
Koçillari et al. Brain Informatics           (2023) 10:34  
https://doi.org/10.1186/s40708-023-00212-9

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Brain Informatics

Behavioural relevance of redundant 
and synergistic stimulus information 
between functionally connected neurons 
in mouse auditory cortex
Loren Koçillari1,2,3*, Marco Celotto1,2,4, Nikolas A. Francis5, Shoutik Mukherjee6, Behtash Babadi6, 
Patrick O. Kanold7 and Stefano Panzeri2* 

Abstract 

Measures of functional connectivity have played a central role in advancing our understanding of how information 
is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant 
functional connectivity, which involves determining when activity is similar across different sites or neurons. However, 
recent research has highlighted the importance of also identifying synergistic connectivity—that is, connectivity 
that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and syn-
ergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimina-
tion task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded 
with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Informa-
tion Decomposition to quantify the amount of redundant and synergistic information about the presented sound 
that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally 
connected pairs present proportionally more redundant information and proportionally less synergistic information 
about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, 
synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, 
redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron 
pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms 
but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy 
reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These 
results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advan-
tage it offers for information propagation, and also suggest a role of synergy in enhancing information level dur-
ing correct discriminations.
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1 Introduction
Functional connectivity (FC) has emerged as a main-
stream concept and a fundamental tool for understand-
ing how brain networks process and communicate 
information, and how functional interactions between 
networks or between neurons shape the dynamics and 
function of the brain [1–10]. Traditional measures of FC 
have mainly focused on redundant connectivity, by meas-
uring (for example, through linear cross-correlations) the 
similarity of activity between different sites. However, 
recent studies have begun to highlight the importance of 
another notion of FC: synergistic connectivity [11–15]. 
This notion of connectivity focuses on how variations 
of the interaction between activity at different sites or 
between activity of different neurons create information 
that is not present at each site or in each neuron alone 
[4, 14–16]. Whilst the presence and merits of redundant 
connectivity have been extensively documented [1, 3, 
17, 18], it remains unclear whether synergistic interac-
tions are prominent and how they contribute to cognitive 
function.

Correlated activity is present in multiple spatial scales, 
from brain areas to local networks. Consequently, 
an additional question pertains to the spatial scale at 
which both redundant and synergistic interactions are 
expressed. Most previous studies of FC investigated it at 
a coarse scale, such as that obtained with non-invasive 
measures of neural activity, such as fMRI or EEG, that do 
not have single-neuron resolution [19–23]. However, the 
organization of FC at the finer spatial scale of population 
recordings with single-neuron resolution is less under-
stood, and its relationship to redundancy or synergy of 
information encoding at this finer scale has been consid-
ered only seldom [24].

In this study, we address some of these open questions 
regarding synergistic and redundant FC. First, we address 
their relationship with respect to a widely used directed 
FC measure, Granger Causality (GC) [25, 26], between 
the activities of different neurons. This measure of FC is 
interesting because, unlike simple measures of FC based 
on cross-correlation, it considers not only the similar-
ity of activity but also the strength and directionality of 
information transmission. GC, as well as other measures 
implementing the Wiener–Granger Causality principle 
[27], can, in principle, capture redundant FC because the 
process of transmission entails sharing of information 
between the sending and the receiving site [28, 29]. How-
ever, it can also correspond to synergistic FC. For exam-
ple, if transmission varies across sensory stimuli, FC can 
create sensory information not available in each site indi-
vidually. Second, we use precise information-theoretic 
measures to quantify redundancy and synergy related to 
the encoding of behaviourally relevant sensory variables 

(in this case, features of auditory stimuli). These meas-
ures, based on the theory of Partial Information Decom-
position (PID) [30, 31], have the advantage of separating 
redundancy from synergy, something that simpler meas-
ures [32] used in recent studies [33, 34] cannot achieve. 
Third, we study synergistic and redundant stimulus infor-
mation with single-neuron resolution, using the primary 
auditory cortex (A1) of the mouse brain as an experimen-
tal model. Fourth, we explore the potential impact of syn-
ergy and redundancy on sensory processing by studying 
how they vary between cases of correct and incorrect 
perceptual discrimination.

Part of this work has been presented at the 16th Inter-
national Conference of Brain Informatics and published 
as a conference paper [35].

