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Abstract 

Random Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox pro-
portional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer’s disease (AD). 
However, RSF application in real-world clinical setting is still limited due to its black-box nature.

For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlana-
tions (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer’s Disease Neuroimag-
ing Initiative. We evaluated three global explanations—RSF feature importance, permutation importance and SHAP 
importance—and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed 
whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, 
medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.

We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demon-
strated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations 
with and without correlated variables had no substantial difference, showing that multicollinearity did not alter 
the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest con-
tribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence 
among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI 
patients’ individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clini-
cians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and inter-
pretable individual outcomes that highlights key features associated with AD prognosis.
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Graphical Abstract

1 Introduction
Alzheimer’s disease (AD) is the most common form of 
dementia among the elderly, representing 60–70% of 
the cases worldwide [1]. The diagnosis of AD consists 
in a complex assessment of clinical, neuropsychologi-
cal, cerebrospinal fluid (CSF) biomarkers and neuroim-
aging information [2]. The complexity in AD diagnosis 
increases at early stages, because symptoms could fall 
between normal aging changes and early dementia [1]. It 
has been estimated that patients affected by Mild Cogni-
tive Impairment (MCI), which is a heterogeneous condi-
tion characterized by subjective cognitive complaints, 
have a 33.6% cumulative risk to progress to AD [3]. For 
this reason, early prediction of conversion from MCI to 
AD is crucial for the management of a successful medical 
treatment.

Artificial Intelligence (AI) and Machine Learning 
(ML) reached excellent accuracy for the early diagnosis 
of AD [4–6] and for the prediction of progression from 
MCI to AD [5, 7, 8], showing also good interpretabil-
ity and explainability [9, 10]. ML algorithms used with 
these aims are supervised learning approaches—typically 
binary classifiers—which are trained on multi-modal 
data to distinguish between stable MCI patients (sMCI) 
and progressive MCI patients (pMCI), who change their 

diagnosis to AD over time [4, 9, 11]. Together with clini-
cal scales, cognitive assessment and neuropsychologi-
cal tests [12], data from neuroimaging, such as magnetic 
resonance imaging (MRI) [13], fluorodeoxyglucose 
(FDG)-positron emission tomography (PET) [14], and 
FDG-derived hypometabolic convergence index [15] 
(HCI), resulted to be accurate biomarkers to predict AD 
at different prodromal stages. Aggregation of amyloid-β 
into amyloid plaques (Aβ40 and Aβ42) and of tau into 
neurofibrillary tangles (total tau and phosphorylated tau, 
p-tau) are two CSF biomarkers typically linked to AD 
[16]. Genetic risk factors represent other important bio-
markers associated to AD, for example APOE-ε 4 allele 
accounts for 20–25% of cases [17]. All these biomark-
ers had shown high predictive power when used to train 
ML classifiers, but the weakness of classical supervised 
algorithms is that they could not handle the time-to-AD 
conversion and they do not provide any evaluation of the 
progression risk from MCI to AD. Most importantly, ML 
classification is not capable of handling right-censored 
datasets in which the event of interest is not observed for 
some subjects before the study is terminated [18].

Survival analysis is a statistic field that was born to pre-
dict the time-to-event in presence of right censoring [18]. 
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Cox proportional hazard [19] (CPH) is widely applied 
in survival studies, but it is able to deal only with small 
datasets and it does not scale well to high-dimensional 
feature space [20]. To overcome CPH weaknesses, ML 
algorithms were adapted to handle censored data so as 
to predict the time-to-event on high-dimensional and 
heterogeneous data [20, 21] with optimal performance. 
Among novel ML survival methods, those based on deci-
sion trees and in particular on Random Forests (RF) [4, 
22] provided promising results on biomedical dataset 
[23, 24]. The strength of tree-based survival models relies 
on their independence from data distribution since they 
are fully nonparametric, on their capability of handling 
multicollinearity, and on their intrinsic feature selection 
[25]. In a very recent work [26], we compared the per-
formance of three RF-based survival methods, Random 
Survival Forests (RSF) [27], Conditional Survival Forest 
(CSF) [28] and Extra Survival Trees (XST) [29], in pre-
dicting the conversion-to-AD risk on dementia biomark-
ers from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI). We found that RSF had the best prediction accu-
racy compared with CSF and XST, as well as with CPH, 
thanks to its important characteristics: robustness to out-
liers, absence of convergence issues, out-of-bag (cross-
validated) prediction that ensures no overfitting, reliable 
inference of training data, and lastly its fully nonparamet-
ric variable importance measure of features’ contribution 
to predict survival function [27]. Although RSF demon-
strated optimal performance in the prediction of con-
version-to-AD risk in several works [20, 26, 30, 31], its 
application in a real-world clinical setting to assist prog-
nosis is still limited due to its black-box nature, which 
results in poorly explainable and interpretable outcomes. 
Explainable Artificial Intelligence (XAI) and interpretable 
ML [32–34] provide solutions to this issue [9, 25, 35, 36], 
trying to unveil the black-box through model-agnostic 
methods like Local Interpretable Model-Agnostic Expla-
nations (LIME) [37] and SHapley Additive exPlanations 
(SHAP) [38].

Although LIME and SHAP are usually applied for clas-
sification problems, SHAP was recently used also for 
the investigation of ML survival analysis methods, as 
for example in a breast cancer survival study [39], and 
in works for the survival prediction of anaplastic thyroid 
carcinoma [40] and of heart failure [41], but it was never 
used for the survival analysis of dementia. For this rea-
son, in the present study we applied SHAP method to 
investigate both global and local explanations of RSF in 
the prediction of conversion-to-AD risk within 4  years. 
We used CPH as benchmark for performance and we 
increased the feature space of our recent work [26] with 
further well-known biomarkers from ADNI. First, we 
provided an overall analysis of RSF variable importance 

in comparison with permutation importance [42] and 
SHAP feature importance, to investigate the stability 
and robustness of the survival model on training set. We 
quantitatively compared these three variable rankings 
through the Rank-Biased Overlap (RBO) [43], a similar-
ity measure between rankings that has been employed 
also to estimate the percentage overlap between fea-
ture importance [35]. We applied an automatic variable 
selection on the three different importance measures 
to confirm or reject recent literature that revealed no 
improvement in survival methods performance when 
feature selection is applied [23, 39]. As further analysis, 
we investigated whether multicollinearity among vari-
ables may perturb the explanations and with this aim we 
built two SHAP explainers with and without correlated 
features. Finally, we stratified pMCI test subjects in three 
risk grades—high, medium and low—according to the 
RSF predicted risk score and we explored the SHAP local 
explanations of one pMCI patient per risk grade together 
with one sMCI patient.

2  Related works
Survival analysis with ML algorithms is a relatively novel 
field and very few works investigated its application on 
dementia data for predicting conversion risk from MCI 
to AD [20, 21, 30, 31, 44, 45]. Orozco-Sanchez et al. [21] 
proposed a unified approach for the study of ML Cox 
models applied on MCI patients data from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database, 
with more than 300 quantitative MRI (qMRI) features. 
They trained four Cox regression models with differ-
ent strategies for feature selection. The best model was 
the Penalized Cox Regression (Coxnet), which reached a 
c-index of 0.84 (95% CI 0.82–0.86).

Performance of Cox model was compared with a deep 
learning-based (DeepHit) method by Nakagawa et  al. 
[44] on brain gray matter volumes of MCI patients from 
ADNI database. Their proposed model consisted in a 
deep neural network based on a Weibull distribution, 
which achieved a concordance index of 0.835, higher 
than the value 0.75 of the traditional standard Cox pro-
portional hazard model.

Spooner et al. [20] performed a survival analysis for the 
prediction of conversion-to-AD risk on two dementia 
datasets, the Sydney Memory and Ageing Study (MAS) 
and the ADNI. The feature space consisted in demo-
graphics, genetic data, cognitive assessments, neuropsy-
chological scores and other heterogenous information. 
They compared the prediction performance of ten ML 
survival approaches on such high-dimensional data-
sets, and they found that best accuracy on MAS and 
ADNI were, respectively, 0.82 with a Cox model with 
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likelihood-based boosting and 0.93 with an ElasticNet, 
while the penalized Cox regression model had the worst 
performance on both datasets.

In the work of Mirabnahrazam et  al. [45], a deep 
learning-based survival model (DeepSurv) was applied 
to estimate the time-to-conversion to AD on ADNI 
data, including demographics, cognitive tests, genetic 
data, cerebrospinal fluid biomarker and MRI measures. 
DeepSurv is a model that extends the classic CPH, and it 
showed an accuracy of 0.831 on a subset of most impor-
tant features.

In a very recent work, Musto et al. [30] compared the 
performance of Survival Random Forest (SRF) CPH and 
Survival Deep Hit Neural Networks (SNN), in predict-
ing time-to-AD diagnosis on heterogenous data from 
ADNI, such as demographics, MRI, CSF and PET data. 
They demonstrated the superiority of SRF, which had on 
MCI patients an accuracy of 0.84, while CPH and Deep 
Hit reached, respectively, 0.78 and 0.83. The optimal 
performance of Random Survival Forests (RSF) was also 
demonstrated in another very recent work by Song et al. 
[31], which used two dementia cohorts, the National Alz-
heimer Coordinating Center (NACC) and ADNI, with six 
predictors: delayed logical memory score (story recall), 
CDR Dementia Staging Instrument—Sum of Boxes, gen-
eral orientation in CDR, ability to remember dates and 
ability to pay bills in the Functional Activities Question-
naire, and patient age. The accuracies of the model were 
90.82% and 86.51% in NACC and ADNI, respectively.

