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Abstract 

Mild cognitive impairment (MCI) is a transitional stage between normal aging and early Alzheimer’s disease (AD). The 
presence of extracellular amyloid-beta (Aβ) in Braak regions suggests a connection with cognitive dysfunction in MCI/
AD. Investigating the multivariate predictive relationships between regional Aβ biomarkers and cognitive function 
can aid in the early detection and prevention of AD. We introduced machine learning approaches to estimate cogni-
tive dysfunction from regional Aβ biomarkers and identify the Aβ-related dominant brain regions involved with cog-
nitive impairment. We employed Aβ biomarkers and cognitive measurements from the same individuals to train 
support vector regression (SVR) and artificial neural network (ANN) models and predict cognitive performance solely 
based on Aβ biomarkers on the test set. To identify Aβ-related dominant brain regions involved in cognitive predic-
tion, we built the local interpretable model-agnostic explanations (LIME) model. We found elevated Aβ in MCI com-
pared to controls and a stronger correlation between Aβ and cognition, particularly in Braak stages III–IV and V–VII 
(p < 0.05) biomarkers. Both SVR and ANN, especially ANN, showed strong predictive relationships between regional Aβ 
biomarkers and cognitive impairment (p < 0.05). LIME integrated with ANN showed that the parahippocampal gyrus, 
inferior temporal gyrus, and hippocampus were the most decisive Braak regions for predicting cognitive decline. 
Consistent with previous findings, this new approach suggests relationships between Aβ biomarkers and cognitive 
impairment. The proposed analytical framework can estimate cognitive impairment from Braak staging Aβ biomarkers 
and delineate the dominant brain regions collectively involved in AD pathophysiology.

Keywords Mild cognitive impairment, Machine learning, Amyloid-beta, Feature importance, Braak staging, 
Neuroimaging

1 Introduction
Alzheimer’s disease (AD) is a progressive illness that can 
start with no noticeable symptoms and advance to severe 
symptomatic forms [1, 2]. Mild cognitive impairment 
(MCI) is considered a transitional state between normal 
aging cognitive changes and early AD [3]. Amyloid-beta 
(Aβ) and tau are two vital hallmarks of AD, but their 
relationship with MCI is poorly understood. Therefore, 
regional Aβ biomarkers based on the tau-defined topo-
logical regions and their multivariate predictive relation-
ships with cognitive impairment are yet to be discovered.

The amyloid cascade hypothesis in AD [4, 5] pos-
tulates that the accumulation of Aβ plaques is the 
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primary event that leads to a sequence of intracellular 
neurofibrillary tangle accumulation, synaptic dysfunc-
tion, and gliosis, eventually resulting in symptomatic 
AD dementia in later stages of the disease [5, 6]. How-
ever, Aβ accumulation could be the crucial step in a 
more complicated pathophysiological process [7]. AD 
diagnosis has shifted from postmortem histopathol-
ogy to PET imaging using Aβ radiotracers, such as 
Pittsburgh Compound B (PiB) [8, 9]. Aβ accumula-
tion occurring decades before the onset of clinical 
symptoms in MCI and mild/moderate AD [10, 11] has 
driven the search for novel biomarkers [12, 13]. Braak 
staging is a method of classifying tau pathology in AD, 
with six Braak stages: I–II, III–IV, and V–VI represent-
ing the progression of tau accumulation [14, 15].