2  Experimental task and single‑neuron stimulus 
information

To investigate the relationship between FC and the pres-
ence of synergistic and redundant information with 
single-neuron resolution, we focused on the activity of 
the mouse primary auditory cortex during a sound dis-
crimination task. We reanalysed a previously published 
dataset [34] in which the activity of several tens to a few 
hundreds of neurons was recorded simultaneously using 
in vivo two photon calcium imaging from A1 L2/3 neu-
rons in transgenic mice during a pure-tone discrimina-
tion task (Fig. 1A).

The experimental task was structured as follows. After 
a pre-stimulus interval of 1  s, head-fixed mice were 
exposed to either a low-frequency (7 or 9.9  kHz) or a 
high-frequency (14 or 19.8 kHz) tone for a period of 1 s. 
Mice were trained to report their perception of the sound 
stimulus by their behavioural choice, which consisted of 
licking a waterspout in the post-stimulus interval (0.5–3 s 
from stimulus onset) after hearing a low-frequency tone 
(target tones) and holding still after hearing high-fre-
quency tones (non-target tones). Calcium imaging was 
used to continuously acquire the fluorescence signals 
from individual A1 L2/3 neurons during the task with a 
sampling frequency of 30 Hz.

We used Shannon mutual information [36, 37] to com-
pute the stimulus information carried by each neuron 
about the stimulus category (low- vs high-frequency 
tones) in each imaging time frame (Fig.  1B, top plot). 
Stimulus information is defined as follows:

where i indexes the neurons and p(s, ri) denotes the 
joint probability of observing in a given trial the activity 
ri of neuron i and the value s of the stimulus variable S. 

(1)SI(S;Ri) =
∑

s∈S,ri∈R
p(s, ri)log2

p(s, ri)

p(s)p(ri)
,
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p(ri) =
∑

sp(s, ri)  and p(s) =
∑

ri
p(s, ri) are the mar-

ginal probabilities.
The activity ri of neuron i was inferred following the 

same approach described in [34]. In brief, we first decon-
volved the single-trial calcium fluorescence traces of each 
neuron to infer the spiking activity (Fig. 1B, bottom). We 
then aligned neural activity of each trial to the stimulus 
onset. We used a sliding window approach (windows of 
10 time frames with time-steps of 1 time frame) to bina-
rize the deconvolved spiking activity of each window into 
0 and 1, where 1 denotes spiking activity higher than 0. 
We then computed the time-resolved stimulus informa-
tion on these binarized neural responses using the prob-
abilities p(s, ri) obtained empirically from the data and 
plugging them into the information theoretic equations 
[38]. Finally, we subtracted the average stimulus infor-
mation computed in the pre-stimulus interval from the 
stimulus information time-courses, which enabled us to 
correct for the systematic error (or bias) in the informa-
tion estimate due to the limited number of trials [39].

Following our previous study [34], we first analysed 
the entire dataset (2792 neurons recorded from 34 ses-
sions) to identify those neurons that carried significant 

task-related information. Neurons were defined as car-
rying task-related information if they carried statistically 
significant stimulus information (defined as in Eq.  (1) 
above), significant choice information (defined as in 
Eq. (1) above but replacing the stimulus presented in the 
given trial with the behavioural choice of the animal in 
the trial), and intersection information. In brief, intersec-
tion information uses the mathematical framework of 
PID [30, 40] to quantify the amount of sensory informa-
tion encoded in neural activity that is used to inform the 
behavioural choice [41]. It satisfies a number of informa-
tion theoretic properties that would be expected of such 
a measure, including being upper bounded by the stimu-
lus information encoded in neural activity, the choice 
information encoded in neural activity and by the mutual 
information between stimulus and choice [40].

The statistical significance of each information meas-
ure was computed using a non-parametric permutation 
test at p < 0.1 on the information time-courses. We gener-
ated a null hypothesis distribution by randomly shuffling 
the associations between stimuli and neural responses, 
or between choices and neural responses, across trials 
at each time point. For each random permutation, we 

