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Abstract 

Machine Learning (ML) is nowadays an essential tool in the analysis of Magnetic Resonance Imaging (MRI) data, 
in particular in the identification of brain correlates in neurological and neurodevelopmental disorders. ML requires 
datasets of appropriate size for training, which in neuroimaging are typically obtained collecting data from mul-
tiple acquisition centers. However, analyzing large multicentric datasets can introduce bias due to differences 
between acquisition centers. ComBat harmonization is commonly used to address batch effects, but it can lead 
to data leakage when the entire dataset is used to estimate model parameters. In this study, structural and functional 
MRI data from the Autism Brain Imaging Data Exchange (ABIDE) collection were used to classify subjects with Autism 
Spectrum Disorders (ASD) compared to Typical Developing controls (TD). We compared the classical approach 
(external harmonization) in which harmonization is performed before train/test split, with an harmonization calcu-
lated only on the train set (internal harmonization), and with the dataset with no harmonization. The results showed 
that harmonization using the whole dataset achieved higher discrimination performance, while non-harmonized 
data and harmonization using only the train set showed similar results, for both structural and connectivity features. 
We also showed that the higher performances of the external harmonization are not due to larger size of the sample 
for the estimation of the model and hence these improved performance with the entire dataset may be ascribed 
to data leakage. In order to prevent this leakage, it is recommended to define the harmonization model solely using 
the train set.
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1 Introduction
Autism Spectrum Disorders (ASD) are a neurodevel-
opmental behavioral disorder [1, 2] and refer to a broad 
range of conditions manifesting as deficits in social com-
munication and interaction such as reduced sociability 
or empathy, repetitive behavior. From a neurological per-
spective, numerous investigations have been done on the 

potential link between ASD and variation in the structure 
and function of different brain regions. Structural stud-
ies usually focus on volumetric and morphometric analy-
ses to examine differences in brain anatomy. It has been 
studied how ASD could alter the symmetry between the 
two hemispheres [3] of the brain. In children it has been 
reported an increase in total brain volume as well as an 
enlargement of the left superior temporal gyrus. How-
ever this trend is not well defined for older ages [4]. Func-
tional neuroimaging research mainly focuses on impaired 
connectivity in resting-state images. Different studies 
pointed out a reduced information processing due to syn-
aptic dysfunction that manifests in a reduced or altered 
brain functional connectivity [5, 6].

Neuroscience data are frequently made of a large num-
ber of features (hundreds or thousands), each of them 
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often containing only a small amount of information. 
Moreover, the differences between classes are small and 
consequently hard to detect (low effect size). Machine 
learning is one of the most promising tools to deal with 
complex, non-linear problems and is often used in the 
analysis of neuroimaging data, in particular in the iden-
tification of the most discriminative features between 
different classes of subjects. A drawback of machine 
learning is that datasets of large dimension are required, 
in order to obtain a model able to gention and to main-
tain the same level of performance both on training and 
on new data.

Unfortunately, the number of subjects in these data-
sets is often small (on the order of tens), since it is lim-
ited by the number of subjects that can reasonably be 
involved in a study (low sample size). The reduced num-
ber of subjects implies a serious risk of data overfitting, 
with a consequent need for data reduction methods and 
accurate cross-validation schemes. However, data reduc-
tion may potentially undermine the detectability of a low 
effect size. Jamalabadi et al. [7] show that cross-validation 
in low sample size/low effect size (LSS-LES) data pos-
sesses some counterintuitive properties. In particular, 
classification rates below the chance are often observed 
in LSS-LES data. But also higher performances may not 
necessarily represent larger differences between classes.

Moreover, the dependence of neuroimaging features on 
covariates as age, sex and full intelligence quotient (FIQ) 
has to be taken into account. Age, for example, affects 
both structural and functional data, with an observed 
overgrowth of the brain volume and hyper-connectivity 
in toddlers and subsequent decrease with increasing age 
[8]. Moreover, some brain areas exhibit an increased 
functional connectivity in female subjects, and some 
brain structures show a different aging effect between 
male and female subjects [9]. Also the eye status at scan 
affects the functional connectivity, with strong differ-
ences and higher connectivity in different brain areas 
between subjects with open or closed eyes [10]. Further-
more, patients with closed eyes may fall asleep during 
MRI scan, with consequent heavy modification in the 
functional brain activity.