Finally, our previous work by Sarica et  al. [26], dem-
onstrated that RSF had better performance (0.87) than 
other two tree-based survival algorithms, Conditional 
Survival Forest and Extra Survival Trees (both 0.85), and 
than CPH (0.83) in predicting conversion-to-AD risk on 
ADNI dataset.

3  Materials and methods
3.1  Dataset preparation
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public–private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD).

In detail, for the preparation of the dataset, two main 
table files (csv) from ADNI were used: DXSUM_PDX-
CONV_ADNIALL, which contains the information 
about the diagnosis conversion (e.g., from MCI to AD 

or other kind of dementia), and ADNIMERGE, which 
contains demographic, clinical, cognitive, and imag-
ing data of patients. Other table files used are: NEURO-
BAT, CDR, GDSCALE, FAQ, MMSE, ADASSCORES, 
UPENNBIOMK_MASTER_FINAL (9, 10 12), BAIPET-
NMRC_04_12_18. All files were downloaded the  5th of 
June 2023.

The software KNIME 4.6.1 [46] was used to manipu-
late these tables and to obtain the final dataset for ML 
analysis. Table DXSUM_PDXCONV_ADNIALL was 
first filtered to include all patients whose diagnosis 
changed over time (DXCONV = 1), and then to include 
patients who specifically converted from MCI to AD 
(pMCI) (DXCONTYP = 3 and DXCURREN = 3). Table 
DXSUM_PDXCONV_ADNIALL was then filtered 
to include patients who did not convert their diagno-
sis overtime (DXCONV = 0) and who maintained their 
baseline diagnosis as stable MCI (sMCI) (DXCURR = 2). 
Here, the column DXCONV was considered as binary 
variable of the event or censorship occurrence, i.e., if the 
event of conversion from MCI to AD occurs its value is 
1 (pMCI patient), otherwise is 0 (sMCI patient). The col-
umn VISCODE, which reports the number in months 
of the follow-up visit since the baseline (m06, m12, 
m18, m24, m36, m48), was used as the time variable, or 
in other words the time of occurrence of the event/cen-
sorship [21]. The table ADNIMERGE was joined with 
the filtered table DXSUM_PDXCONV_ADNIALL, and 
demographic, clinical, cognitive, CSF and neuroimaging 
biomarkers of sMCI and pMCI patients at baseline (or 
at the screening visit according to the assessment) were 
added from the remaining tables. No further processing 
of ADNI tables was needed. The implemented KNIME 
workflow is reported in Additional file 1: Fig. S1. The con-
version time interval of MCI patients selected as above 
ranged from 6 to 48  months (4  years), and all subjects 
were from ADNI1 protocol. The final dataset consisted of 
387 subjects, divided into 216 sMCI and 171 pMCI, and 
the features were:

• Demographic variables: age, gender (PTGENDER), 
education levels (PTEDUCAT), ethnicity (PTETH-
CAT) and race (PTRA CCA T) [47], marital status 
(PTMARRY) [48].

• Biomarker: APOE4 allele genotype, i.e., presence of 
APOE gene that makes the ApoE4 protein, associated 
with late-stage AD [17].

• Clinical scales:

o Clinical Dementia Rating Sum of Boxes (CDRSB), 
the sum score of the six domains used for accu-
rately stage severity of Alzheimer dementia and 
mild cognitive impairment [49].
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o Functional Activities Questionnaire (FAQ), an 
informant-based clinician administered ques-
tionnaire that assess the functional daily-living 
impairment in dementia [50].

• Neuropsychological assessment:

o Alzheimer’s Disease Assessment Scale (ADAS), 
item 11 and 13, and Delayed Word recall (Q4); 
for assessing the memory, language, and praxis 
domains with 11 tasks both subject-completed 
tests and observer-based assessments [51].

o Mini-Mental State Examination (MMSE), 30 
questions on orientation, short-term memory 
retention, attention, short-term recall and lan-
guage to measure cognitive impairment and stage 
the severity level [52].

o Rey Auditory Verbal Learning Test (RAVLT), 
immediate, learning, forgetting and percent for-
getting [53].

o The total delayed recall score of the Logic Mem-
ory subtest of the of the Wechsler Memory Scale-
Revised (LDELTOTAL), which assesses verbal 
memory.

o Digit Symbol Substitution (DIGITSCOR) to eval-
uate attention, processing speed and executive 
function.

o Trails B (TRABSCOR), time to complete part 
B of the Trail Making Test which assess visual-
motor coordination [54].

o ADNI modified Preclinical Alzheimer’s Cognitive 
Composite (PACC) with Digit Symbol Substitu-
tion (mPACCdigit), and with Trails B (mPAC-
CtrailsB) that measure the first signs of cognitive 
decline [55].

o Geriatric Depression Scale (GDTOTAL) to iden-
tify depression in elderly subjects [12].

o Total score of Clock Test (COPYSCOR) [12].
o Boston Naming Test (BNTTOTAL) assesses 

naming ability using 30 items [12].

• Cerebrospinal fluid (CSF) biomarker: Aβ1–42 
(ABETA42), total tau (TAU), phosphorylated tau 
(PTAU) concentrations [56].

• Neuroimaging measures: MRI volumes of ventri-
cles, hippocampus, whole brain, entorhinal cortex, 
fusiform, middle temporal gyrus (MidTemp) and 
total intracranial volume (ICV), calculated with 
Freesurfer [57]. Average fluorodeoxyglucose posi-
tron emission tomography of angular, temporal, 
and posterior cingulate (FDG) [58]. Hypometabolic 
convergence index (HCI) [15], an FDG-PET index 

that provides a single measurement of cerebral 
hypometabolism compared to AD patients group.

Categorical variables (PTGENDER, PTETHCAT, PTRA 
CCA T, PTMARRY) were converted to numerical data 
with the One-Hot Encoding approach [20, 59], also called 
dummy coding (python function get_dummies() on Pandas 
dataframe).

3.2  Missing data
ADNI, as well as other international databases, has 
the problem of missing data, so here, to avoid reducing 
sample size, we applied the missForest algorithm [60] to 
impute missing data, which showed better performance 
than statistical imputation methods on dementia data 
[61]  and on Parkinson’s disease data  [62]. MissForest is 
based on RF classification method [4], and it can handle 
any type of input data (continuous and categorical) by 
making as few as possible assumptions about the struc-
tural aspect of the dataset [60]. In general, missForest 
uses the mean or the mode to make an initial guess about 
the missing values before fitting a model using the fea-
ture based on the number of missing values, starting with 
the lowest amount. Missing values are then predicted 
by using the trained RF and imputed for each feature. 
Default values of missForest hyperparameters were here 
used as provided by python package missingpy 0.2.0, and 
the imputation was performed separately on sMCI and 
pMCI cohorts to maintain the original feature distribu-
tion of diagnoses [61].

3.3  Statistical analysis
Differences between patients’ groups in age and years 
of education were assessed with one-way analysis of 
variance (ANOVA), differences in distributions of cat-
egorical variables were evaluated with Chi-square test, 
analysis of covariance (ANCOVA) was employed with 
age and gender as covariates for comparing clinical and 
cognitive variables, while ANCOVA with age, gender and 
ICV as covariates for neuroimaging features (significant 
at p < 0.05). All statistical analyses were performed with 
Python 3.8 and the package scikit-learn 1.1.3.

3.4  Survival analysis models
The aim of survival analysis is to assess when an event 
is likely to happen or to predict the time-to-event such 
as the time of progression to AD. Survival analysis could 
handle right-censored data, that is when the event of 
interest is not observed until the study is terminated, as 
in the case of stable MCI patients. The waiting time until 
an event occurs is defined as a positive random variable T 
and given its probability density function f(t), the cumu-
lative distribution function is:
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The survival probability S(t) that the event of interest 
has not occurred by some time t is:

The hazard function h(t) denotes the approximate 
probability that an event occurs in the small interval [t, 
t + dt), while the cumulative hazard function H(t) is the 
integral of the hazard function over the interval [0;t]. For 
discrete time interval subdivided in J parts, the risk score 
of a sample x is calculated as:

Cox proportional hazard (CPH) [19] is a semi-paramet-
ric approach because it makes parametric assumption 
about the effect of the predictors on the hazard function, 
but it has no assumptions about the shape of the base-
line hazard function, which can take any form. The Cox 
model is expressed by the hazard function denoted by 
h(t), and it can be estimated as follows:

where h0(t) is the unknown baseline hazard function that 
represents the hazard when all the predictors are equal to 
zero; η

(

−→xi
)

 is the risk function usually defined as a linear 
representation such as:

where ωj are the coefficients to determinate and −→xi  is the 
observed feature vector.

In CPH, predictors have a multiplicative effect on 
the hazard function directly. This method uses the par-
tial likelihood to estimate the parameters through par-
tial likelihood function maximization. One of the most 
important advantages of CPH is the possibility to inter-
pret models like in regression. Despite this, there are 
some cases such as high data dimensionality and small 
number of observations, where CPH’s results are unsatis-
factory, and it yields incorrect standard deviation for the 
estimators.