Fig. 1 Stimulus information in mouse auditory cortex during a tone discrimination task. A Mice performed a go/no-go tone discrimination task 
whilst the activity of A1 L2/3 neurons were recorded with two-photon calcium imaging. In response to a target tone (low-frequency, in orange) 
mice had to lick a waterspout and not to lick for non-target tones (high-frequency, in blue). Granger causality analysis revealed sparsely connected 
networks of cells in A1 L2/3 [34]. We classified neurons as GC (purple) and no-GC (black) depending on whether they formed a GC link. B Top: 
Example of the stimulus information time-course for a single neuron. We computed the time-resolved stimulus information as the mutual 
information between the auditory stimuli (low-/high-frequency tones) and the spiking activity across trials. Bottom: The traces of the deconvolved 
spiking activity in each trial, colour-coded based on the tone presented in each trial. The time axes are referenced based on the stimulus onset. 
C Stimulus information time-course for GC neurons (left map) and no-GC neurons (right map) in correct trials only. We then sorted the peaks 
of stimulus information for each neuron to tile the trial time. D Stimulus information for GC (in purple) and no-GC (black) neurons computed 
separately in trials with correct and incorrect choices. Full lines denote the mean across neurons, whilst the shaded areas denote the SEM 
across neurons
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selected the highest information value across all time 
windows. We then calculated the p-values based on 
how often the peaks of information in the shuffled data-
set exceeded those in the actual dataset. By considering 
the highest information value as the summary statistic 
for each trial, the p-values obtained as such are already 
adjusted for multiple comparisons across time. The 
requirement of all three non-independent tests being sat-
isfied simultaneously was empirically estimated, resulting 
in a false discovery rate of 1% [34].

We found a subset of 475/2790 neurons that transiently 
and sequentially carried significant task-relevant infor-
mation [34]. Using methods described in [26, 34] we 
next performed GC analysis on this subset of neurons. 
We selected 20 neurons per session, with peak inter-
section information exhibiting the shortest latencies. If 
more than 20 such neurons were present, the 20 with the 
shortest latencies were selected. We focused our analy-
ses on 12 out of 34 sessions that had at least 20 neurons 
with significant intersection information. We found that 
these neurons formed sparse functional networks that 
transmitted redundant task-relevant information across 
the trial time (Fig.  1A) [34]. Of these 240 neurons, 144 
formed GC connections with at least another neuron 
(out of the network of 20 neurons that has significant 
intersection information in the same session) and were 
termed GC neurons hereafter. The remaining 96 neurons, 
which did not form GC connections with any other neu-
ron, were termed no-GC neurons hereafter.

We used information-theoretic measures to quantify 
the stimulus information dynamics of individual neu-
rons. We first considered information in trials in which 
the mouse made correct perceptual discriminations. The 
stimulus information time-courses, plotted in (Fig.  1C) 
after sorting neurons by their peak information timing, 
showed sequential information coding across the popula-
tion in both GC and no-GC neurons. At peak, neurons 
had similar amounts of information in both populations, 
with the main difference being that GC neurons exhib-
ited the peak information earlier in the trial (during 
stimulus presentation), whilst no-GC neurons carried 
information later in the trial (after stimulus presentation) 
(Fig.  1C). The sequential nature of their activation sug-
gests that information is represented throughout the trial 
only at the population level, motivating our later infor-
mation analyses at the neural population level.

To investigate what aspects of neural activity may be a 
key for correct perceptual judgements, we assessed how 
information about the auditory stimulus category was 
encoded in trials in which the animal judged the sound 
stimulus either correctly or incorrectly. The average stim-
ulus information across all neurons is reported in Fig. 1D. 
Importantly, we found that the stimulus information was 

lower in incorrect than in correct trials for both GC and 
no-GC neurons across the entire trial time, suggesting 
that the stimulus information is used for the behavioural 
choice. Importantly, all information quantities computed 
during correct discriminations were calculated on ran-
dom subsets of correct trials with the same size as the 
number of incorrect trials in the same session. Due to this 
balanced sub-sampling strategy, we were able to make a 
fair comparison of the amount of information encoded in 
correct and incorrect trials and control for potential sys-
tematic errors due to limited-sampling bias [39].

3  Emergent properties of population codes 
in auditory cortex during correct and incorrect 
behaviour

We next asked how correct and incorrect behaviour 
relates to the emergent properties of population codes. 
This required computing stimulus information from 
more than 1 neuron.