In machine-learning-based analyses, the increase in 
the number of subjects in the dataset makes the clas-
sifier less prone to overfitting. Consequently, a better 
understanding of the relationship between features and 
class labels is possible, maximizing the classifier ability to 
distinguish between the two groups. Given the reduced 
size of typical neuroimaging datasets, the scientific com-
munity is moving towards the realization of multicentric 
datasets. ABIDE (Autism Brain Imaging Data Exchange) 
is a project aimed at collecting and sharing structural 
and functional magnetic resonance images, together 

with phenotypic data, of individuals with autism spec-
trum disorder and typically developing (TD) controls. 
This data sample has been made publicly available in two 
successive collections: ABIDE I [11] and ABIDE II [12]. 
ABIDE I involves 17 international labs and contains 1112 
patients, of which 539 are subjects with ASD and 573 are 
TD. ABIDE II involves 19 international labs and 1114 
patients, divided into 521 subjects with ASD and 593 TD 
controls. Despite the great advantage of a larger sample 
size, the difficulty of the analysis on a multicentric data-
set is related to the need to eliminate the heterogeneity of 
the data caused by the different acquisition protocols or 
scanners of the individual sites. Ignoring this heterogene-
ity could have a significant impact on the results.

A typical approach to deal with this heterogeneity 
is the harmonization of multicentric datasets, which 
is used to overcome several challenges such as differ-
ences in data collection protocols, data formats, and 
patient populations. A recent review paper [13] offers 
an extensive analysis of the various statistical and deep 
learning techniques that have been developed for image 
harmonization.

In particular, Fortin et  al. [14] propose a data harmo-
nization protocol that aims to eliminate the site effect in 
neuroimaging, while preserving dependence of the fea-
tures on biologically significant covariates. This protocol 
is an adaptation of the ComBat method developed by 
Johnson et al [15] to remove the batch effect in genomic 
data. The NeuroHarmonize tool, proposed by Pomponio 
et al. [16], is suitable to harmonize pooled datasets in the 
presence of non-linear covariate trends. The harmoniza-
tion model parameters are calculated from the TD popu-
lation. The harmonization transformation is then applied 
to the whole dataset. The underlying assumption of the 
NeuroHarmonize method is that all measurements in 
a given sample are drawn from the same reference dis-
tribution, even though there may be differences in age, 
gender, and other variables among the subjects within 
each sample. Patients with an altered functional brain 
map could violate this assumption, therefore their inclu-
sion in the modeling phase may attenuate the differences 
between controls and cases attributable to the disorder 
[16]. This approach is extensively used in harmoniza-
tion of multicentric datasets in the field of MRI imaging 
[17–20]. The method is generally applied as a preprocess-
ing step of the whole dataset, before the (cross-validated) 
classification. However, the use of the whole dataset to 
estimate the parameters of the harmonization model, in 
principle introduces a data leakage, since also the sub-
jects in the test set are used in this estimation. T. Li et al. 
[21] observed that the separation of harmonization from 
downstream analyses leads to an artificial correlation 
between originally-independent subjects. This occurs 
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because batch effects are estimated using all subjects in 
the dataset. Consequently, each harmonized data point 
is influenced by all other data points in the dataset, thus 
leading to correlations between them. This induced cor-
relation, if not accounted for, could result in downstream 
analyses yielding exaggerated or reduced findings. A 
more rigorous approach requires estimating the param-
eters of the harmonization model only on the train set, 
leaving the classification model completely blind to the 
test set. On the other hand, this second approach may 
result in less-accurate estimation of the harmonization 
parameters and hence in reduced performances.

In this work, we investigated different approaches to 
the harmonization of a multicentric dataset and show the 
differences in site distinguishability, classification per-
formances and most important features involved in the 
classification.

2  Materials and methods
2.1  Feature generation
Structural images were processed with Freesurfer [22] 
6.0 with the recon-all pipeline2. Among the all features 
generated by the Freesurfer processing pipeline, as in 
Saponaro et  al. [23], the following brain measures were 
selected:

• volume, mean and standard deviation of the thick-
ness of 62 structures (31 per hemisphere) from the 
Desikan–Killiany–Tourville Atlas [24], for a total of 
186 cortical features;

• 26 volumes of subcortical structures and corpus cal-
losum;

• 9 global quantities: mean thicknesses, cortex vol-
umes, cerebral white matter volumes, for both left 
and right hemispheres; cerebrospinal fluid volume, 
total gray volume and the volume of segmented brain 
without ventricles;

In this way, a total number of 221 brain structural fea-
tures were obtained.