The association between regional tau accumulation 
and cognitive decline is somewhat established [16–21]. 
However, the accumulation of Aβ plaques in the topo-
graphic map of Braak staging in the MCI population 
remains unknown. Although the temporal relation-
ship between tau and Aβ accumulation is somewhat 
debatable, many studies suggest that Aβ biomarkers 
may present very early during illness. Jack et  al. [22] 
suggested that the shift from Aβ+/tau− to Aβ+/tau+ 
is linked to severe cognitive decline; however, the con-
nection between global/regional tau deposition topog-
raphy and Aβ is still unknown [23]. Several studies 
[14, 15, 24, 25] suggest that AD pathology develops in 
the Braak stages more dominantly and worsens sig-
nificantly during the illness course. We thus selected 
regional Aβ biomarkers from these Braak regions to 
estimate cognitive decline. Specifically, it is unclear 
whether regional Aβ measures have multivariate rela-
tionships with cognitive impairment and whether 
such relationships can be predicted using advanced 
machine learning (ML) algorithms. In this study, we 
chose amyloid PET over tau PET, because prior studies 
[26] suggest that amyloid biomarkers start to appear 
much earlier compared to tau biomarkers in the AD 
continuum, and we seek to characterize the multivari-
ate relationships between those early biomarkers and 
cognition using ML.

Herein, we propose machine learning approaches 
that seek to estimate the multivariate predictive rela-
tionships between Aβ biomarkers and cognitive 
impairment. We hypothesized that cognitive dysfunc-
tion can be estimated from regional Aβ biomarkers via 
ML modeling methods. We further hypothesized that 
the Aβ-related dominant brain regions involved with 
such cognitive processes can be identified by inte-
grating feature importance and predictive modeling 
methods.

2  Materials and methods
2.1  Participants
We used data from the OASIS database [27] as per our 
previous work for participant selection and image process-
ing [28, 29]. Written informed consent was obtained from 
all participants in this OASIS study following the institu-
tional review board procedure at Washington University 
in St. Louis. We used only those who underwent dynamic 
imaging of PiB for DVR analysis and selected only 60 par-
ticipants who met our in-house quality control criteria. 
Subject demographics are shown in Table 1. We included 
only AD-related MCI participants, as previously described 
[28, 30]. Individuals with other conditions such as vascular 
dementia, primary progressive aphasia, major depression, 
a history of clinically significant stroke, active neurologic 
or psychiatric illness, abnormal MRIs, and those using 
psychoactive drugs were excluded from this study [28, 
30]. The clinical dementia rating (CDR) scale was used 
to assess cognitive and functional abilities. In our study, 
MCI had a CDR [31, 32] of 0.5–1, as well as a memory box 
score of 0.5 or greater, while controls had a CDR of 0 and a 
memory box score of 0.

The mini-mental state examination (MMSE) [33] is the 
most widely used cognitive test to diagnose MCI [33, 34] 
and rule out dementia [35, 36]. It also predicts the prog-
nosis from MCI to AD [37]. The MMSE has a maximum 
score of 30, and scoring 23 or less indicates cognitive 
impairment [33, 38]. A higher risk of mortality is linked 
with a lower MMSE [39]. We employed the MMSE as a 
metric for cognitive abilities and as an output variable.

2.2  Data acquisition and processing
Data acquisition and processing were performed as per 
our previous work [28, 29]. Briefly, a bolus injection of 
[11]C-PiB was followed by Dynamic PET 3D scans that 
were acquired for more than an hour using the ECATHR 
plus 962 PET scanner or the Biograph 40 PET/CT scan-
ner. All participants got T1-weighted brain MRI using 
3T Biograph MR or 1.5T Vision, Siemens 3T TrioTim. 
Multi-atlas region Segmentation utilizing Ensembles 

Table 1 Summary of demographics of participants

MCI HC

Total (N) 33 27

Average MMSE (SD) 26.70 (2.64) 28.70 (1.64)

Females (N) 15 15

Males (N) 18 12

Age in years (SD) 77.3 (6.68) 73.3 (7.48)

Education in years (SD) 16 (3.06) 15.29 (2.26)
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of registration algorithms and parameters and locally 
optimal atlas selection (MUSE) was used for individual 
T1-MRI segmentation [28, 29, 40–42]. We quantified 
dynamic PET scans as distribution volume ratio (DVR) 
outcomes [43]. To account for partial volume effects [44], 
we applied a parallel level set (PLS) regularization-based 
partial volume correction method [45]. We leveraged 
our previously developed and validated harmonization 
approach [28, 29, 40] to harmonize multi-scanner data 
sets. We used data from all study participants to com-
pute coefficients accounting for the effect of factors such 
as site, age, and sex and applied them to each participant 
[28, 29]. After correcting for these factors, we generated 
harmonized DVRs of Braak staging regions (Table 2) and 
used them in all analyses.