As in our previous study [34], we estimated the total 
stimulus information that was jointly carried by pairs 
of neurons following a time-lagged approach (Fig.  2A). 
We first identified for each neuron the peak time of 
task-related information, i.e., the time frame when 

Fig. 2 Partial information decomposition of the time-lagged 
joint stimulus information. A Top: Schematic of the computation 
of the time-lagged joint stimulus information, defined as the mutual 
information that the neural responses of two neurons at their 
information time peaks (yellow and cyan vertical bars in the plots 
on the bottom) jointly carry about the stimulus category. Bottom: The 
stimulus information time-course (as function of peristimulus time) 
of two example neurons as a black line, and the deconvolved spiking 
activity in each trial as orange lines for the low-frequency tones 
and as a blue line for the high-frequency tones. B Left: Sketch as Venn 
diagram of the decomposition of the joint stimulus information 
into the non-negative components of synergistic (green area), 
redundant (red area), and unique (grey and white areas) information. 
The stimulus information carried by individual neurons (in yellow 
and cyan) is the sum of the redundant and unique information 
components. The bar plot on the right shows the amount of the joint 
stimulus information carried by the example pair of neurons 
in A) (black bar), the stimulus information carried by each neuron 
individually (yellow and cyan bars), the unique (grey and white bars), 
synergistic (green bar), and redundant (red bar) information
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intersection information time-courses peaked. We then 
computed the time-lagged stimulus information carried 
jointly by the activity of each pair of neurons as follows:

where p(s, ri, rj) denotes the probability of simultaneously 
observing in the same trial the value s of the stimulus cat-
egory and the joint neural responses ri and rj of neurons 
i and j measured at their respective peaks of task-related 
information.

First, following our previous work [34], we investigated 
the nature of redundant and synergistic interactions in 
pairs of neurons by computing the so-called co-infor-
mation [42], defined as the difference between the total 

(2)

SI
(

S;Ri,Rj

)

=

∑

s∈S,ri∈Ri ,rj∈Rj
p
(

s, ri, rj
)

log2
p
(

s, ri, rj
)

p(s)p
(

ri, rj
) ,

stimulus information that was jointly carried by both 
neurons (Eq.  (2)) and the sum of stimulus information 
carried by each neuron individually (Eq. (1)):

A positive value of CoInfo(S;Ri;Rj) implies that the 
pair of neurons carries more information than the sum of 
their individual information and can thus be interpreted 
as predominant synergy. Similarly, a negative value can 
be interpreted as predominant redundancy.

As in our previous study [34], on average across pairs 
of neurons we found negative co-information (indicating 
predominance of redundancy) in correct trials and posi-
tive co-information (indicating predominance of synergy) 
in incorrect trials (Fig. 3A).

(3)
CoInfo

(

S;Ri;Rj

)

= SI
(

S;Ri,Rj

)

−
(

SI(S;Ri)+ SI
(

S;Rj

))

Fig. 3 Redundancy and synergy in auditory cortex. A Redundancy and synergy computed in correct trials. From left to right: time-lagged joint 
stimulus information (Joint SI), redundancy, synergy, and co-information for GC-connected (purple) and GC-unconnected pairs of neurons (black). 
For synergy, redundancy and co-information, the top plots show values in bits and the bottom plots show values normalized by the joint stimulus 
information. B as in panel A, but in the case of incorrect trials. Bar plots show mean ± SEM across pairs. Statistics were made with a t-test (*p < 0.05, 
**p < 0.01, ***p < 0.001)
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4  Using PID to measure stimulus‑related 
synergy and redundancy in auditory cortex 
during correct and incorrect behaviour

However, the above results leave the question of how 
synergy and redundancy separately change between cor-
rect and incorrect trials unaddressed. Thus, it is not clear 
how synergy and redundancy correlate with the accuracy 
of behavioural decisions.

In fact, it has been shown that co-information conflates 
two non-negative pieces of information which properly 
and separately quantify synergy and redundancy [30]. 
Indeed, there could be cases in which co-information is 
low, but synergy and redundancy are both high and can-
cel out due to their opposing signs [43]. In simple terms, 
redundancy (the area in red in the Venn diagram in 
Fig.  2B) quantifies the amount of information that both 
neurons carry independently about the stimulus, whilst 
synergy (the area in green in the Venn diagram in Fig. 2B) 
is the amount of information that can be accessed when 
observing both neuronal responses simultaneously and is 
not carried individually by any of the two neurons. Thus, 
the previously reported results could arise in distinct 
scenarios: redundancy is higher in correct rather than in 
incorrect trials, synergy is lower in correct than in incor-
rect trials, or a combination of the two.