Random Survival Forests (RSF) [27] is an ensemble 
learner for the analysis of right-censored survival data 
that follows the same principles of RF for growing deci-
sion trees using bootstrapping and random feature selec-
tion when splitting tree nodes. The method starts from 
independent and identically distributed (i.i.d.) random 
elements:

F(t) = Pr[T < t]=

t
∫

−∞

f(u) du.

S(t) = 1 − F(t) = Pr[T > t].

r(x)=
∑J

j = 1
H (tj, x).

h
(

t,
−→
xi
)

= h0(t)η(
−→
xi ),

η(
−→xi ) = e

∑p
j=1 x

i
jwj ,

where X is the feature as a d-dimensional vector that 
takes values in a discrete space called χ; T = min(T0, C0) 
is the observed survival time defined as the minimum of 
the true (potentially unobserved) survival event time T0 
and the true (potentially unobserved) censoring time  C0; 
δ = 1{T0 ≤ C0} is the binary censoring indicator. When the 
event conversion-to-AD occurs δ = 1 (here pMCI), while 
when the observation is censored δ = 0 (here sMCI). It is 
assumed that the true event time T0 is independent of the 
censoring time C [63].

The RSF algorithm is implemented as follow. In the first 
step, B bootstrap samples are selected ntree times from 
the original dataset, leaving approximately one-third of 
the samples out-of-bags (OOB). A survival tree is grown 
for each bootstrap sample and p candidate variables are 
randomly selected for each node of each tree. The num-
ber p is generally the square root of number of inde-
pendent variables. The node is split when the variable 
maximizes survival difference between daughter nodes. 
The splitting rule applied is the log-rank test statistic, cal-
culated to test the null hypothesis that there is no differ-
ence between the two groups—here sMCI and pMCI—in 
the probability of the conversion event. The tree stops to 
grow if a terminal node has less than the node size unique 
events. Cumulative hazard functions are calculated for 
each tree to obtain ensemble’s cumulative hazard esti-
mate. Finally, OOB estimators are used to estimate the 
prediction accuracy and the variable importance [27, 63].

3.5  Performance evaluation
Survival analysis was conducted with python pack-
age PySurvival (https:// square. github. io/ pysur vival/) by 
Fotso et  al. (2019) and its forked repository by Bacalfa 
(https:// github. com/ bacal fa/ pysur vival/), which adds 
sklearn compatibility to the CPH and RSF algorithm 
implementations. Plots were created by modifying the 
original functions of PySurvival with package seaborn 
0.12.2.

First, dataset was randomly split with a static seed into 
training and test sets following the Pareto principle [64] 
(80–20%, 309–78 patients) stratified by the column event 
to maintain the original distribution of occurrences. 
Then, optimal values of hyperparameters that maximized 
the performance on training set were found through a 
randomized search (RandomizedSearchCV) with three-
fold cross-validation (cv) and 50 repetitions [20, 23]. 
Hyperparameters of CPH were L2 regularization (l2_reg) 
and learning rate (lr), while for RSF they were impor-
tance mode (importance_mode), maximum depth (max_
depth), minimum number of samples required to be at 

(X ,T , δ), (X1,T1, δ1), ..., (Xn,Tn, δn),

https://square.github.io/pysurvival/
https://github.com/bacalfa/pysurvival/
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a leaf node (min_node_size), number of features to con-
sider when looking for the best split (max_features) and 
percentage of original samples used in each tree building 
(sample_size_pct). The number of trees in RSF was left 
static and equal to 200, and the initialization method of 
CPH was ‘zeros’ like in [26].

Performance of ML algorithms was evaluated with the 
Harrell’s concordance index (c-index) [65] both on train-
ing set with fivefold cross-validation and on test set. The 
c-index represents a generalization of the area under the 
ROC curve (AUC) for survival analysis models, which 
can handle right-censored data, and it estimates the 
probability that the patients who experienced the event 
conversion-to-AD first had a worse predicted outcome. 
Its value provides the model discrimination power, and 
when it is close to 1, the model has an almost perfect 
discriminatory power, while if it is close to 0.5 (random 
prediction), it has no ability to discriminate between low- 
and high-risk subjects.

The Integrated Brier score (IBS) [66] at time τ was used 
to evaluate the accuracy of predicted survival function 
across multiple timepoints on test set. IBS is defined as:

where BS(t) is the Brier score. IBS is calculated as the 
average squared distances between the actual survival 
status and the predicted survival probability, and its value 
is between 0 and 1, where 0 is for a perfect model, while a 
cut-off limit of 0.25 is considered as critical [66].

Predicted survival curves by CPH and RSF on test set 
were compared with the survival curve by Kaplan–Meier 
(KM) [67], a nonparametric model that is usually applied 
to visualize the estimated survival time of population. 
The differences between KM and predicted survival 
curves were quantified with the root mean square error 
(RMSE) and median/mean absolute error, as well as visu-
ally compared by plotting curves one against other.

3.6  Explainability
3.6.1  Global explanation
RSF provides a fully nonparametric measure of vari-
able importance (VIMP), which could be calculated with 
four different methods: permutation importance [27] 
and its normalized version [22] that make use of OOB 
estimation, and impurity and impurity corrected fea-
ture importance, which is a bias correction for the Gini 
index [68]. Here, we automatically selected the optimal 
VIMP method through hyperparameters tuning [23], as 
described in the previous section.

Together with the VIMP provided intrinsically by 
RSF, we computed an external permutation importance, 
defined as the decrease in model score when a single 

IBS(τ ) =
1

τ

∫ τ

0
BS(t)dt,

feature value is randomly shuffled. We applied permu-
tation importance with 50 repetitions provided by ELI5 
[42] that has been adapted to the python package scikit-
learn 1.3.0.

Shapley Additive Explanation [38] (SHAP) is a model-
agnostic unified framework for interpreting ML predic-
tions, and it was here used to investigate further RSF 
outcomes. SHAP is based on game theory, and it assigns 
to each feature a Shapley value that represents its average 
marginal contribution across all possible feature coali-
tions [39]. A formal definition of SHAP outcome is:

“Prediction f(x) for instance i differs from the average 
prediction E[f(x)] by f(xi)- E[f(x)] to which the feature 
contributed φ(i)

j  ” [33],
where φ(i)

j  is the SHAP values of the jth feature.
SHAP can provide both global explanations—overall 

feature importance on training set—and local explana-
tions on test predictions. We used the python package 
SHAP 0.42.1, and we built the SHAP explainer (shap.
Explainer) on RSF predicted risk scores of training set 
(function predict_risk by pysurvival).

The Rank-Biased Overlap (RBO) [43] was used to 
quantitatively compare the global explanations provided 
by RSF feature importance, mean permutation impor-
tance and mean absolute SHAP (|SHAP|). RBO is a simi-
larity measure between incomplete, top-weighted and 
indefinite rankings, which has been recently introduced 
for estimating the overlap between ML feature impor-
tance at different depths d (number of the top variables 
considered in the ranking) [35]. RBO assumes values in 
the range [0, 1], where 0 means disjoint, and 1 means 
identical. The python package rbo (v.0.1.2, https:// github. 
com/ chang yaoch en/ rbo) was used as implementation of 
the RBO by Webber et al. [43].

Although, recent literature showed that in many cases 
feature selection applied on survival analysis does not 
provide any improvement in performance [23, 39], we 
wanted to investigate whether automatic selection of 
most predictive subset of features could increase RSF 
performance. With this purpose, we iteratively built RSF 
models by increasing the number of training features, 
from the first to the last following their importance order 
as in the three variable rankings. For each iteration in this 
recursive feature addition, we evaluated the c-index on 
training set with fivefold cross-validation and on test set.

3.6.2  Local explanation
Local explanations on test set were explored with SHAP, 
and as further analysis we investigated whether correla-
tion between variables could alter the feature contrib-
ute to individual risk prediction. With this aim, we used 
SHAP Partition Explainer, which is a method to handle 
correlated features by calculating SHAP values based on 

https://github.com/changyaochen/rbo
https://github.com/changyaochen/rbo
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hierarchical clustering [33]. The first step was to obtain 
Pearson’s correlation matrix of training set and the sec-
ond one was to apply hierarchical clustering on the abso-
lute value of correlation coefficients. Clustering results 
were then provided to SHAP Partition Explainer, and 
local explanations were visually compared between mod-
els with and without correlated features (correlation cut-
off =|0.6| as in [26]).

Individual predictions done by RSF were used to manu-
ally stratify pMCI test patients according to their con-
version-to-AD risk score (low, medium, and high) [26]. 
Then, one pMCI patient per risk grade was randomly 
selected (pMCI#1 high risk, pMCI#2 medium risk, 
pMCI#3 low risk), and their survival probability curve 
was obtained through estimation of cumulative den-
sity function. Finally, we investigated with SHAP water-
fall and force plots the local explanations of these three 
pMCI patients together with one randomly selected sta-
ble MCI test subject (sMCI#1) with a numeric risk score 
lower than 1.