Connectivity data were obtained using C-PAC, which 
is a configurable, open-source pipeline, based on the 
Nipype platform, to perform motion correction, slice 
timing correction, band-pass filtering, spatial smoothing 
and registration.

After preprocessing, average time series were extracted 
using the Harvard-Oxford parcellation [25], obtaining 
110 timeseries for each subject. Out of these 110 ROIs, 7 
were removed because of null time series in a significant 
number of patients. The result is a total of 103 ROIs actu-
ally used per each patient.

The Pearson correlation between two time series was 
used to measure functional connectivity. The Pearson 

correlation coefficients were Fisher z-transformed, in 
order to make them approximately normally-distributed 
[26].

The correlation was computed for each pair of brain 
areas, resulting in 5253 ( Ncomb =

1

2
n(n− 1) independent 

combination for n=103 time series) connectivity feature 
for each subject.

2.2  Data selection
In order to cope with the heterogeneity of the dataset, we 
applied several selection criteria, based on phenotypic 
data (gender, eye status) and data quality, in order to 
make the dataset as homogeneous as possible.

Since data selection obviously reduces the amount of 
available data, we applied different selection strategies, 
with an increasingly restrictive approach.

• As a first approach we started from the dataset used 
in Saponaro et  al. [23]: males, age between 6 and 
40 years. From the initial set of 2226 subjects of the 
ABIDE collection, we excluded 65 subjects due to 
unsuccessful preprocessing with Freesurfer and 262 
subjects due to unsuccessful C-PAC preprocessing. 
Thus, we obtained 1899 subjects processed with both 
structural and functional pipelines. From this data-
set, we selected only male subjects aged between 6 
and 40 years, excluding 1211 subjects. According to 
these selection criteria, the resulting dataset consists 
of 688 subjects. This dataset will be referred to as 
minSC (minimal selection criteria).

• A second approach was driven by quality controls in 
fMRI data. We limited our analysis to males, eyes-
open, for which Full Intelligent Quotient is avail-
able (FIQ>0). Moreover, we used the Mean Frame-
wise Displacement (mean fd parameter provided by 
CPAC) to assess the movement of the patient’s head 
from one volume to the next one. Mean fd is esti-
mated by summing the absolute displacement values 
calculated at each timepoint. Subjects with mean fd 
values less than 3 MAD (Median Absolute Devia-
tion) were regarded as outliers. Furthermore the 
patients excluded from minSC, due to a failure in the 
preprocessing pipelines, are excluded also from this 
set. This dataset will be referred to as fQC (selection 
criteria based on fMRI quality controls) and contains 
618 subjects.

• In order to reduce the impact of covariates on clas-
sification, we also limited our analysis to a narrower 
age range (9–20 years). The age selection is applied 
post-harmonization, allowing the harmonization 
procedure to estimate the covariate dependence on 
a wider age range. Due to the reduction of subjects, 
we also removed from the analysis sites with less 
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than 30 subjects. For these additional selection crite-
ria, the label as (age selection) is added to the dataset 
name. These datasets consist of 520 and 473 subjects, 
respectively, for minSCas and fQCas.

For each selection, the database numerosity is reported 
in Table 1, while the numerosity for each site and for each 
dataset, is reported in Additional file 2: Table S1, with the 
complete list of subjects IDs for each selection, for repro-
ducibility purpose.

2.3  Classification strategy
The supervised binary classification of ASD and TD 
classes was performed using Support Vector Machines 
(SVM) [27]. SVMs are particularly effective at handling 
noisy and correlated features and can yield superior 
results compared to other classifiers when dealing with 
datasets that have a small number of samples and a large 
number of features [28]. We used the SVM implemented 
in the Scikit-learn [29], a Python open-source machine 
learning library, in its variant with the Gaussian radial 
basis function (RBF) kernel, using the default parameters. 
We employed a stratified 5-fold cross-validation scheme 
to train the Support Vector Classifier (SVC) model, with 
the objective of achieving balanced training across the 
classes and across the sites. This scheme was repeated 
50 times to ensure robustness of the results. We applied 
a feature scaling function, the Scikit-learn RobustScaler, 
which performs a median subtraction and scales the data 
using the interquartile range (IQR). The feature scaling 
function was computed within each fold of the 5-fold 
cross-validation scheme and for each repetition.