To determine the specific contributions of synergy 
and redundancy to the total joint information, we used 
the formalism of PID [30]. PID allows breaking down the 
joint mutual information that two or more source vari-
ables carry about a target variable into non-negative and 
interpretable pieces of information (termed information 
atoms) which quantify how information about the target 
variable is distributed amongst source variables. In the 
case of a system with two source variables and one target 
variable, PID breaks down the joint mutual information 
encoded by the two sources about the target (See Eq. (2)) 
into four non-negative information atoms [30, 44]:

where Red(S : Ri,Rj) is the redundant information (red 
area in the Venn diagram in Fig.  2B) which is present 
in both neuron Ri and neuron Rj , Syn(S : Ri,Rj) is the 
synergistic information (green area in Fig.  2B) carried 
only by the joint response of the two neurons, whilst 
Uni

(

S : Ri\Rj

)

 and Unj(S : Rj\Ri) stand for the two 
unique information components (grey and white areas in 
Fig.  2B, respectively) carried by one source variable but 
not by the other. Importantly, the four information atoms 
appearing in the right-hand side of Eq. (4) are not inde-
pendent, so that determining the value of one atom is suf-
ficient to compute all the others, as the other three can be 

(4)
SI
(

S;Ri,Rj

)

= Red
(

S : Ri,Rj

)

+ Syn
(

S : Ri,Rj

)

+ Uni
(

S : Ri\Rj

)

+ Unj
(

S : Rj\Ri

)

,

computed as linear combinations of Shannon informa-
tion-theoretic quantities and the determined atom [44].

An important insight arising from the PID is that 
CoInfo(S;Ri;Rj) given in Eq. (3) is the difference between 
the two distinct information atoms that express synergy 
and redundancy, respectively:

To compute Red(S : Ri,Rj) and Syn(S : Ri,Rj) we used 
the definition provided by [44]. Given a trivariate prob-
ability distribution P(S,Ri,Rj) , Bertschinger et al. defined 
the unique information atom as follows [44]:

which defines a constrained convex optimization prob-
lem in the space �P of trivariate probability distributions 
Q(S,Ri,Rj) with fixed marginals Q(S,Ri) = P(S,Ri) and 
Q
(

S,Rj

)

= P(S,Rj).
To numerically solve this optimization problem, we 

used the BROJA_2PID python package [45]. In this way, 
we computed the synergistic and the redundant informa-
tion that pairs of neurons carried about the stimulus.

Following [34], we labelled the neuronal pairs as GC-
connected if they shared at least one GC link and as 
GC-unconnected otherwise. We performed the stim-
ulus-related PID analysis in the two separate groups of 
GC-connected and GC-unconnected pairs of neurons in 
correct and incorrect trials.

We first performed the PID analysis in correct tri-
als for both the GC-connected and GC-unconnected 
pairs of neurons (Fig.  3A). To obtain a fair comparison 
between results in correct and incorrect trials, we per-
formed these analyses over a randomly selected sub-
sample of correct trials with the same sample size as the 
incorrect trials (results are presented as average over 100 

random subsamples). We found that the joint stimulus 
information had comparable values (0.386 ± 0.002 bits vs 
0.402 ± 0.012 bits for GC-unconnected vs GC-connected 
pairs respectively; hereafter, all results in this section 
are reported as mean ± SEM over all pairs of neurons) 
in both populations. However, GC-connected pairs had 
higher levels of redundancy (0.121 ± 0.006 bits) com-
pared to the GC-unconnected ones (0.105 ± 0.001 bits), 
whilst they had similar amounts of synergy for GC-
unconnected (0.097 ± 0.001 bits) and GC-connected 
pairs (0.093 ± 0.001 bits) respectively (Fig. 3A). Confirm-
ing the previously reported results [34], the difference 

(5)
CoInfo

(

S;Ri;Rj

)

= Syn
(

S : Ri,Rj

)

− Red
(

S : Ri,Rj

)

.

(6)Uni
(

S : Ri,Rj

)

= min
Q∈�P

IQ
(

S : Ri\Rj

)

,
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between synergy and redundancy, i.e., the co-information 
(Eq. (5)), showed a prevalence of redundant information 
in both populations, but the GC-connected pairs were 
more redundant (-0.027 ± 0.006 bits) than GC-uncon-
nected pairs (-0.007 ± 0.001 bits).

We next quantified the fraction of redundancy and 
synergy by normalizing each term with respect to the 
total joint mutual information. This is useful to discount 
any possible effect of differences in information levels 
between correct and error trials. We found that GC-con-
nected pairs had proportionally more redundancy and 
less synergy (Red = 0.292 ± 0.010, Syn = 0.239 ± 0.007), 
compared to GC-unconnected ones (Red = 0.262 ± 0.001, 
Syn = 0.261 ± 0.001) (Fig.  3A). Moreover, GC-con-
nected pairs had much more predominant redun-
dancy (−  0.053 ± 0.013) than GC-unconnected pairs 
(− 0.001 ± 0.002).