4  Results
Demographic, clinical, cognitive, CSF and neuroimag-
ing data of dataset prior to imputation are reported in 
Table  1 together with missingness percentage and sta-
tistical results. sMCI and pMCI groups had significantly 
different values in almost all features, except for age, 
gender, education level, RAVLT forgetting, GDTOTAL, 
COPYSCOR, BNTTOTAL and ICV (p > 0.05).

Results of hyperparameters tuning obtained through 
randomized search are reported in Table  2. Optimal 
hyperparameter values provided a c-index (mean of 
threefold cv with 50 repetitions) of 0.798 for CPH and of 
0.858 for RSF. Regarding the performance of best mod-
els, RSF reached high values of c-index both on test set 
and on training set (0.890, fivefold cv: 0.850 ± 0.03), 
while CPH had lower performance (0.818, fivefold cv: 
0.766 ± 0.05). IBS score was the same for RSF and CPH 
(0.09).

It could be noted from plots comparing KM and pre-
dicted survival curves (Fig. 1 on the left) that accuracy of 
CPH and RSF models decreased while time progresses. 
In other words, predicted number of MCI patients at 
risk of AD differs more from KM estimate as timespan 
reaches 48  months after baseline visit. In the compari-
son between KM curve and predicted curves, although 
both CPH and RSF were close to the actual one, CPH had 
lower RMSE, median and mean absolute error than RSF, 
which anyway relies in the 95% confidence interval of KM 
estimate (Fig. 1 A and B on the left).

Regarding the prediction error per each timepoint 
(Fig.  1 A and B on the right), CPH and RSF never 

exceeded the IBS cut-off (dotted red line), although they 
both showed a global maximum at the 18th month.

Global explanations on training set are reported in 
Fig.  2, where RSF feature importance (Fig.  2A), permu-
tation importance (Fig.  2B, mean value and boxplots) 
and SHAP importance (Fig.  2C, mean absolute value 
and beeswarm plot) are depicted as ranking of fea-
tures ordered by their prediction importance. In SHAP 
beeswarm plot, one point corresponds to a single patient, 
where its position along the x axis provides the impact 
that a feature had on the model’s output. In the present 
work, the feature impact corresponds to the contribute 
to conversion-to-AD risk, that is a patient with higher 
SHAP value has higher risk to progress to AD relative to 
a patient with lower SHAP value.

Top three features FDG, ABETA42 and HCI were in 
identical order across the three rankings (Fig.  2A–C). 
RBO curves of similarity between rankings by raising 
depth d are depicted in Fig. 2D (RSF vs Perm in brown, 
RSF vs SHAP in gray, Perm vs SHAP in pink). All three 
pairwise comparisons showed an RBO > 0.90 within 8 top 
variables, with a percentage overlap between RSF impor-
tance and permutation importance of 90.7%, between 
RSF importance and SHAP importance of 90.4%, and 
between permutation importance and SHAP importance 
of 90.3%.

Regarding the feature selection, no performance 
improvement on training or test set was found, in fact 
subsets of ranked variables worsened RSF c-index, and 
consequently we did not report any results.

Findings about the impact of variables correlation on 
local explanations are depicted in Fig.  3. Correlation 
matrix is on the left of Fig. 3A, while dendrogram of hier-
archical clustering is on the right.

Comparison of SHAP local explanations in Fig.  3B 
showed that features that most contributed to risk pre-
diction did not differ between models with and without 
correlated variables and they were almost in identical 
order. Moreover, Fig.  3B confirmed global explanations 
(Fig.  2), where the highest contribute was provided by 
FDG, ABETA42 and HCI.

Histograms of conversion-to-AD risk score distribu-
tion predicted by RSF on sMCI and pMCI test subjects 
are on the left of Fig. 4A. Twenty-two sMCI patients had 
a predicted risk score lower than 1, eighteen subjects had 
a risk score between 1 and 4, while three patients had a 
predicted risk score higher than 4.

Manual stratification of pMCI was performed by 
grouping patients according to three risk grades: low 
between 1 and 3.5 (in green), medium between 3.5 and 5 
(in orange), high between 5 and 7.1 (in red). RSF survival 
functions of three randomly selected pMCI subjects per 
risk grade are depicted on the right of Fig. 4A. High risk 
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Table 1 Demographic, clinical, cognitive, CSF and imaging data of sMCI and pMCI groups

In bold significant result at p < 0.05
a One-way ANOVA
b Chi-square test
c ANCOVA with age and gender in covariates
d ANCOVA with age, gender and ICV in covariates

sMCI (216) pMCI (171) Missingness (%) p-value

Demographic:

 Age 74.8 ± 7.4 74.7 ± 6.9 0.0 0.65a

 Gender (M/F) 144/72 105/66 0.0 0.28b

 Education level 15.4 ± 3.1 15.8 ± 2.9 0.0 0.26a

Biomarker:

 APOE4 (0/1/2) 120/76/20 56/88/27 0.0  < 0.001b

Clinical scale:

 CDRSB 1.4 ± 0.8 1.85 ± 0.9 0.0  < 0.001c

 FAQ 2.4 ± 3.5 5.5 ± 4.9 0.77  < 0.001c

Neuropsychological assessment:

 ADAS11 10.4 ± 4.3 13.1 ± 4.1 0.0  < 0.001c

 ADAS13 16.7 ± 6.2 21.3 ± 5.4 0.77  < 0.001c

 ADASQ4 5.5 ± 2.2 7.1 ± 1.9 0.0  < 0.001c

 MMSE 27.3 ± 1.8 26.6 ± 1.7 0.0  < 0.001c

 RAVLT_immediate 33.6 ± 9.9 27.3 ± 6.4 0.0  < 0.001c

 RAVLT_learning 3.8 ± 2.5 2.7 ± 2.1 3.36  < 0.001c

 RAVLT_forgetting 4.5 ± 2.4 4.9 ± 2.1 0.26 0.1c

 RAVLT_perc_forgetting 59.3 ± 33.1 78.7 ± 26.9 0.26  < 0.001c

 LDELTOTAL 4.6 ± 2.7 3.0 ± 2.7 0.0  < 0.001c

 DIGITSCOR 38.8 ± 10.8 34.2 ± 10.8 0.26  < 0.001c

 TRABSCOR 118.5 ± 64.8 147.2 ± 79.3 1.0  < 0.001c

 mPACCdigit -6.3 ± 3.1 -8.76 ± 2.8 0.0  < 0.001c

 mPACCtrailsB -6.4 ± 3.2 -8.86 ± 3.1 0.0  < 0.001c

 GDTOTAL 1.54 ± 1.37 1.58 ± 1.36 0.0 0.84c

 COPYSCOR 4.68 ± 0.70 4.58 ± 0.69 0.0 0.15c

 BNTTOTAL 25.86 ± 3.81 25.10 ± 4.24 0.52 0.08c

CSF:

 ABETA42 981.67 ± 532.47 696.68 ± 358.49 50.39  < 0.001c

 TAU 293.04 ± 125.75 335.05 ± 113.67 50.39 0.02c

 PTAU 28.82 ± 14.86 33.47 ± 13.12 50.39 0.03c

Neuroimaging:

 Ventricles 42297.1 ± 24293.2 47201.5 ± 23132.8 1.5 0.002d

 Hippocampus 6722.7 ± 1025.4 6014.1 ± 1020.9 19.1  < 0.001d

 WholeBrain 1011262.1 ± 104469.7 980,820.5 ± 113713.5 1.3 0.008c

 Entorhinal 3548.8 ± 731.5 3015.9 ± 713.8 19.1  < 0.001d

 Fusiform 16894.5 ± 2193.8 15733.7 ± 2471.7 19.1  < 0.001d

 MidTemp 19597.4 ± 2678.6 17524.6 ± 2980.4 19.1  < 0.001d

 ICV 1580838.1 ± 164668.7 1571086.5 ± 174884.8 0.0 0.928c

 FDG 1.16 ± 0.15 1.06 ± 0.12 58.91  < 0.001c

 HCI 7.15 ± 3.50 9.67 ± 3.74 48.32  < 0.001c

Occurrence of event/censorship (sMCI = 0, pMCI = 1) per time point (in months):

 m06 20 22

 m12 17 47

 m18 21 35

 m24 31 36

 m36 109 27

 m48 18 4
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patient pMCI#1 had a risk score of 7.088, converted to 
AD at the 12th month* and predicted survival probabili-
ties at each time point were [0.84, 0.54*, 0.36, 0.27, 0.20, 
0.19]. Medium risk patient pMCI#2 had a risk score of 
3.876, converted to AD at the 24th month*, and predicted 
survival probabilities at each time point were [0.94, 0.81, 
0.68, 0.55*, 0.42, 0.41]. Low-risk patient pMCI#3 had a 
risk score of 2.12, converted to AD at the 36th month*, 
and predicted survival probabilities at each time point 
were [0.97, 0.863, 0.82, 0.74, 0.65*, 0.63]. The drop in 
the predicted survival probability has been highlighted 
in the text with an asterisk, and in other words we can 
state that pMCI#1 had a low probability to remain stable 
at the 12th month (54%), pMCI#2 had a low probability 
to remain stable at the 24th month (55%), and pMCI#3 
had a low probability to remain stable at the 36th month 

(65%). From the RSF survival functions in Fig.  4B, it 
could be further noted that the first sudden drop in sur-
vival probability curve corresponds exactly to the actual 
time of conversion for all the three pMCI test patients, 
demonstrating that RSF predicted accurately their con-
version-to-AD risk. sMCI#1 subject—who does not con-
vert to AD within 48 months—had risk score 0.233 and 
very high predicted survival probabilities per time point 
[0.99, 0.98, 0.98, 0.97, 0.95, 0.94].

