right 
model for maximizing diagnostic accuracy. In the future, 
more research can be conducted to improve this work by 
including other data sources, such as neuroimaging data or 
genetic markers, which can increase the model’s predictive 
power. Testing the model’s reliability among different pop-
ulations is also recommended to ensure its effectiveness in 
various clinical settings. As deep learning and neuroscience 
advance, there is a great opportunity to refine and enhance 
the model’s methods, which can lead to significant progress 
in audiology and auditory disorder diagnosis.

Acknowledgements
We appreciate the editorial board and reviewers feedback.

Author contributions
M.A. directed the research and planned the hypothesis as the corresponding 
author. M.A. and Y.A. meticulously conducted the experiments and produced 
the figures. Both authors actively contributed to the composition and editing 
of the manuscript. Y.A. actively contributed to experimental work, gathering 
data, creating figures, and revising manuscripts. E.M. and E.A. contributed to 
developing and improving the manuscript by collecting data, defining the 
EDA hypothesis, and improving the writing and editing article organization.

Funding
Open access funding provided by The Science, Technology & Innovation 
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank 
(EKB). Science and Technology Development Fund (STDF Egypt).

Availability of data and materials
The authors declare the source code and any additional materials are acces-
sible upon request.

Declarations

Ethics approval and consent to participate
The proposed data used in our experiments are publicly accessible data that 
are free permission to use [41]. So, there is no need for ethics approval or 
consent to participate.

Consent for publication
Not applicable.

Competing interests
The authors assert no contending interests.

Received: 21 September 2023   Accepted: 6 December 2023

References
 1. Henry JA, Reavis KM, Griest SE, Thielman EJ, Theodoroff SM, Grush LD, 

Carlson KF (2020) Tinnitus: an epidemiologic perspective. Otolaryngol 
Clin N Am 53(4):481–499

 2. Chadha S, Kamenov K, Cieza A (2021) The world report on hearing, 2021. 
Bull World Health Organ 99(4):242

 3. Jin Y, Gao Y, Guo X, Wen J, Li Z, Jin Z (2022) Earhealth: an earphone-based 
acoustic otoscope for detection of multiple ear diseases in daily life. In: 
Proceedings of the 20th annual international conference on mobile 
systems, applications and services, pp. 397–408

 4. Tang D, Li H, Chen L (2019) Advances in understanding, diagnosis, and 
treatment of tinnitus. Hearing loss:mechanisms, prevention and cure. 
Springer, Singapore, p 109–128

 5. Gesuita L, Karayannis T (2023) The beautiful brain: communicating funda-
mental neuroscience through masterpieces of art. Wiley Online Library

 6. Azizi SA (2022) Monoamines: dopamine, norepinephrine, and serotonin, 
beyond modulation,“switches’’ that alter the state of target networks. 
Neuroscientist 28(2):121–143

 7. Lindsay G (2021) Models of the mind: how physics, engineering and 
mathematics have shaped our understanding of the brain. Bloomsbury 
Publishing, London

 8. Bassett DS, Bullmore ET (2009) Human brain networks in health and 
disease. Curr Opin Neurol 22(4):340

 9. Sanei S, Chambers JA (2021) EEG signal processing and machine learning. 
Wiley, New Jersey

 10. Esfahlani FZ, Jo Y, Puxeddu MG, Merritt H, Tanner JC, Greenwell S, Patel R, 
Faskowitz J, Betzel RF (2021) Modularity maximization as a flexible and 
generic framework for brain network exploratory analysis. Neuroimage 
244:118607

 11. Zhu Y, Li X, Qiao Y, Shang R, Shi G, Shang Y, Guo H (2021) Widespread 
plasticity of cognition-related brain networks in single-sided deafness 
revealed by randomized window-based dynamic functional connectivity. 
Med Image Anal 73:102163

 12. Alencar CD, Butler BE, Lomber SG (2019) What and how the deaf brain 
sees. J Cogn Neurosci 31(8):1091–1109

 13. Dell Ducas K, Senra Filho ACdS, Silva PHR, Secchinato KF, Leoni RF, Santos 
AC (2021) Functional and structural brain connectivity in congenital deaf-
ness. Brain Struct Funct 226(4):1323–1333

 14. Guidetti G, Guidetti R, Quaglieri S (2021) Sport as a factor in improving 
visual spatial cognitive deficits in patients with hearing loss and chronic 
vestibular deficit. Audiol Res 11(2):291–300