In sum, our results suggest that GC-connected pairs of 
neurons have more redundant than synergistic functional 
connections.

Next, we investigated whether higher amounts of 
redundancy and lower amounts of synergy could be 
beneficial for task performance and behavioural accu-
racy. We computed the PID in incorrect trials (Fig. 3B). 
The joint stimulus information in incorrect trials 
(0.130 ± 0.002 bits, 0.123 ± 0.014 bits for GC-unconnected 
and GC-connected pairs respectively) was only ~ 30% of 
what it was in correct trials. Redundancy in incorrect 
trials had a value of 0.010 ± 0.001 bits, 0.012 ± 0.004 bits 
for GC-unconnected and GC-connected pairs respec-
tively, which is proportionally 10 times smaller than that 
of correct trials. Synergy dropped to 0.063 ± 0.002 bits 
and 0.053 ± 0.007 bits for GC-unconnected and GC-
connected pairs respectively, proportionally only half of 
that in correct trials. Co-information showed positive 
values, i.e., more synergy than redundancy, in both GC-
unconnected (0.053 ± 0.002 bits) and GC-connected pairs 
(0.040 ± 0.007 bits). Normalized redundancy constituted 
approximately 10% of the total information, whereas nor-
malized synergy amounted to ~ 45% (Fig. 3B). We did not 
find significant differences in the normalized co-infor-
mation between GC-unconnected and GC-connected 
pairs on incorrect trials (0.382 ± 0.008 vs 0.304 ± 0.044). 
Our results suggest that only the redundant FC asso-
ciated with GC links is beneficial to correct sensory 
discrimination.

5  Predicting correct vs incorrect perceptual 
discriminations based on redundancy 
and synergy of functionally connected neurons

Given that GC-connected pairs of neurons exhibit higher 
values of normalized redundancy and lower values of 
normalized synergy during correct decisions compared 

to incorrect ones, we sought to determine whether 
redundancy or synergy is more predictive of the cor-
rectness of perceptual discriminations. We focused this 
analysis on normalized redundancy and synergy values 
to control for potential confounding effect of differences 
in joint information values between correct and incorrect 
trials.

To visualize this dependency in an intuitive way, in 
Fig.  4A we present a scatterplot (on the n = 85 pairs 
of GC-connected neurons that were used in previous 
analyses) of how normalized synergy and redundancy 
values are distributed across GC-connected pairs for 
correct and incorrect decisions. Visual inspection of 
this plot suggests that normalized redundancy values 
have a strong discrimination power, with high values of 
normalized redundancy predicting correct choices and 
low values of normalized redundancy predicting incor-
rect choices. To support this intuition with quantitative 
analyses, we used a soft-margin Support Vector Machine 
(SVM) with a linear kernel to discriminate between cor-
rect and incorrect behavioural decisions from the nor-
malized synergy and redundancy values of GC-connected 
pairs. Specifically, we used the MATLAB function fitcsvm 
with default arguments, in particular with regularization 
parameter C = 1 and optimization with the Sequential 
Minimal Optimization algorithm, and we used a leave-
one-out cross-validation procedure on the n = 85 pairs 
of GC-connected neurons. We first classified correct 

Fig. 4 Decoding behavioural decisions through normalized synergy 
and redundancy in GC-connected pairs. A We used normalized 
synergy and redundancy to classify behavioural decisions as correct 
(blue squares) or incorrect (black dots) perceptual discriminations. 
The solid orange line is the decision boundary of an SVM trained 
using both synergy and redundancy values as predictive features. 
Green and purple dashed lines are the decision boundaries of SVM 
trained using only redundancy or synergy, respectively, as a predictive 
feature. Correct decisions are characterized by clustered values 
in both synergy and redundancy, whilst incorrect decisions show 
lower redundancy values and a uniform distribution of synergy. B 
SVM cross-validated classification accuracy from 10,000 bootstrap 
samples. Colours of the distributions match the ones of decision 
boundaries in A. Statistical comparisons across different models were 
made using the Wilcoxon rank-sum test (***p < 0.001)
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vs incorrect behaviour when the SVM used both nor-
malized redundancy and synergy and found that, when 
using both features, it yielded a high classification accu-
racy of 87.60 ± 1.20% (hereafter, in this section values are 
reported as mean ± SD across 10,000 bootstrap samples) 
for correct vs incorrect decisions (Fig.  4B). The SVM 
weight corresponding to the normalized redundancy had 
a higher absolute magnitude than the one corresponding 
to the normalized synergy (magnitude of the redundancy 
SVM weight: 5.79 ± 0.05; magnitude of the synergy SVM 
weight: − 0.65 ± 0.04). These results indicate that propor-
tion of redundancy has a major predictive power for the 
correctness of behavioural decisions.