SHAP waterfall and force plots of pMCI#1, pMCI#2, 
pMCI#3, and sMCI#1 patients are reported, respectively, 
in Fig.  4B–E; average predicted risk was E[f(x)] = 2.968, 
and actual value of each feature is also reported (in gray). 
Arrows show the influence of each variable on risk pre-
diction: blue arrow indicates that the feature decreases 
the risk of conversion from MCI to AD, while red arrow 

Table 2 Hyperparameters of Cox proportional hazard (CPH) and Random Survival Forests (RSF)

Tuning was performed through a randomized search with threefold cross-validation and 50 repetitions

Hyperparameter Parameter distribution Optimal value

CPH l2_reg float from a reciprocal continuous random distribution in range (0.1, 100) 99.4

lr float from a reciprocal continuous random distribution in range (0.1, 1) 0.79

RSF importance_mode [’normalized_permutation’,’permutation’,’impurity’,’impurity_corrected’] ‘permutation’

max_depth integer from a reciprocal continuous random distribution in range (5, 50) 24

min_node_size integer from a reciprocal continuous random distribution in range (1, 40) 7

max_features [‘all’,’sqrt’,’log2’] ‘sqrt’

sample_size_pct [0.60,0.70,0.80,0.90] 0.80

Fig. 1 Performance on test set of ML survival algorithms per timepoint: A Cox proportional hazard (CPH), B Random Survival Forests (RSF). On 
the left: plots over time of expected number of MCI patients at risk of conversion to AD, predicted survival curve in red, estimated survival curve 
by Kaplan–Meier in gray. On the right: prediction error curve calculated with Integrated Brier Score (IBS, critical cut-off limit of 0.25 in red). C-index 
on test set, cross-validated (cv) c-index on training set (mean ± standard deviation), root mean square error (RMSE) and median and mean absolute 
error are also reported
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indicates that the feature increases it. The combined 
effects of all features provide the final SHAP value, which 
corresponds to the prediction risk score. It is worth of 
noting that we used SHAP explainer built on all features, 
since the comparison between models with and without 
correlated variables showed no substantial difference in 
local explanation.

Variables with the highest influence on risk prediction 
of pMCI#1, pMCI#2, pMCI#3 and sMCI#1 subjects were 

FDG, ABETA42 and HCI (Fig.  4B–E), as also found in 
global and local explanation (Figs. 2A–C, 3B).

Local explanations of the three sMCI test subjects with 
a predicted numeric risk score higher than 4 (Fig. 4A, his-
togram of sMCI risk distribution in gray) were reported 
in Additional file 1. Considering that in these three sMCI 
patients (sMCI#2, sMCI#3, sMCI#4) the conversion did 
not occur within 4 years, it is interesting to understand 
why on the contrary, RSF predicted a medium risk score. 
The predicted survival probability of patients sMCI#2, 

Fig. 2 Global explanations of Random Survival Forests (RSF). A RSF feature importance (VIMP). B Permutation importance (mean value 
and boxplots). C SHAP importance (mean |SHAP| value and SHAP value as beeswarm plot). D Rank-Biased Overlap (RBO) curves of variable rankings 
comparison for increasing values of depth d (number of important features considered) between RSF feature importance and mean permutation 
importance (in brown), RSF feature importance and mean |SHAP| importance (in gray), mean permutation importance and mean |SHAP| 
importance (in pink)
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sMCI#3 and sMCI#4 showed a sudden drop at the  18th 
month, with, respectively, 58%, 57% and 63% of probabil-
ity to remain stable. Their waterfall and force plots are 
reported in (Additional file 1: Fig. S2), and the first three 
features contributing to increase the conversion-to-AD 
risk were FDG, ABETA42 and HCI.

5  Discussion
The main aim of the present work was to provide a com-
prehensive overview of the explainability of Random Sur-
vival Forests (RSF) in predicting the conversion-to-AD 
risk within 4 years. We applied RSF on data from ADNI, 
which consisted in clinical, cognitive, CSF and neuroim-
aging biomarkers of stable and progressive MCI patients.

Our findings confirmed that RSF improves the pre-
diction power of traditional survival method CPH on 
dementia data [20, 21, 26, 30, 44, 45]. Our RSF accuracy 
(0.89) was higher than in similar studies on AD pro-
gression, 0.75 by Nakagawa et al. [44], 0.831 by Mirab-
nahrazam et al. [45], 0.84 by Orozco-Sanchez et al. [21] 

and by Musto et  al. [30], 0.86 by Song et  al. [31], and 
0.87 in our recent work by Sarica et  al. [26]. Spooner 
et  al. [20] performed better (0.93) probably because 
they used also longitudinal data rather than baseline 
data alone as in the present and other works.

In addition to the recent literature, we performed for 
the first time a comprehensive study on RSF explana-
tions. First, we investigated the RSF global explanations 
by quantitatively comparing with RBO three different 
feature rankings, the intrinsically provided VIMP, the 
permutation importance and the SHAP importance. 
The percentage pairwise overlap between variable rank-
ings was higher than 90% within the first eight features, 
showing the stability and robustness of RSF also in 
presence of multicollinearity among features. The sta-
bility of RSF algorithm against multicollinearity was 
also demonstrated by our comparison of SHAP explain-
ers with and without correlated features, which had no 
substantial difference in local explanations.

Fig. 3 Results of variables correlation analysis. A Pearson’s correlation matrix of training set (on the left) and dendrogram (on the right) 
of hierarchical clustering on absolute value of correlation coefficients. B Comparison of mean |SHAP| values on test set, i.e., local explanations, 
of models with (on the left) and without (on the right) correlated features (clustering cutoff 0.6)
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Interestingly, the first three important features FDG, 
ABETA42 and HCI were the same not only in the three 
global explanations on training set, but also in the local 
explanation of test set. The feature FDG is the average 
counting of angular, temporal, and posterior cingulate 
regions [52] and it is considered as an independent bio-
marker for AD diagnosis, as demonstrated in a longitu-
dinal study by Ou et al. [69]. Abnormal FDG-PET were 
found in the 72.82% of pMCI [69], suggesting that sub-
jects with low glucose metabolism have a higher risk 
to progress to AD as in the present work, where FDG 

had the highest mean |SHAP| value in local explana-
tion (+ 0.53, Fig.  3B). ABETA42 is considered the CSF 
biomarker signature of AD and the most sensitive bio-
marker for AD compared with TAU and PTAU [50]. 
Hansson et al. [70] demonstrated that MCI patients had 
an increase in the relative risk of progression to AD in 
presence of pathological concentrations of T-tau and 
Aβ42 at baseline. In other words, an increment in levels 
of CSF tau associated with a decline in levels of CSF Aβ1-
42 may indicate the onset of AD before the manifestation 
of clinical symptoms [50]. In our findings ABETA42 was 

Fig. 4 Local explanations of Random Survival Forests (RSF). A. On the left: histograms of sMCI and pMCI patients’ risk distribution predicted by RSF. 
pMCI subjects were stratified by risk grade: low (in green, between 1 and 3.5), medium (in orange, between 3.5 and 5), high (in red, between 5 
and 7.1). On the right: RSF survival functions of pMCI patients per risk score: pMCI#1 high risk (score 7.088, converted to AD after 12 months), 
pMCI#2 medium risk (score 3.876, converted to AD after 24 months), pMCI#3 low risk (score 2.12, converted to AD after 36 months). SHAP waterfall 
plot (top) and force plot (bottom) of B. patient pMCI#1, C. patient pMCI#2, D. patient pMCI#3, E. stable MCI patient who does not convert 
to AD within 48 months (sMCI#1, risk score 0.233). Blue and red arrows represent those features that, respectively, decrease and increase 
the conversion-to-AD risk within 48 months. Average predicted risk E[f(x)] = 2.968. Actual value of feature in gray
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the second most important feature (+ 0.48, Fig. 3B), while 
TAU was among the first ten features in the three global 
explanations as well as in the local explanation (+ 0.1, 
Fig.  3B). The third most important feature was HCI 
(+ 0.45, Fig.  3B), which is a hypometabolic convergence 
index introduced to assess FDG-PET hypometabolism 
in dementia patients with a single measurement [15]. It 
has been shown by Chen et  al. [15] that MCI patients 
with high HCI values or low hippocampal volumes had 
the highest hazard ratios in progressing to AD within 
18  months, and those with both characteristics had a 
much higher risk. In our investigation, we confirmed the 
importance of hippocampus volume as one of the first 
eight features that contributed most to the increase in 
conversion-to-AD risk score (+ 0.11, Fig. 3B).