 15. Rodger H, Lao J, Stoll C, Richoz A-R, Pascalis O, Dye M, Caldara R (2021) 
The recognition of facial expressions of emotion in deaf and hearing 
individuals. Heliyon 7(5):07018

 16. Timmer BH, Bennett RJ, Montano J, Hickson L, Weinstein B, Wild J, Fergu-
son M, Holman JA, LeBeau V, Dyre L (2023) Social-emotional well-being 
and adult hearing loss: clinical recommendations. Int J Audiol 1–12

 17. Singh A, Smith PF, Zheng Y (2023) Targeting the limbic system: insights 
into its involvement in tinnitus. Int J Mol Sci 24(12):9889

 18. Khan RA, Sutton BP, Tai Y, Schmidt SA, Shahsavarani S, Husain FT (2021) A 
large-scale diffusion imaging study of tinnitus and hearing loss. Sci Rep 
11(1):23395

 19. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus 
perception and distress is related to abnormal spontaneous brain activity 
as measured by magnetoencephalography. PLoS Med 2(6):153

 20. Wimalarathna H, Ankmnal-Veeranna S, Allan C, Agrawal SK, Allen P, 
Samarabandu J, Ladak HM (2021) Comparison of machine learning 
models to classify auditory brainstem responses recorded from children 



Page 12 of 13Ahmed et al. Brain Informatics            (2024) 11:3 

with auditory processing disorder. Comput Methods Programs Biomed 
200:105942

 21. Chen Y-C, Li X, Liu H, Long X, Liu B, Zhou F, Chen Y-F (2020) Auditory 
network alterations in tinnitus revealed by resting-state functional con-
nectivity. Neuroscience 440:77–85

 22. Smith AK, Jones KD (2018) Neuroimaging and plasticity in deafness. 
Neuroscientist 24(5):453–466

 23. Li X, Morgan PS, Ashburner J (2019) Machine learning on brain imaging 
data: a comprehensive tutorial. Neuroimage 196:485–501

 24. Johnson HJ, Paul D, Abed-Meraim K (2017) Multi-modal data fusion in 
neuroimaging: Overview and challenges. Brain Informatics 4(2):113–127

 25. Li P-Z, Huang L, Wang C-D, Li C, Lai J-H (2019) Brain network analysis for 
auditory disease: a twofold study. Neurocomputing 347:230–239

 26. Xu L, Wang C-D, Liang M-J, Cai Y-X, Zheng Y-Q (2018) Brain network 
regional synchrony analysis in deafness. BioMed Res Int 2018 1–11

 27. Kurmukov A, Dodonova Y, Zhukov LE (2017) Machine learning applica-
tion to human brain network studies: a kernel approach. In: Models, 
algorithms, and technologies for network analysis: NET 2016, Nizhny 
Novgorod, Russia, May 2016 6, pp 229–249. Springer

 28. Shoushtarian M, Alizadehsani R, Khosravi A, Acevedo N, McKay CM, 
Nahavandi S, Fallon JB (2020) Objective measurement of tinnitus using 
functional near-infrared spectroscopy and machine learning. PLoS ONE 
15(11):0241695

 29. Hu J, Cui J, Xu J-J, Yin X, Wu Y, Qi J (2021) The neural mechanisms of tin-
nitus: a perspective from functional magnetic resonance imaging. Front 
Neurosci 15:621145

 30. Thomas Yeo B, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hol-
linshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR et al (2011) 
The organization of the human cerebral cortex estimated by intrinsic 
functional connectivity. J Neurophysiol 106(3):1125–1165

 31. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, 
Roffman JL, Smoller JW, Zöllei L, Polimeni JR, et al (2011) The organization 
of the human cerebral cortex estimated by intrinsic functional connectiv-
ity. J Neurophysiol

 32. Zhang J, Abiose O, Katsumi Y, Touroutoglou A, Dickerson BC, Barrett LF 
(2019) Intrinsic functional connectivity is organized as three interdepend-
ent gradients. Sci Rep 9(1):15976

 33. Bergmann E, Zur G, Bershadsky G, Kahn I (2016) The organization of 
mouse and human cortico-hippocampal networks estimated by intrinsic 
functional connectivity. Cereb Cortex 1–16

 34. Kumar A, Tewari N, Kumar R (2021) Study towards the analytic approach 
for human computer interaction using machine learning. Int J Anal Exp 
Modal Anal 11