2.3  ML‑based predictive modeling algorithms
This study used two ML techniques, SVR [46–48] 
and deep learning [49, 50] based ANN [51, 52] to pre-
dict MMSE. The SVR model, consistent with previous 
research [28, 29, 40, 41], was created using the sci-kit-
learn package [53, 54] in Python. We employed tenfold 
cross-validation (CV), where the data set was divided 
into ten subsets, and on each fold, the model was trained 
on those nine subsets of data and was tested on an 

entirely unseen subset. Hence, we can argue that these 
models are generalizable and can be used to train the bio-
markers of the brain regions to predict cognitive decline. 
During each fold, the training and test sets were preproc-
essed using standard scaling, with the scaler fitted to the 
training set before being transformed and applied to the 
test data. Standard scaler standardizes feature values by 
finding the z scores corresponding to each feature value 
using z = (x−µ)

s  , where x represents the feature value; µ 
and s represent the mean and standard deviation of the 
samples. The transformed training set was then fitted 
to the SVR model (Fig.  1) with a radial basis function 
(RBF) kernel [55] using optimal parameters obtained 
by Grid Search CV from the pool of the following 
hyperparameters:
C values:  2n, n = − 5, − 4, − 3, …, 13, 14
Gamma:  2n, n = − 12, − 11, …, 1, 2
Epsilon:  2n, n = − 7, − 6, …, − 1, 0
The model was optimized using mean absolute error 

(MAE) as the loss function, which was then used to 
predict the MMSE. The same SVR model designs were 
applied to each Braak stage and their combinations.

We used a consistent tenfold CV approach with 
standard scaling for the ANN model to predict the 
MMSE score. This ANN sequential model has four 
dense layers, each with a random normal kernel ini-
tializer, and was implemented on Python using Ten-
sorFlow [56] and Keras [57] with a dropout of 0.5 and 
batch normalization [58, 59] deployed after the input 
and all hidden dense layers [49]. The input layer has 
40 units, and the subsequent three hidden dense layers 
have 30, 20, and 10 units with a rectified linear acti-
vation unit (ReLU) [60–62] as the activation function. 
Our regression model uses a linear activation function 
in the output layer (Fig.  2). This model was trained 
and optimized on the training data for each fold using 
the Adam optimizer [63] and MAE as the loss func-
tion, with the starting learning rate within a range of 
0.001 to 0.05 with a step of 0.001, and chose the results 

Table 2 Brain regions of different Braak stages used in our study 
(GM: grey matter)

Braak stages Brain regions

I–II • Hippocampus and Entorhinal cortex

III–IV • Parahippocampal gyrus, Fusiform gyrus, 
Occipital fusiform gyrus, Lingual gyrus, Amygdala, 
Inferior temporal gyrus, Middle temporal gyrus, 
Temporal pole, Cingulate gyrus, and Insula

V–VI • Inferior frontal GM, Lateral frontal GM, Medial 
frontal GM, Opercular frontal GM, Parietal GM, 
Supratemporal GM, Superior temporal gyrus, 
Lateral occipital GM, Cuneus, and Calcarine cortex

Fig. 1 SVR model predicts MMSE with DVRs as feature variables. A tenfold CV was applied to the DVR and MMSE data sets. Grid Search CV is used 
for determining the optimum c, ϵ, and γ values in each fold. The SVR model used these values to fit train data and predict test set MMSE outcomes. 
The process is repeated for all tenfold data combinations
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and the feature importance values corresponding to 
the learning rate that yielded the maximum correla-
tion between the actual and predicted MMSE. We 
used a batch size of 6 and a validation split of 0.05 to 
monitor the model’s performance while training and 
avoid overfitting. An early stopping callback was used 
to stop training when the loss function reached a pla-
teau and restore ideal weights. Identical ANN models 
were used for MMSE prediction on each Braak stage 
and its combination. All the plots used in this paper 
were plotted using Matplotlib [64] and Seaborn [65] in 
Python.