FAQ, mPACCdigit, mPACCtrailsB and RAVLT imme-
diate had the highest mean |SHAP| values among all 
clinical and neuropsychological assessments. Their 
importance in the prognosis of AD was already demon-
strated in our previous work on tree-based ML survival 
methods by Sarica et al. [26] and in Spooner et al. [20]. 
FAQ is a collateral-report scale that evaluates instrumen-
tal activities of daily living [50], and it can differentiate 
MCI from AD given that functional changes are found 
early in dementia patients. In particular, Teng et al. [71] 
demonstrated the prognosis utility of FAQ, showing that 
it exhibits optimal accuracy (84.7%), sensitivity (80.3%) 
and specificity (87.0%) in discriminating MCI patients 
from very mild AD patients. In the present study, FAQ 
was the most important clinical scale in local explana-
tion on test set (mean |SHAP| value + 0.15, Fig.  3B), 
and among the first eight features in global explanations 
(Fig. 2). The mPACCdigit and mPACCtrailsB tests meas-
ure, respectively, working memory and performance of 
processing speed [55], while RAVLT immediate assesses 
the total acquisition/learning in episodic memory [53]. 
The contribute of mPACCtrailsB (+ 0.36), FAQ (+ 0.27) 
and mPACCdigit (+ 0.17) in the increment of conversion-
to-AD risk score is particularly evident in the local expla-
nation of patient pMCI#1 (Fig. 4B), who had a numeric 
risk score of 7.09 and converted at the 12th month after 
the baseline diagnosis. Interestingly, the explanations 
of patient sMCI#1, who do not convert to AD within 
4 years, showed that RAVLT immediate was the cognitive 
feature that most contributed to reduce the risk of pro-
gression to AD (− 0.22, Fig. 4E).

It is worth of noting that, as in two works on survival 
ML methods [23, 39], we found that feature selection by 
recursive feature elimination on the three importance 
rankings investigated, did not provide any improvement 
in the overall performance. This is probably due to the 
feature selection internally performed by RSF to handle 

high-dimensional data [20], or as hypothesized by Jung 
et  al. [23], better results could be obtained with feature 
selection methods specially designed for right-censored 
data.

Our work has three limitations related to the ADNI 
dataset used for the analysis. The first issue is linked to 
the variable time, which had imbalanced distribution of 
event/censorship occurrences per timepoint. Indeed, we 
cannot exclude that the global and local explanations 
were biased toward the characteristics of the majority 
class (sMCI). At the present time, no works exist about 
the stability of RSF outcome on imbalanced groups, thus 
we cannot exclude that variable rankings may change 
with better balanced datasets. The other limitation 
regards more strictly the RSF performance, which may 
be improved by adding longitudinal data of MCI patients, 
as in Spooner et al. [20], although such a choice is hardly 
applicable on datasets with high missingness percentage 
as in ADNI. The last issue related to the dataset is that 
dementia conversion diagnosis and its estimate of time of 
occurrence are prone to human errors, and such errors 
inevitably introduce bias in survival algorithms, as dem-
onstrated by the three sMCI patients who were incor-
rectly predicted by RSF with a medium-risk score and a 
low survival probability (Additional file 1: Fig: S2).

Regarding our methodology, it should be reported 
that we used a randomized search for hyperparame-
ters tuning, which is not an exhaustive search and thus 
it is possible that better accuracy can be reached with 
hyperparameter values not here applied. Another limi-
tation related to our methodology is the application of 
SHAP post hoc explanation method on survival mod-
els. Although it was successfully employed in other ML 
survival studies [39–41], we must highlight that SHAP 
was born to explain supervised classification problems. 
Indeed, SHAP has been adapted for survival models 
by using single-point risk predictions, as in the present 
study, or by aggregating survival functions [39], and 
doing so the information contained in the survival dis-
tribution could be lost [72]. Future works are needed to 
investigate RSF time-dependent explanations in predict-
ing conversion-to-AD risk with model-agnostic meth-
ods specifically designed for survival analysis, such as 
survLIME [73] or survSHAP [72], which have been very 
recently introduced.

6  Conclusion
In summary, we provided a comprehensive study about 
the explainability of RSF in predicting conversion-to-
AD risk on data from ADNI, comprising demographic, 
clinical, genetic, CSF and neuroimaging biomarkers. 
We found that RSF improved the performance of the 
traditional survival method CPH. The stability and 
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robustness of RSF algorithm was highlighted through 
a quantitative comparison of three different feature 
importance rankings, the VIMP intrinsically provided 
by RSF, the permutation importance and SHAP impor-
tance, which showed a high percentage of similarity 
(> 90%) within the first eight features. Most importantly, 
we demonstrated that multicollinearity among vari-
ables does not perturb the local explanations of RSF. 
Another important contribution of the present work is 
that we found that feature selection does not improve 
the RSF performance on training and test sets. Finally, 
the local explanations of individual pMCI patients gave 
important information about the contribution of each 
feature in the conversion-to-AD risk score.

Taken together, our findings suggest that ML algo-
rithms for survival analysis, and in particular RSF 
method, represent a useful tool to support clinicians 
in the assessment of conversion-to-AD risk, especially 
when high-dimensional and heterogenous data are 
employed. Moreover, the application of SHAP explainer 
boosts the clinical utility of such approaches, providing 
intelligible and interpretable plots, which highlight the 
key features associated with the AD progression also at 
individual level.

Abbreviations
AD  Alzheimer’s disease
CPH  Cox proportional hazard
CV  Cross-validation
IBS  Integrated Brier Score
KM  Kaplan–Meier
MCI  Mild cognitive impairment
pMCI  Progressive MCI
RBO  Rank-Biased Overlap
RF  Random forest
RSF  Random Survival Forests
SHAP  SHapley additive exPlanations
sMCI  Stable MCI
VIMP  Variable importance

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40708- 023- 00211-w.

Additional file 1: Fig S1. KNIME 4.6.1 workflow implemented to manipu-
late csv tables from ADNI. Fig S2. Local explanations of Random Survival 
Forests (RSF) on the three sMCI with medium-risk predicted score > 4. A. 
Patient sMCI#2 with predicted risk score 4.98 and predicted survival prob-
abilities per time point [0.90, 0.73, 0.58, 0.44, 0.30, 0.29]. B. Patient sMCI#3 
with predicted risk score 4.95 and predicted survival probabilities per time 
point [0.91, 0.70, 0.57, 0.46, 0.32, 0.31]. C. Patient sMCI#4 with predicted 
risk score 4.60 and predicted survival probabilities per time point [0.93, 
0.78, 0.63, 0.48, 0.33, 0.31]. Blue and red arrows represent those features 
that, respectively, decrease and increase the conversion-to-AD risk within 
48 months. Average predicted risk E[f(x)] = 2.968. Actual value of feature 
in gray.

Acknowledgements
Data collection and sharing for this project was funded by the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant 
U01 AG024904) and DOD ADNI (Department of Defense award number 
W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the 
National Institute of Biomedical Imaging and Bioengineering, and through 
generous contributions from the following: AbbVie, Alzheimer’s Association; 
Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; 
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; 
Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La 
Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; 
IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; 
Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; 
Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; 
Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; 
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition 
Therapeutics. The Canadian Institutes of Health Research is providing funds 
to support ADNI clinical sites in Canada. Private sector contributions are 
facilitated by the Foundation for the National Institutes of Health (www. fnih. 
org). The grantee organization is the Northern California Institute for Research 
and Education, and the study is coordinated by the Alzheimer’s Therapeutic 
Research Institute at the University of Southern California. ADNI data are dis-
seminated by the Laboratory for Neuro Imaging at the University of Southern 
California.

Author contributions
AS: conceptualization, software, formal analysis, investigation, data curation, 
writing—original draft. FA: formal analysis, writing—review and editing. MGB: 
data curation, writing—review and editing. FA: writing—review and editing. 
AQ: writing—review and editing. AQ: supervision, project administration, writ-
ing—review and editing. All authors read and approved the final manuscript.

Funding
No funding to declare.

Availability of data and materials
The data sets used and/or analyzed during the current study, the KNIME work-
flow and python source code are available from the corresponding author on 
reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Neuroscience Research Center, Department of Medical and Surgical Sciences, 
Magna Graecia University, viale Europa, loc. Germaneto, 88100 Catanzaro, Italy. 

Received: 29 September 2023   Accepted: 1 November 2023

References
 1. Association AS (2018) 2018 Alzheimer’s disease facts and figures. Alzhei-

mer’s Dementia 14:367–429
 2. Sarica A, Vasta R, Novellino F, Vaccaro MG, Cerasa A, Quattrone A, Initiative 

ASDN (2018) MRI asymmetry index of hippocampal subfields increases 
through the continuum from the mild cognitive impairment to the 
Alzheimer’s disease. Front Neurosci 12:576

 3. Mitchell AJ, Shiri-Feshki M (2009) Rate of progression of mild cognitive 
impairment to dementia–meta-analysis of 41 robust inception cohort 
studies. Acta Psychiatr Scand 119:252–265

 4. Sarica A, Cerasa A, Quattrone A (2017) Random forest algorithm for the 
classification of neuroimaging data in Alzheimer’s Disease: a systematic 
review. Front Aging Neurosci 9:329

 5. Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P, 
Papma JM, Steketee RM, Mendez Orellana C, Meijboom R, Pinto M, Meire-
les JR, Garrett C, Bastos-Leite AJ, Abdulkadir A, Ronneberger O, Amoroso 

https://doi.org/10.1186/s40708-023-00211-w
https://doi.org/10.1186/s40708-023-00211-w
http://www.fnih.org
http://www.fnih.org