 35. Gowtham KM, Ganesh C, Nalawade SS, Davenport EM, Wagner B, Kim 
WH, Maldjian JA (2020) Brainnet: inference of brain network topology 
using machine learning. Brain Connect 10(8):422–435. https:// doi. org/ 10. 
1089/ BRAIN. 2020. 0745

 36. Liu M, Zhang Z, Dunson DB (2021) Graph auto-encoding brain networks 
with applications to analyzing large-scale brain imaging datasets. Neuro-
image 245:118750. https:// doi. org/ 10. 1016/J. NEURO IMAGE. 2021. 118750

 37. Ilinka I, Trivodaliev K, Kalajdziski S, Zanin M (2021) Statistical and machine 
learning link selection methods for brain functional networks: Review 
and comparison. Brain Sci 11(6):735. https:// doi. org/ 10. 3390/ BRAIN SCI11 
060735

 38. Bi X, Zhao X, Huang H, Chen D, Ma Y (2020) Functional brain network 
classification for Alzheimer’s disease detection with deep features and 
extreme learning machine. Cogn Comput 12(3):513–527. https:// doi. org/ 
10. 1007/ S12559- 019- 09688-2

 39. Zuo Q, Lei B, Shen Y, Liu Y, Feng Z, Wang S (2021) Multimodal representa-
tions learning and adversarial hypergraph fusion for early Alzheimer’s 
disease prediction. In: Pattern recognition and computer vision: 4th 
Chinese Conference, PRCV 2021, Beijing, China, October 29–November 1, 
2021, Proceedings, Part III 4, pp. 479–490. Springer

 40. Wang S, Chen Z, You S, Wang B, Shen Y, Lei B (2022) Brain stroke lesion 
segmentation using consistent perception generative adversarial net-
work. Neural Comput Appl 34(11):8657–8669

 41. Multi-view Brain Networks (2020) UCI Machine Learning Repository. 
https://doi.org/10.24432/C5JS62

 42. Arrigo F, Higham DJ, Tudisco F (2020) A framework for second-order 
eigenvector centralities and clustering coefficients. Proc R Soc A 
476(2236):20190724

 43. Kılıç B, Aydın S (2022) Classification of contrasting discrete emotional 
states indicated by EEG based graph theoretical network measures. 
Neuroinformatics 20(4):863–877

 44. Manta O, Sarafidis M, Schlee W, Mazurek B, Matsopoulos GK, Koutsouris 
DD (2023) Development of machine-learning models for tinnitus-related 
distress classification using wavelet-transformed auditory evoked poten-
tial signals and clinical data. J Clin Med 12(11):3843

 45. Lenatti M, Moreno-Sánchez PA, Polo EM, Mollura M, Barbieri R, 
Paglialonga A (2022) Evaluation of machine learning algorithms and 
explainability techniques to detect hearing loss from a speech-in-noise 
screening test. Am J Audiol 31(3S):961–979

 46. Tanveer M, Rastogi A, Paliwal V, Ganaie M, Malik A, Del Ser J, Lin C-T (2023) 
Ensemble deep learning in speech signal tasks: a review. Neurocomput-
ing 126436

 47. Mohammed A, Kora R (2023) A comprehensive review on ensemble deep 
learning: opportunities and challenges. J King Saud Univ-Comput Inf Sci 
35(2):757–774

 48. Gupta S, Arango-Argoty G, Zhang L, Pruden A, Vikesland P (2019) Identifi-
cation of discriminatory antibiotic resistance genes among environmen-
tal resistomes using extremely randomized tree algorithm. Microbiome 
7:1–15

 49. Sagi O, Rokach L (2018) Ensemble learning: a survey. Wiley Interdiscipl 
Rev Data Mining Knowl Discov 8(4):1249

 50. Ghiasi MM, Zendehboudi S (2021) Application of decision tree-based 
ensemble learning in the classification of breast cancer. Comput Biol Med 
128:104089

 51. Jiang M, Liu J, Zhang L, Liu C (2020) An improved stacking framework for 
stock index prediction by leveraging tree-based ensemble models and 
deep learning algorithms. Physica A 541:122272

 52. Hussain S, Mustafa MW, Jumani TA, Baloch SK, Alotaibi H, Khan I, Khan 
A (2021) A novel feature engineered-catboost-based supervised 
machine learning framework for electricity theft detection. Energy Rep 
7:4425–4436