It is a challenging task to understand the predictions 
made by SVR/ANN as the internal mechanisms of these 
models are complex, non-intuitive, and less interpret-
able. However, neuroimaging data sets and the devel-
opment of ML have made it possible to identify areas 
that are strongly associated with a specific trait or fea-
ture [66, 67]. Feature importance measures determine 
the significance of specific features for a given model 
by quantifying how much performance changes when a 
particular feature is randomly shuffled. Local Interpret-
able Model-Agnostic Explanations (LIME) [68] is one 
of the most comprehensive methods for feature impor-
tance [69]. It interprets which features contributed 
significantly while predicting the MMSE, providing 
insights into the relationship between the DVR values 
of the brain regions and the MMSE. It estimates the 
feature significance by approximating the predictions 
of a complex model with a simple interpretable model 
and accounts for interactions between the features. The 

feature importance with LIME is calculated using the 
LIME package in Python [70].

The LIME technique interprets predictions of a com-
plex ML model f with inputs x by locally approximating 
the model in the vicinity of the prediction. This simple 
explainable model follows the additive feature attribu-
tion [71] given by the following equation:

where z′ represents the non-zero components of per-
turbed input features z in the explanation model gǫG , 
where G is a class of potentially interpretable models, 
such that zǫ{0, 1}M , M is the number of simplified input 
features and φi representing the contribution of each fea-
ture to the output, and the sum of these weighted contri-
butions produces the final output of the model.

LIME is obtained by minimizing the function given by 
the following equation:

where L
(

f , g ,πx
)

 evaluates local fidelity by determin-
ing how inaccurately g approximates f in the locality 
defined by πx , πx being a measure of proximity between 
an instance z to x and �

(

g
)

 measures the complexity of 
the simplified model that penalizes models that are too 
complex by adding a regularization term to the optimiza-
tion function.

(1)g
(

z′
)

= φ0 +

M
∑

i=1

φizi′
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argmin
g ∈ G
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Fig. 2 ANN model predicts MMSE with DVRs as feature variables through a tenfold CV. Batch normalization and dropout are applied after each 
dense layer and ReLU activation, except for the output layer. Input dimension shape was used for the first dense layer with 40 units. The next three 
hidden layers contain 30, 20, and 10 units. The final output layer contains only one unit with a linear activation function for the regression problem
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In each fold of CV, the LIME explainer was trained in 
regression mode with ‘lasso_path’ [54] as the ‘feature_
selection’ parameter using the train data. The ‘lasso_path’ 
approach is often recommended for addressing the 
problem of highly correlated features, because it uses L1 
regularization, which can mitigate multicollinearity by 
restricting the sum of the absolute values of the coeffi-
cients of the features [72]. LIME values were then gener-
ated for each instance of the test set for all features using 
Lasso as the ‘modelregressor’. While explaining, we used 
‘num_features = 22’ with a maximum iteration of 1000, 
a tolerance of 0.1, and the best value of alpha. The best 
value of α, which controls the strength of regularization 
in the regressor, was found using ‘Grid Search CV’ from 
the scikit-learn library within [0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 
10] using Lasso as the estimator and MAE as the scoring 
hyperparameter. The mean of the absolute LIME values 
was accessed to determine the importance of each fea-
ture. The Lasso regressor includes a penalty term in its 
objective function that encourages sparsity in the selected 
features, resulting in only the most important features 
being shrunk to a lesser extent, while the less important 
features are set closer to zero. This approach can enhance 
the model’s predictive performance by reducing overfit-
ting and producing more interpretable features.