To further assess the roles of normalized synergy and 
redundancy values in predicting correct decisions, we 
used the SVM to classify error vs correct behaviour using 
each feature separately. The classifier using exclusively on 
normalized redundancy discriminated correct vs incor-
rect decisions with a high accuracy (88.28 ± 0.97%), even 
slightly higher than the classification accuracy achieved 
considering both normalized synergy and redundancy 
(Fig.  4B). In contrast, the SVM classifier relying solely 
on normalized synergy achieved a lower accuracy 
(67.98 ± 1.77%) than both the classifiers relying solely on 
synergy or on both synergy and redundancy (Fig.  4B). 
This shows that once redundancy is known, synergy does 
not add predictive power about the correctness of per-
ceptual discriminations.

6  Discussion
In this study, we teased apart the relationship between 
FC and stimulus-related synergy and redundancy with 
single-neuron resolution in the mouse auditory cortex 
during a perceptual discrimination task. We deliberately 
considered one specific, widely used type of directed 
FC measure, Granger Causality. GC is a directed meas-
ure, and as such it can disambiguate between stronger 
information transfer in one direction that the opposite 
direction. It is a data-robust linear version of the cor-
responding information theoretic quantity, Transfer 
Entropy (TE) [46]. Whilst TE has the advantage of pos-
sibly capturing non-linear information transfer and it can 
be also framed in the context of PID [28, 47], the data-
robustness of GC allows its easier application in multi-
variate settings to condition away the effects of other 
neurons [26]. Importantly for the present study, unlike 
other measures such as the Pearson correlation between 
the activity of two neurons, GC can in principle be 
related to both redundancy and synergy.

Our findings revealed that Granger FC between A1 
L2/3 neurons was accompanied by proportionally higher 
levels of redundancy and lower levels of synergy com-
pared to pairs of neurons that were not linked with a 

Granger FC. These results suggest that FC creates preva-
lent redundancy of sensory information across neurons.

Previous work has established that the sensory infor-
mation encoded by neuronal populations greatly 
decreases when animals make incorrect perceptual deci-
sions, compared to when animals make correct decisions 
[17, 48–52]. However, less is still known about how the 
interactions between neurons in a population code, and 
the patterns of synergy and redundancy that may be cre-
ated by these interactions, promote correct decisions [4]. 
Here, we made progress in this direction by studying not 
only how information levels change between correct and 
incorrect trials but also studying patterns of synergy and 
redundancy. Our results suggest that both synergy and 
redundancy coexist across the population, both when 
mice make correct or incorrect perceptual discrimina-
tions. However, we found that the levels of redundancy 
were much higher (both in absolute terms and in propor-
tion to the total information available in neuron pairs) in 
both populations when mice made correct behavioural 
choices compared to incorrect ones, whereas synergy 
values were higher in absolute terms but lower in relative 
terms during correct compared to incorrect behavioural 
choices. Moreover, the proportion of redundancy more 
reliably predicted perceptual discriminations, whilst 
the proportion of synergy had a much lower predictive 
power per se, and did not add predictive power once the 
proportion of redundancy was known.

Overall, the above results suggest that redundancy is 
highly beneficial for correct sensory judgements. The 
advantages of redundancy for perceptual discrimination 
could arise from multiple contributions. One well-docu-
mented advantage regards the integration of information 
across sites [53]. Another one could result in advan-
tages in terms of information transmission and readout. 
Indeed, whilst redundancy limits the amount of encoded 
information [54], it has benefits in terms of improving 
the propagation of information between pre- and post-
synaptic neurons [4, 17]. Together with those reported 
in previous studies [4, 17, 34], our results suggest that 
the optimal trade-off between the advantages and disad-
vantages of redundancy results in an overall advantage 
of having some degree of redundancy to secure reliable 
downstream information transmission.