 53. Rahim A, Zhong Y, Ahmad T, Ahmad S, Pławiak P, Hammad M (2023) 
Enhancing smart home security: anomaly detection and face recogni-
tion in smart home iot devices using logit-boosted cnn models. Sensors 
23(15):6979

 54. Rawat R, Mahor V, Chirgaiya S, Shaw RN, Ghosh A (2021) Analysis of 
darknet traffic for criminal activities detection using tf-idf and light gradi-
ent boosted machine learning algorithm. In: Innovations in Electrical and 
Electronic Engineering: Proceedings of ICEEE 2021, pp. 671–681. Springer

 55. Wang J, Li P, Ran R, Che Y, Zhou Y (2018) A short-term photovoltaic power 
prediction model based on the gradient boost decision tree. Appl Sci 
8(5):689

 56. Feng D-C, Liu Z-T, Wang X-D, Chen Y, Chang J-Q, Wei D-F, Jiang Z-M (2020) 
Machine learning-based compressive strength prediction for concrete: 
an adaptive boosting approach. Constr Build Mater 230:117000

 57. AlJame M, Ahmad I, Imtiaz A, Mohammed A (2020) Ensemble learning 
model for diagnosing COVID-19 from routine blood tests. Inform Med 
Unlocked 21:100449

 58. Kiangala SK, Wang Z (2021) An effective adaptive customization frame-
work for small manufacturing plants using extreme gradient boosting-
xgboost and random forest ensemble learning algorithms in an industry 
4.0 environment. Mach Learn Appl 4:100024

 59. Mishra AK, Paliwal S (2023) Mitigating cyber threats through integra-
tion of feature selection and stacking ensemble learning: the lgbm 
and random forest intrusion detection perspective. Clust Comput 
26(4):2339–2350

 60. Dumitrescu E, Hué S, Hurlin C, Tokpavi S (2022) Machine learning for 
credit scoring: improving logistic regression with non-linear decision-tree 
effects. Eur J Oper Res 297(3):1178–1192

 61. Mishra P, Pandey CM, Singh U, Keshri A, Sabaretnam M (2019) Selection 
of appropriate statistical methods for data analysis. Ann Card Anaesth 
22(3):297

 62. Ahmed MAO, Didaci L, Lavi B, Fumera G (2017) Using diversity for classi-
fier ensemble pruning: an empirical investigation. Theoret Appl Inform 
29(1–2):25–39

 63. Ahmed MA, Didaci L, Fumera G, Roli F (2015) An empirical investigation 
on the use of diversity for creation of classifier ensembles. In: Multiple 
Classifier Systems: 12th International Workshop, MCS 2015, Günzburg, 
Germany, June 29–July 1, 2015, Proceedings 12, pp. 206–219. Springer

https://doi.org/10.1089/BRAIN.2020.0745
https://doi.org/10.1089/BRAIN.2020.0745
https://doi.org/10.1016/J.NEUROIMAGE.2021.118750
https://doi.org/10.3390/BRAINSCI11060735
https://doi.org/10.3390/BRAINSCI11060735
https://doi.org/10.1007/S12559-019-09688-2
https://doi.org/10.1007/S12559-019-09688-2


Page 13 of 13Ahmed et al. Brain Informatics            (2024) 11:3  

 64. Khalifa HS, Wahhab H, Alanssari A, Khfagy MOA (2019) Fingerprint seg-
mentation approach for human identification. Appl Math 13(4):515–521

 65. Taheri S, Hesamian G (2013) A generalization of the Wilcoxon signed-rank 
test and its applications. Stat Pap 54:457–470

 66. Attallah O (2020) An effective mental stress state detection and evalua-
tion system using minimum number of frontal brain electrodes. Diagnos-
tics 10(5):292

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Synergistic integration of Multi-View Brain Networks and advanced machine learning techniques for auditory disorders diagnostics
	Abstract 
	1 Introduction
	2 Related work
	3 Proposed research methodology
	3.1 Data insights
	3.2 Exploratory data analysis and visualization

	4 Ensemble learning classifiers
	4.1 Extra Trees classifier
	4.2 CatBoosting classifier
	4.3 Gradient Boosting classifier
	4.4 Random Forest classifier

	5 Experimental modeling hypothesis
	5.1 Evaluation metrics
	5.2 Proposed modeling: experimental setup
	5.3 Wilcoxon signed-rank test

	6 Experimental findings and results
	6.1 Classification results
	6.2 Proposed study findings and discussion

	7 Conclusion and future scope
	Acknowledgements
	References