LIME generates the interpretable model by creat-
ing perturbed versions of the original data and training 
a model on the new data. Although LIME is one of the 
most stable methods [73, 74], due to the random nature 
of the sampling procedure to generate the perturbed ver-
sions, executing LIME more than once might sometimes 
result in various interpretable models and hence differ-
ent feature significance values depending on the data and 
the model used [69, 75, 76]. Hence, to obtain even more 
consistent feature significance values as a precautionary 
approach, we ran the feature importance technique three 
times with ten folds of CV, averaging the feature impor-
tance values over these repetitions. CV for the feature 
importance methods [77] can help reduce the impact of 
random sampling variability in LIME.

2.4  Statistical analysis
We used the Mann–Whitney U test [78] to compare DVR 
between control and MCI in each Braak stage. Spearman 
correlation along with associated p value was used to 
examine the relationship between MMSE and DVR and 
to determine the predictive associations between actual 
MMSE and predicted MMSE. These values were calcu-
lated using the scipy [79] library in Python. To adjust the 
statistical significance for multiple comparisons, we used 
a false discovery rate (FDR) [80] employing ‘multipletests’ 
from ‘statsmodels.stats.multitest’ in the Python library 
using the method ‘fdr_bh’.

3  Results
3.1  DVR comparison between MCI and controls
Figure  3 shows a DVR comparison between MCI and 
controls within each Braak stage. Compared to controls, 
MCI had lower DVR in Braak stages I–II (FDR-p = 0.012). 
Compared to controls, MCI had higher DVR in Braak 
stages III–IV (FDR-p = 0.008), Braak stages V–VI (FDR-
p = 0.002), and all stages combined (FDR-p = 0.007).

3.2  Associations between DVR and MMSE
Spearman’s correlation (ρ) was computed between DVR 
and MMSE in MCI and controls (Fig.  4). Correlation 
was weak in early Braak stages I–II (ρ = 0.064; FDR-
p = 0.628), whereas stronger and highly significant corre-
lation was found in later Braak stages: III–IV (ρ = − 0.424; 
FDR-p = 0.001), V–VI (ρ = − 0.440; FDR-p = 0.0004), and 
all stages combined (ρ = − 0.430; FDR-p = 0.001). Fig-
ure  5 shows correlation only in MCI, where DVR and 
MMSE associations were stronger in later Braak stages: 
I–II (ρ = 0.033; FDR-p = 0.854), III–IV (ρ = − 0.452; FDR-
p = 0.008), V–VI (ρ = − 0.482; FDR-p = 0.005), and all 
stages combined (ρ = − 0.444; FDR-p = 0.010).

3.3  ML‑based MMSE predictions
We tested whether regional DVR values could predict 
MMSE in MCI patients at different Braak Stages using our 
SVR and ANN models. Using SVR, the predicted and actual 
MMSE in MCI did not significantly correlate for Braak 
Stages I–II (ρ = 0.069; FDR-p = 0.218) (Fig. 6a). However, the 
correlation was higher for Braak Stages: III–IV (ρ = 0.547; 
FDR-p = 0.001), V–VI (ρ = 0.341; FDR-p = 0.052), and all 
stages combined (ρ = 0.583; FDR-p = 0.0004)  (panels b–d). 
Using ANN (Fig.  7), the predicted and actual MMSE in 
MCI significantly correlated in Braak Stages: I–II (ρ = 0.383; 
FDR-p = 0.0028), III–IV (ρ = 0.830; FDR-p = 2.34E−9), V–
VI (ρ = 0.759; FDR-p = 3.11E−7), and all stages combined 
(ρ = 0.924; FDR-p = 1.66E−14)  (panels a–d). The superi-
ority of ANN over SVR is confirmed by the average train-
ing and test loss of the SVR and ANN models throughout 
all 10 folds of data. The average training and test loss of the 
SVR and ANN models for each Braak stage is presented in 
Table 3. It would not be unreasonable to claim that when 
implementing Braak staging DVR to predict MMSE, the 
ANN model outperformed the SVR.  