Page 16 of 17Sarica et al. Brain Informatics           (2023) 10:31 

N, Bellotti R, Cardenas-Pena D, Alvarez-Meza AM, Dolph CV, Iftekharuddin 
KM, Eskildsen SF, Coupe P, Fonov VS, Franke K, Gaser C, Ledig C, Guerrero 
R, Tong T, Gray KR, Moradi E, Tohka J, Routier A, Durrleman S, Sarica A, Di 
Fatta G, Sensi F, Chincarini A, Smith GM, Stoyanov ZV, Sorensen L, Nielsen 
M, Tangaro S, Inglese P, Wachinger C, Reuter M, van Swieten JC, Niessen 
WJ, Klein S (2015) Alzheimer’s disease neuroimaging, I.: Standardized eval-
uation of algorithms for computer-aided diagnosis of dementia based on 
structural MRI: the CADDementia challenge. Neuroimage 111:562–579

 6. Ahmed H, Soliman H, El-Sappagh S, Abuhmed T, Elmogy M (2023) Early 
detection of Alzheimer’s disease based on laplacian re-decomposition 
and XGBoosting. Comput Syst Sci Eng. https:// doi. org/ 10. 3260/ csse. 2023. 
036371

 7. Sarica A, Cerasa A, Quattrone A, Calhoun V (2018) Editorial on special 
issue: machine learning on MCI. J Neurosci Methods. https:// doi. org/ 10. 
1016/j. jneum eth. 2018. 03. 011

 8. El-Sappagh S, Saleh H, Ali F, Amer E, Abuhmed T (2022) Two-stage deep 
learning model for Alzheimer’s disease detection and prediction of the 
mild cognitive impairment time. Neural Comput Appl 34:14487–14509

 9. Sarica, A., Quattrone, A., Quattrone, A.: Explainable boosting machine 
for predicting Alzheimer’s disease from mri hippocampal subfields. In: 
Brain Informatics: 14th International Conference, BI 2021, Virtual Event, 
September 17–19, 2021, Proceedings 14, pp. 341–350. Springer

 10. El-Sappagh S, Alonso JM, Islam SR, Sultan AM, Kwak KS (2021) A multilayer 
multimodal detection and prediction model based on explainable artifi-
cial intelligence for Alzheimer’s disease. Sci Rep-Uk 11:2660

 11. Sarica A, Cerasa A, Quattrone A, Calhoun V (2018) Editorial on special 
issue: machine learning on MCI. J Neurosci Methods 302:1–2

 12. Battista P, Salvatore C, Castiglioni I (2017) Optimizing neuropsychological 
assessments for cognitive, behavioral, and functional impairment clas-
sification: a machine learning study. Behav Neurol 2017:1850909

 13. Hua X, Leow AD, Parikshak N, Lee S, Chiang MC, Toga AW, Jack CR Jr, 
Weiner MW, Thompson PM (2008) Tensor-based morphometry as a 
neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, 
MCI, and normal subjects. Neuroimage 43:458–469

 14. Cabral C, Morgado PM, Campos Costa D, Silveira M (2015) Predicting 
conversion from MCI to AD with FDG-PET brain images at different 
prodromal stages. Comput Biol Med 58:101–109

 15. Chen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C, Lee W, Liu X, 
Bandy D, Alexander GE, Thompson PM, Shaw L, Trojanowski JQ, Jack CR 
Jr, Landau SM, Foster NL, Harvey DJ, Weiner MW, Koeppe RA, Jagust WJ, 
Reiman EM (2011) Characterizing Alzheimer’s disease using a hypometa-
bolic convergence index. Neuroimage 56:52–60

 16. Lee JC, Kim SJ, Hong S, Kim Y (2019) Diagnosis of Alzheimer’s disease 
utilizing amyloid and tau as fluid biomarkers. Exp Mol Med 51:1–10

 17. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, 
DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-
Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, 
Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan 
ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig 
D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, 
Evans D, Lovestone S, Letenneur L, Moron FJ, Rubinsztein DC, Eiriksdot-
tir G, Sleegers K, Goate AM, Fievet N, Huentelman MW, Gill M, Brown K, 
Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green 
R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, 
St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki 
M, Bossu P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox 
NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti 
D, Mancuso M, Matthews F, Moebus S, Mecocci P, Del Zompo M, Maier 
W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert 
JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, 
Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, 
Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber 
KM, Jonsson PV, Combarros O, O’Donovan MC, Cantwell LB, Soininen 
H, Blacker D, Mead S, Mosley TH Jr, Bennett DA, Harris TB, Fratiglioni L, 
Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice 
A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, 
Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada 
M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, 
Mayeux R, Tzourio C, Hofman A, Nothen MM, Graff C, Psaty BM, Jones L, 
Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer 

LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, 
Schellenberg GD, Amouyel P (2013) Meta-analysis of 74,046 individuals 
identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 
45:1452–1458

 18. Klein JP, Moeschberger ML (2003) Survival analysis: techniques for cen-
sored and truncated data. Springer, New York

 19. Cox DR (1972) Regression models and life-tables. J Roy Stat Soc Ser B 
34:187–202

 20. Spooner A, Chen E, Sowmya A, Sachdev P, Kochan NA, Trollor J, Brodaty H 
(2020) A comparison of machine learning methods for survival analysis of 
high-dimensional clinical data for dementia prediction. Sci Rep 10:20410

 21. Orozco-Sanchez J, Trevino V, Martinez-Ledesma E, Farber J, Tamez-Peña J 
(2019) Exploring survival models associated with MCI to AD conversion: a 
machine learning approach. BioRxiv 10:135

 22. Breiman L (2001) Random forests. Mach Learn 45:5–32
 23. Jung JO, Crnovrsanin N, Wirsik NM, Nienhuser H, Peters L, Popp F, Schulze 

A, Wagner M, Muller-Stich BP, Buchler MW, Schmidt T (2022) Machine 
learning for optimized individual survival prediction in resectable upper 
gastrointestinal cancer. J Cancer Res Clin Oncol. https:// doi. org/ 10. 1007/ 
s00432- 022- 04063-5

 24. Chen Z, Xu H, Li Z, Zhang Y, Zhou T, You W, Pan K, Li W (2021) Random 
survival forest: applying machine learning algorithm in survival analysis of 
biomedical data. Zhonghua Yu Fang Yi Xue Za Zhi 55:104–109

 25. Sarica A (2022) Editorial for the special issue on “machine learning in 
healthcare and biomedical application.” Algorithms 15:97

 26. Sarica A, Aracri F, Bianco MG, Vaccaro MG, Quattrone A, Quattrone A 
(2023) Conversion from mild cognitive impairment to Alzheimer’s 
disease: a comparison of tree-based machine learning algorithms for 
survival analysis. In: Feng Liu Yu, Zhang HK, Stephen EP, Wang H (eds) 
International conference on brain informatics. Springer, Cham

 27. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival 
forests. Ann Appl Stat. https:// doi. org/ 10. 1214/ 08- AOAS1 69

 28. Wright MN, Dankowski T, Ziegler A (2017) Unbiased split variable selec-
tion for random survival forests using maximally selected rank statistics. 
Stat Med 36:1272–1284

 29. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach 
Learn 63:3–42

 30. Musto H, Stamate D, Pu I, Stahl D (2023) Predicting Alzheimers disease 
diagnosis risk over time with survival machine learning on the ADNI 
Cohort. arXiv Preprint. https:// doi. org/ 10. 1007/ 978-3- 031- 41456-5_ 53

 31. Song S, Asken B, Armstrong MJ, Yang Y, Li Z (2023) Predicting progression 
to clinical Alzheimer’s disease dementia using the random survival forest. 
J Alzheimer’s Dis. https:// doi. org/ 10. 3233/ JAD- 230208

 32. Molnar C. Interpretable machine learning. Lulu.com (2020)
 33. Molnar C. Interpreting machine learning models with SHAP. Lulu.com 

(2023)
 34. Ali S, Abuhmed T, El-Sappagh S, Muhammad K, Alonso-Moral JM, 

Confalonieri R, Guidotti R, Del Ser J, Díaz-Rodríguez N, Herrera F (2023) 
Explainable artificial intelligence (XAI): what we know and what is left to 
attain trustworthy artificial intelligence. Inform Fusion 99:101805

 35. Sarica, A., Quattrone, A., Quattrone, A.: Introducing the Rank-Biased Over-
lap as Similarity Measure for Feature Importance in Explainable Machine 
Learning: A Case Study on Parkinson’s Disease. In: Brain Informatics: 15th 
International Conference, BI 2022, Padua, Italy. 2022, Proceedings, pp. 
129–139. Springer

 36. Sarica A, Quattrone A, Quattrone A (2022) Explainable machine learning 
with pairwise interactions for the classification of Parkinson’s disease 
and SWEDD from clinical and imaging features. Brain Imaging Behav 
16:2188–2198

 37. Zhang Y, Song K, Sun Y, Tan S, Udell M (2019) “ Why should you trust my 
explanation?” understanding uncertainty in LIME explanations. arXiv 
Preprint. https:// doi. org/ 10. 4855/ arXiv. 1904. 12991

 38. Lundberg SM, Lee SI. A unified approach to interpreting model predic-
tions. Adv Neur In. (2017)

 39. Moncada-Torres A, van Maaren MC, Hendriks MP, Siesling S, Geleijnse 
G (2021) Explainable machine learning can outperform Cox regression 
predictions and provide insights in breast cancer survival. Sci Rep 11:6968