Our findings confirm previous reports of significant 
synergy between the activity of neurons or networks 
[14, 15, 33]. Our finding that synergy is higher in abso-
lute terms during correct behaviour suggest that synergy 
may promote correct decisions by elevating the informa-
tion levels in correct trials. However, our observations 
of a decreased proportion of synergy during correct 
perceptual discrimination suggests that the potential 
advantage of synergy in terms of higher levels of sensory 
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information encoding may not entirely translate into an 
advantage for sensory discrimination. One possibility 
is that the interactions leading to synergistic informa-
tion may be more difficult to be read out by downstream 
computations, as they would require more sophisticated 
decoders that may be beyond the capabilities of some 
downstream neural circuits. However, given that pres-
ence of synergy has been well-documented, another 
possibility, to be explored in future studies, is that syn-
ergy may not be needed for the simple perceptual tasks 
we consider and for neurons in sensory areas, but that it 
could become more important for more complex behav-
iours or for neurons in higher level areas [14].

Together, these results establish the major importance 
of redundancy amongst neurons in sensory cortices for 
correct sensory discriminations which may be due to the 
beneficial effects that redundancy has on downstream 
information transmission. At the same time, our results 
suggest also a smaller yet useful contribution of synergy 
to correct perceptual discriminations, by enhancing 
information levels during correct behaviour.

Another important question regards how synergis-
tic and redundant FC relate to structural connectivity 
[14]. Robust and meaningful relationships have been 
established between redundant FC measured during the 
resting state and structural connectivity at the level of 
whole-brain measures that lack cellular resolution [14, 
21]. However, it remains to be understood how this ana-
tomical substrate is complemented by stimulus-depend-
ent changes in neural dynamics. The same structural 
connectivity can give rise to different patterns of func-
tional connectivity depending for example on the state 
of each node. For example, depending on the degree of 
excitability of a given node, the functional interactions 
between areas can be larger or smaller even if the ana-
tomical connections between them do not change. As a 
result, the relationship between functional and structural 
connectivity is complex [55] and changes in state of indi-
vidual nodes or on the stimulus information present in 
the inputs to some of the considered nodes can modulate 
both redundancy and synergy between anatomically con-
nected nodes. Detailed studies of realistic neural network 
models, as well as careful experiments that manipulate 
the activity of individual nodes [56], will be a key to pro-
gress in addressing these questions.

From a theoretical perspective, previous studies that 
investigated synergy and redundancy between neurons 
or networks employed a measure of co-information 
which conflates synergy with redundancy, measuring 
only their net effect [32, 34]. Our work advances the 
state-of-the-art by providing a more refined measure that 
delineates redundancy from synergy and enables sepa-
rate quantification of their relationship with both FC and 

the accuracy of behaviour. With respect to other studies 
considering redundancy and synergy, but not relating it 
to information content about variables of cognitive inter-
est [14], we made progress by measuring redundancy and 
synergy of information about variables, such as sensory 
stimuli, which have a well-defined meaning and role in 
terms of perceptual functions. We hope that our work 
will contribute to creating a neuroinformatics framework 
that can help researchers to study the patterns of synergy 
and redundancy about external stimuli and pinpoint their 
contribution to behaviour and functions. This progress 
will need to include mathematical advances in the under-
standing of the differences and complementarity between 
different possible PID formalisms. For example, the for-
malism we used here [44] breaks down information into 
non-negative parts, as in the PID original formulation 
[30, 47]. However other work is exploring the advantages 
of alternative ways to decompose information, including 
decompositions into terms that do not need to be non-
negative [57–60]. It would also be important to under-
stand the relationship between the PID-based formalisms 
and previously derived information-theoretic formal-
isms that quantify how the information in a population 
of neurons depends on the correlations of the activity 
of different neurons [32, 61–63]. These previous studies 
established important rules for how correlations between 
neurons can enhance or decrease information and 
change co-information values (for example, correlations 
can increase information and thus create synergy, when 
their strength is modulated by the stimulus). Connecting 
these formalisms will aid the understanding of how syn-
ergy and redundancy may arise in terms of basic proper-
ties of neural activity or of circuit mechanisms.

In conclusion, our study provides a framework to 
measure the behavioural relevance of synergy and redun-
dancy even with cellular resolution. The results obtained 
analysing the activity of auditory cortex with this frame-
work suggest that correct behaviour is associated with a 
predominant presence of redundant information in func-
tionally connected neural networks. Further research is 
needed to better understand the contributions of synergy 
and redundancy in different contexts.
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