3.4  Significant MCI predictors
We opted to focus only on the ANN model to compute 
feature significance, because the SVR model failed to 
perform well in predicting MMSE and had a smaller cor-
relation between actual and predicted MMSE, as shown 
in Fig. 6. The ANN model demonstrated a higher corre-
lation between actual and predicted MMSE, particularly 
when all Braak regions were included, as shown in Fig. 7. 
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Furthermore, because some Braak regions have fewer 
traits than others, it would be good to determine whether 
specific regions are crucial across all Braak regions. When 
all Braak regions are combined, the parahippocampal 
gyrus is the most significant MCI predictor, followed by 
the inferior temporal gyrus, hippocampus, inferior frontal 
GM, and supratemporal GM, as shown in Fig. 8.

4  Discussion
In this study, we proposed a novel multi-folded ana-
lytical framework demonstrating the multivariate rela-
tionships between Aβ DVR and cognition. We took Aβ 

DVR and cognition from the same individuals, trained 
SVR and ANN models on those data using standard 
CV techniques, and predicted cognition from Aβ DVR 
alone. Our analyses suggest that MCI had higher DVRs 
in later stages, strongly correlating to cognitive decline 
in stages III–IV and VI–V. When LIME and ANN were 
combined, the parahippocampal gyrus, inferior tem-
poral gyrus, and hippocampus were the most domi-
nant Aβ regional hubs for predicting cognitive decline. 
This suggests that these regions may play a key role 
in early AD mechanisms. Our approach is crucial for 
Aβ biomarker research for early detection of cogni-
tive decline and aids in advancing computer-assisted 

Fig. 3 Boxplots and scatterplots of Aβ DVR comparison between mild cognitive impairment (MCI) and controls in different Braak stages (*: 
FDR-p < 0.05)
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diagnostic ML approaches. These approaches are dif-
ferent, and the results are promising compared to the 
established Aβ analysis approaches and related pat-
terns [9, 81].

4.1  Regional Aβ accumulation as a sensitive biomarker 
for disease progression

The clear difference between DVR in controls and MCI 
at different Braak stages supports our hypothesis that 
regional Aβ accumulation is a critical and sensitive bio-
marker for disease progression compared to other estab-
lished biomarkers [82]. The effect of neuropathological 
changes on cognitive decline in MCI is complex, and the 
transition from normal cognition to MCI is complicated 
by several factors, including age, genetic predisposition 
[11, 83], and cognitive reserve [84]. It is well-established 
that the hippocampus and entorhinal cortex, which 

represent the topographic areas of Braak stages I–II, 
are the first to show significant alterations with cogni-
tive decline in the form of neurofibrillary tangles [14, 85, 
86] and atrophic changes [87]. The hippocampus and its 
impaired functional roles with other brain regions are 
widely reported in MCI [88]. Other brain regions in the 
Braak stages have also shown broad functional relation-
ships with cognition in health and MCI [89–93].

4.2  ML analysis of Aβ accumulation and cognitive function
The significant correlation between MMSE and DVR, 
especially in later Braak stages III–VI of MCI, further 
supports the hypothesis that more Aβ accumulation 
leads to worse cognitive outcomes, eventually leading 
to a higher risk of developing AD dementia. This corre-
lation might also help clarify the relationships between 
Aβ accumulation and tau and their mutual effect on 

Fig. 4 DVR of various Braak stages correlates with MMSE in MCI and controls. a Has a weak positive correlation for Braak I–II, while (b–d) have 
a negative correlation for III–IV, V–VI, and all stages combined (FDR-p < 0.05). Linear fit (solid line) and 95% confidence interval (shadowed area) are 
shown
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cognitive abilities and disease progression in later stages 
of the disease, i.e., symptomatic AD. The correlation 
between DVR and MMSE was weak in the early Braak 
stage I–II spatial distribution. Surprisingly, controls 
showed slightly higher DVR than MCI at this stage, 
albeit with a small effect size. This finding may be attrib-
uted to some controls being on the borderline of meet-
ing the clinical diagnosis of MCI or transitioning to the 
MCI phase. Using ANN and SVR models, we reliably 
predicted cognitive impairment in the MCI population 
starting at Braak stages III–IV. The success of these mod-
els in predicting MMSE based on DVR at different Braak 

stages is a highly promising proof-of-concept approach. 
These results highlight the significance of ML algorithms 
in understanding and diagnosing AD pathophysiology, 
which supports previously published work on the reli-
ability of ML models [94, 95].