The classification performance was evaluated using 
the area under the ROC curve (AUC). The receiver 
operating characteristic (ROC) curve [30] represents 
the performance of the classifier at different decision 
thresholds and the AUC is a global index that can be 
used to compare the ROC curves of different classifiers. 
The AUC represents the probability of correctly rank-
ing a case–control pair and can be estimated from the 
ROC curve [31]. The AUC was calculated for each fold 

and repetition, and the results were aggregated across 
the 5 test folds and 50 repetitions to obtain the mean and 
standard deviation of the AUC, which served as perfor-
mance metrics for the SVC model.

2.4  Harmonization approaches
We used the NeuroHarmonize [16] package harmoniza-
tion tool. The model is always estimated using the TD 
subjects, and then applied to all subjects. The utilization 
of the harmonization process in case–control compara-
tive studies necessitates having access to suitable control 
population data. Essentially, the harmonization model 
parameters are derived from the TD population, and sub-
sequently, the harmonization transformation is applied 
to all the subjects. The underlying premise of the Neu-
roHarmonize approach is that each measurement in the 
samples originates from the same reference distribution, 
despite potential variations in age, gender, and brain fea-
tures among subjects in each sample. The inclusion of 
patients with structural or functional brain alterations 
could challenge this assumption and, moreover, incor-
porating them into the harmonization process would 
dampen disease-related effects [16]. We used the age and 
site as covariates, supposing a linear dependence on age. 
ASD status is not used as covariate, since it has to be sup-
posed unknown for the test set.

We implemented the following 4 different harmoniza-
tion strategies:

• No harmonization. Data is used without any attempt 
to correct potential site effects.

• External harmonization. The harmonization is 
applied before the CV scheme, as a preprocessing 
step, using all the TD of the dataset to estimate the 
parameters of the harmonization model. Hence the 
harmonization is outside the CV loop.

• External harmonization, by using 4/5 of the TD sub-
jects. The harmonization is applied before the CV 
scheme, using 4/5 of the TD of the dataset to esti-
mate the parameters of the model. This approach 
wants to replicate the same numerosity of subjects in 
estimating the harmonization parameters of the next 
approach (internal harmonization), considering that 
we are using a 5-fold CV scheme, but still allowing 
data leakage in the harmonization step. At each repe-
tition, the 4/5 of the controls are extracted randomly 
per each site and then assembled, in order to prop-
erly represent the numerosity of each site.

• Internal harmonization. In this approach the har-
monization model is estimated by using only the 
TD subjects in the training set, for each fold and for 
each repetition of the CV scheme. Following this 
approach, no data leakage is possible from the test 

Table 1 Numerosity of the different selected datasets

The total number of subjects, the total number of TD and of ASD are reported 
for each dataset

minSC minimal selection criteria,  minSCas minimal selection criteria age 
selection,  fQC fMRI quality controls, fQCas fMRI quality controls age selection

minSC minSCas fQC fQCas

TD 344 265 320 247

ASD 344 255 298 226

Total 688 520 618 473
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set. In this case, the harmonization is inside the CV 
loop.

2.5  Efficacy of different harmonization strategies
The results of the different harmonization approaches 
were evaluated by testing the performance of a classifier 
in recognizing a site in a two-class classification problem, 
for each pair of sites. For the task, we used only the TD 
subjects of each site and the site name as a label. An SVM 
rbf was used as classification model, used in a k-fold 
(k=5) CV scheme, repeated 10 times. In order to reduce 
the influence of overfitting, we used the Principal Com-
ponent Analysis (PCA) [32] as a dimensionality reduc-
tion method. PCA is an unsupervised machine learning 
technique aimed at reducing the dimension of the sam-
ples that compose the dataset. This is achieved through a 
linear transformation of the features: the original features 
are projected into a new Cartesian coordinate system. 
In this coordinate system, the new features, now called 
Principal Components (PCs), are ordered by variance. 
As a result, the PC with the highest variance is projected 
onto the first axis, the second PC onto the second axis, 
and so forth. By selecting the number of PCs to consider, 
the dimensionality of the problem is reduced.

In order to limit LSS-LES effects, we used the first 20 
Principal Components (PCs) of the feature set and we 
reduced the test to the sites with at least 20 TD subjects 
per site. The results are reported in terms of AUC for 
each pair of sites. As a single metric for each approach, 
we also reported the median (and interquartile range) of 
all the AUCs.

In order to show the effect of covariate dependence 
preservation, we also reported the age dependence of a 
selected set of features, for both structural and connec-
tivity data.

2.6  Feature importance
One of the most relevant topics in ML analysis of neuro-
logical and neurodevelopmental disorders, is to point out 
the most relevant features involved in the identification 
of the pathology. If these results are strongly affected by 
the harmonization procedure, any possible finding has to 
be accurately investigated.