 40. Xu LZ, Cai LC, Zhu Z, Chen G (2023) Comparison of the cox regression to 
machine learning in predicting the survival of anaplastic thyroid carci-
noma. Bmc Endocr Disord. https:// doi. org/ 10. 1186/ s12902- 023- 01368-5

https://doi.org/10.3260/csse.2023.036371
https://doi.org/10.3260/csse.2023.036371
https://doi.org/10.1016/j.jneumeth.2018.03.011
https://doi.org/10.1016/j.jneumeth.2018.03.011
https://doi.org/10.1007/s00432-022-04063-5
https://doi.org/10.1007/s00432-022-04063-5
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1007/978-3-031-41456-5_53
https://doi.org/10.3233/JAD-230208
https://doi.org/10.4855/arXiv.1904.12991
https://doi.org/10.1186/s12902-023-01368-5


Page 17 of 17Sarica et al. Brain Informatics           (2023) 10:31  

 41. Moreno-Sanchez PA (2023) Improvement of a prediction model for heart 
failure survival through explainable artificial intelligence. Front Cardiovasc 
Med. https:// doi. org/ 10. 3389/ fcvm. 2023. 12195 86

 42. Arya V, Bellamy RK, Chen P-Y, Dhurandhar A, Hind M, Hoffman, SC, Houde 
S, Liao QV, Luss R, Mojsilović A. AI Explainability 360 Toolkit. In: Proceed-
ings of the 3rd ACM India Joint International Conference on Data Science 
& Management of Data (8th ACM IKDD CODS & 26th COMAD), pp. 
376–379

 43. Webber W, Moffat A, Zobel J (2010) A similarity measure for indefinite 
rankings. ACM Trans Inform Syst (TOIS) 28:1–38

 44. Nakagawa T, Ishida M, Naito J, Nagai A, Yamaguchi S, Onoda K, Initiative 
ASDN (2020) Prediction of conversion to Alzheimer’s disease using deep 
survival analysis of MRI images. Brain Commun. https:// doi. org/ 10. 1093/ 
brain comms/ fcaa0 57

 45. Mirabnahrazam G, Ma D, Beaulac C, Lee S, Popuri K, Lee H, Cao J, Galvin 
JE, Wang L, Beg MF (2023) Predicting time-to-conversion for dementia 
of Alzheimer’s type using multi-modal deep survival analysis. Neurobiol 
Aging 121:139–156

 46. Sarica A, Di Fatta G, Cannataro M. K-Surfer: a KNIME extension for the 
management and analysis of human brain MRI FreeSurfer/FSL data. In: 
Brain Informatics and Health: International Conference, BIH 2014, Warsaw, 
Poland. 2014. Proceedings, pp. 481–492. Springer

 47. Wright CB, DeRosa JT, Moon MP, Strobino K, DeCarli C, Cheung YK, 
Assuras S, Levin B, Stern Y, Sun X (2021) Race/ethnic disparities in mild 
cognitive impairment and dementia: the Northern Manhattan Study. J 
Alzheimers Dis 80:1129–1138

 48. Parra Bautista YJ, Messeha SS, Theran C, Aló R, Yedjou C, Adankai V, Baba-
tunde S, Evolution ASDPOL (2023) Marital status of never married with 
Rey auditory verbal learning test cognition performance is associated 
with mild cognitive impairment. Appl Sci 13:1656

 49. O’Bryant SE, Lacritz LH, Hall J, Waring SC, Chan W, Khodr ZG, Massman PJ, 
Hobson V, Cullum CM (2010) Validation of the new interpretive guidelines 
for the clinical dementia rating scale sum of boxes score in the national 
Alzheimer’s coordinating center database. Arch Neurol 67:746–749

 50. Pfeffer RI, Kurosaki TT, Harrah CH Jr, Chance JM, Filos S (1982) Measure-
ment of functional activities in older adults in the community. J Gerontol 
37:323–329

 51. Grassi M, Rouleaux N, Caldirola D, Loewenstein D, Schruers K, Perna 
G, Dumontier M (2019) A novel ensemble-based machine learning 
algorithm to predict the conversion from mild cognitive impairment to 
Alzheimer’s disease using socio-demographic characteristics, clinical 
information, and neuropsychological measures. Front Neurol 10:756

 52. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical 
method for grading the cognitive state of patients for the clinician. J 
Psychiatr Res 12:189–198

 53. Estévez-González A, Kulisevsky J, Boltes A, Otermín P, García-Sánchez C 
(2003) Rey verbal learning test is a useful tool for differential diagnosis in 
the preclinical phase of Alzheimer’s disease: comparison with mild cogni-
tive impairment and normal aging. Int J Geriatr Psychiatry 18:1021–1028

 54. Reitan RM (1958) Validity of the trail making test as an indicator of organic 
brain damage. Percept Mot Skills 8:271–276

 55. Donohue MC, Sperling RA, Salmon DP, Rentz DM, Raman R, Thomas RG, 
Weiner M, Aisen PS (2014) The preclinical Alzheimer cognitive composite: 
measuring amyloid-related decline. JAMA Neurol 71:961–970

 56. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen 
RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter 
W, Lee VM, Trojanowski JQ (2009) Cerebrospinal fluid biomarker signature 
in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 
65:403–413

 57. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. 
Segmentation and surface reconstruction. Neuroimage 9:179–194

 58. Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, 
Petersen RC, Shaw LM, Trojanowski JQ, Jack CR Jr, Weiner MW, Jagust WJ 
(2010) Comparing predictors of conversion and decline in mild cognitive 
impairment. Neurology 75:230–238

 59. Hancock JT, Khoshgoftaar TM (2020) Survey on categorical data for neural 
networks. J Big Data 7:1–41

 60. Stekhoven DJ, Buhlmann P (2012) MissForest–non-parametric missing 
value imputation for mixed-type data. Bioinformatics 28:112–118

 61. Aracri F, Bianco MG, Quattrone A, Sarica A. Imputation of missing clini-
cal, cognitive and neuroimaging data of Dementia using missForest, a 

Random Forest based algorithm. In: 2023 IEEE 36th International Sympo-
sium on Computer-Based Medical Systems (CBMS), pp. 684–688. IEEE

 62. Aracri F, Bianco MG, Quattrone A, Sarica A (2023) Impact of imputation 
methods on supervised classification: a multiclass study on patients with 
parkinson’s disease and subjects with scans without evidence of dopa-
minergic deficit. 2023 International Workshop on Biomedical Applica-
tions, Technologies and Sensors (BATS), Catanzaro, Italy, 2023, pp. 28–32, 
https:// doi. org/ 10. 1109/ BATS5 9463. 2023. 10303 151

 63. Ishwaran H, Kogalur UB (2010) Consistency of random survival forests. 
Stat Probab Lett 80:1056–1064

 64. Harvey HB, Sotardi ST (2018) The pareto principle. J Am Coll Radiol 15:931
 65. Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei L-J (2011) On the C-statistics 

for evaluating overall adequacy of risk prediction procedures with cen-
sored survival data. Stat Med 30:1105–1117

 66. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, 
Pencina MJ, Kattan MW (2010) Assessing the performance of prediction 
models: a framework for traditional and novel measures. Epidemiology 
21:128–138

 67. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete 
observations. J Am Stat Assoc 53:457–481

 68. Sandri M, Zuccolotto P (2008) A bias correction algorithm for the Gini 
variable importance measure in classification trees. J Comput Graph Stat 
17:611–628

 69. Ou YN, Xu W, Li JQ, Guo Y, Cui M, Chen KL, Huang YY, Dong Q, Tan L, Yu JT 
(2019) FDG-PET as an independent biomarker for Alzheimer’s biological 
diagnosis: a longitudinal study. Alzheimers Res Ther 11:57

 70. Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L 
(2006) Association between CSF biomarkers and incipient Alzheimer’s 
disease in patients with mild cognitive impairment: a follow-up study. 
Lancet Neurol 5:228–234

 71. Teng E, Becker BW, Woo E, Knopman DS, Cummings JL, Lu PH (2010) 
Utility of the functional activities questionnaire for distinguishing mild 
cognitive impairment from very mild Alzheimer’s disease. Alzheimer Dis 
Assoc Disord 24:348

 72. Krzyziński M, Spytek M, Baniecki H, Biecek P (2023) SurvSHAP (t): time-
dependent explanations of machine learning survival models. Knowl-
Based Syst 262:110234

 73. Kovalev MS, Utkin LV, Kasimov EM (2020) SurvLIME: a method for explain-
ing machine learning survival models. Knowl-Based Syst 203:106164

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.3389/fcvm.2023.1219586
https://doi.org/10.1093/braincomms/fcaa057
https://doi.org/10.1093/braincomms/fcaa057
https://doi.org/10.1109/BATS59463.2023.10303151

	Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer’s disease
	Abstract 
	1 Introduction
	2 Related works
	3 Materials and methods
	3.1 Dataset preparation
	3.2 Missing data
	3.3 Statistical analysis
	3.4 Survival analysis models
	3.5 Performance evaluation
	3.6 Explainability
	3.6.1 Global explanation
	3.6.2 Local explanation


	4 Results
	5 Discussion
	6 Conclusion
	Anchor 17
	Acknowledgements
	References