4.3  ML‑based feature importance
Using the combination of ANN and LIME methods, 
we determined the significance of Braak staging brain 
regions, and it was found that the parahippocampal 
gyrus, inferior temporal gyrus, and hippocampus Aβ 
biomarkers were the top three significant features for 

Fig. 5 DVR of various Braak stages correlate with MMSE in MCI. Plot (a) has a weak positive correlation for Braak I–II, while (b–d) have a negative 
correlation for III–IV, V–VI, and all stages combined (FDR-p < 0.05). Linear fit (solid line) and 95% confidence interval (shadowed area) are shown
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predicting cognitive dysfunction. These findings broadly 
align with previous research indicating that alteration in 
the parahippocampal gyrus and hippocampus is an early 
biomarker of AD [96–100]. The inferior temporal gyrus 
region has been also previously linked with MCI or early 
AD [101–104]. To determine the most reliable and robust 
regional Aβ features for precise MCI prediction, assess-
ing the feature importance across multiple models and 
data sets is crucial, especially with larger data sets.

4.4  Limitations and future work
ML approaches typically require larger sample sizes 
for robust results. However, with our proof-of-concept 

approach, we were able to generate clear predictions 
and outcomes with a relatively small sample size. As a 
result, we anticipate strong findings in future studies 
with larger sample sizes. While using ML algorithms in 
only Braak staging regions may limit the generalization 
of Aβ accumulation as a predictor of cognitive abilities, 
combining other regions can enhance the ability to pre-
dict cognitive dysfunction in individuals with MCI and 
other populations. By incorporating additional brain 
regions, such as those involved in memory and execu-
tive functioning, we may improve our predictive models’ 
accuracy and robustness. The PET scans we studied were 
obtained from only two sites. The future studies should 

Fig. 6 Positive correlation between predicted and actual MMSE in MCI using SVR modeling. While the correlation in (a) was weak, there 
was statistical significance (FDR-p < 0.05) in (b–d), especially all stages combined (d) had a stronger correlation. The linear fit (solid line) and 95% 
confidence interval (shadowed area) are shown
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also focus on considering a larger number of features, 
including voxel measures, and associated dimensional 
reduction techniques, and studying tau PET and other 
imaging modalities from a larger number of sites. These 
approaches might increase the reliability of the findings 
from multiple aspects of AD mechanisms.

5  Conclusion
Our findings demonstrate a significant difference in 
Aβ accumulation between MCI and controls, particu-
larly in the later stages of the spatial distribution of 
Braak stages. The strong association between Aβ DVR 
and cognitive dysfunction highlights the importance 

Fig. 7 Positive correlation between predicted and actual MMSE in MCI using ANN modeling. While the correlation in (a) was weak, there 
was statistical significance (FDR-p < 0.05) in (b–d), especially all stages combined (d) had a stronger correlation. The linear fit (solid line) and 95% 
confidence interval (shadowed area) are shown

Table 3 Training and test losses of the SVR and ANN models for 
each Braak stage regions

Braak regions SVR model ANN model

Training Test Training Test

I–II 1.47 2.24 1.94 2.02

III–IV 1.18 1.66 1.03 1.06

V–VI 1.35 2.12 1.22 1.34

Combined 1.01 1.53 0.76 0.83
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of Aβ as a biomarker for MCI. The most important 
Braak regions associated with cognitive impairment 
were carefully identified by combining LIME feature 
significance and ANN techniques. This integration 
offers a promising  strategy for comprehending the 
links between regional Aβ biomarkers and cognitive 
impairment. Our approach highlights the ML model’s 
potential in conjunction with the feature importance 
attributes in enhancing biomarker identification and 
suggests that further research utilizing these tools may 
lead to earlier diagnosis and intervention in the pro-
gression of MCI and related disorders.
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