In order to quantify the contribution of each feature 
to the SVM model, feature permutation importance has 
been implemented [33]. The main idea behind permu-
tation importance is to look at the impact of each fea-
ture on the performance of the model by measuring the 
decrease of a certain classification score when a feature 
is not available. The score variation obtained through 
permutation importance quantifies the importance of 
each feature and higher the score, higher the variation 

of the model performance. As a general rule one could 
remove the features and re-train the classifier. However 
this approach could be computationally complex because 
it needs to train the classifier a number of times equal to 
the number of features. To avoid re-training the classi-
fier many times, a feature is removed from the test part 
of the dataset and replaced with random noise so that 
the feature column is still there but it does not contain 
useful information anymore. The noise has to be drawn 
from the same distribution as original feature values, 
otherwise the estimator might fail. The simplest way to 
generate this kind of noise is to shuffle values for a fea-
ture, for example using other feature values. We used 
the feature permutation importance implemented in the 
ELI5 python library [34]. The function provided in the 
library takes into account a trained estimator, a validation 
dataset, a scoring metric and it returns the importance 
score for each feature. The importance score indicates 
the resulting drop in model performance: the larger the 
drop in performance when a feature is shuffled, the more 
important that feature will be considered. We used the 
AUC as a scoring metric and computed the permuta-
tion importance for each fold of the 5-fold cross-valida-
tion, repeated 50 times. The final results were obtained 
as the average importance score across the 5 folds and 50 
repetitions.

We carried out the feature permutation importance 
analysis for the three different harmonization approaches 
used in this work: no harmonization, external and inter-
nal harmonization. The purpose of the analysis was to 
investigate whether the most important features for the 
classification differ when using one approach instead of 
another. Through comparing the feature permutation 
importance scores for the three approaches, we aimed to 
obtain insights into whether data harmonization might 
affect the model’s predictive performance.

3  Results
3.1  Effects of the harmonization strategies
As a first result of the different harmonization 
approaches, we report their effect on the age dependence 
of a set of selected features. Figure  1 shows the impact 
of external and internal harmonization techniques, com-
pared to non-harmonized data, on the cortical thickness 
of the left hemisphere. The boxplots show the distribu-
tions of the features, which are grouped by site. Sites 
are reported in ascending order of median age of their 
population. The large inhomogeneity of non-harmonized 
data (right) almost masks the typical age dependence of 
these features. Harmonized data (with both external and 
internal harmonization) present a reduced inhomogene-
ity, which allows the emergence of dependence on age. 
Figure 2 shows the same results for feature 1385 relative 
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to the connectivity between right postcentral gyrus and 
right occipital fusiform gyrus. In this case, a particular 
age dependence of the feature is not expected. However, 
the inhomogeneity of non-harmonized data is again 
greatly reduced by the application of harmonization 
technique.

The results of site identification in a two-class clas-
sification approach are reported in Table  2. Results are 
reported in terms of median, 25 interquartile and 75 
interquartile of the AUC performances of SVM rbf clas-
sifiers for each pair of sites. We observe that in the first 

row, which refers to non-harmonized datasets, the clas-
sifier is able to perfectly identify the sites, showing a 
median AUC between 0.98 and 0.99, regardless of the 
dataset and the type of feature used. Looking at the clas-
sification performance related to external harmonization, 
external and 4/5 external, the median AUC values range 
between 0.41 and 0.58. These values are significantly 
lower compared to the case of non-harmonized data-
sets, with median AUC values close to the chance level. 
Regarding the classification performance with the inter-
nal harmonization approach, we obtain median AUC 

Fig. 1 Effect of external (center) and internal (right) harmonization approaches on a structural features, left hemisphere cortical thickness, 
compared with the non-harmonized (left) scenario. The boxplots display the distributions of the features, grouped by site, which are sorted 
by increasing median age

Fig. 2 Effect of external (center) and internal (right) harmonization approaches on a connectivity features, 1385, compared with the not 
harmonized (left) scenario. The boxplots display the distributions of the features, grouped by site, which are sorted by increasing median age
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values ranging between 0.63 and 0.68. These values still 
show a significant reduction of distinguishability between 
sites with respect to non-harmonized data. However, in 
this case, a slight difference between sites is still appreci-
able. See Additional file  1  for AUC scores for each cou-
ple of sites, for the different harmonization approaches, 
dataset and feature set that we investigated.

3.2  Classification results
The classification results for ASD/TD, using various 
feature sets, data selections and harmonization strate-
gies, are reported in Fig. 3. The best classification results 
are obtained for the external harmonization scheme. 
This result stands for each data selection and for both 
structural and connectivity features. The 4/5 external 

harmonization approach shows similar performances. 
On the other hand, the internal harmonization presents 
lower performances, comparable (within the fluctuation) 
with non-harmonized data. The decrease in classifica-
tion performances for internal harmonization cannot be 
due to the reduced size of the sample in estimating the 
harmonization parameters: in fact the dataset used to 
estimate the model parameters in 4/5 external harmoni-
zation has (by design) the same numerosity of the dataset 
used in internal harmonization.

3.3  Feature importance
The importance scores were used to identify the most 
important features for the SVM model classification for 
the three harmonization schemes: external, internal and 

Table 2 Median, 25 interquartile and 75 interquartile AUC performance of SVM rbf classifier in discriminating TD subjects of different 
sites, for each harmonization approach and each dataset, using 20 PCs

minSC minimal selection criteria,  minSCas minimal selection criteria age selection, fQC fMRI quality controls,  fQCas fMRI quality controls age selection

Structural features Connectivity features

minSCas fQCas minSCas fQCas

No harmonization 0.99 [0.97; 1.00] 0.99 [0.96; 1.00] 0.98 [0.93; 1.00] 0.99 [0.95; 1.00]

External 0.44 [0.35; 0.50] 0.41 [0.34; 0.48] 0.53 [0.43; 0.54] 0.49 [0.45; 0.53]

4/5 External 0.50 [0.44; 0.58] 0.47 [0.39; 0.54] 0.58 [0.51; 0.60] 0.52 [0.47; 0.57]

Internal 0.67 [0.59; 0.70] 0.63 [0.61; 0.69] 0.68 [0.58; 0.69] 0.66 [0.60; 0.70]

Fig. 3 The ASD/TD classification results are reported, for different feature sets and harmonization strategies
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no harmonization. After obtaining the feature permu-
tation importance score for each feature, for both con-
nectivity and structural features, we selected the 30% of 
the most important features: 1576 for connectivity fea-
tures and 66 for structural features. In Fig.  4 we show 
scatter plots of the 30% most important features for no 
harmonization (left) and for external harmonization 
(right), versus the ones for internal harmonization. Plots 
are reported for structural (top) and connectivity (bot-
tom) features, for the minSC dataset. The correlation of 
the feature importance values of internal harmonization 
with the feature importance of the other two methods is 

67% for plot A in Fig. 4, 96 % for plot B, 74% for plot C, 
88% for plot D. The correlation between the three meth-
ods is high, especially between the internal and external 
schemes. For consistency, for a single harmonization 
scheme, we also checked the correlation among various 
folds in the cross-validation, which is always in the order 
of 82% for connectivity features and 96% for structural 
features (the heatmaps of the inter-method correlations 
and intra-method correlation between different folds of 
CV are shown in the Additional file  1).

Then we looked whether there were common impor-
tant features among the three different harmonization 

Fig. 4 Structural (A–B) and connectivity (C–D) features of minSC dataset. Comparison between the no-harmonization 
and the internal-harmonization criteria (A–C) and between the external-harmonization and the internal-harmonization criteria (B–D). We show 
the 30% of the most important features for the internal-harmonization method in order to see what are the feature importance values of the same 
features for the no-harmonization method
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approaches. We found that, in the 1576 most impor-
tant connectivity features, 1015 (64%) were in com-
mon between the three harmonization method using 
the minSC dataset, and 782 (50%) using the fQC data-
set; for the structural features, in the top 66 features, 45 
(68%) were in common between the three harmonization 
methods using the minSC dataset, and 39 (60%) using the 
fQC dataset. Detailed results are reported in the tables in 
the Additional file  1: the 30% of the most important fea-
tures for internal harmonization are presented, with their 
ranking and importance. The ranking and importance of 
that features is also reported for the other two methods. 
Standard deviation of the importance, calculated over the 
50 repetitions, is also reported. The common features for 
the three harmonization methods are marked with “C”, 
common, while features that are not in the 30% of the 
most important ones for external harmonization and no 
harmonization are marked with “NP”, not present.

Correlations seem to show a good agreement of fea-
ture importance among different methods. However, by 
looking at most important features, these are generally 
defined by a threshold: in this case we considered the 
30% of the most important features for the internal har-
monization. In these cases, a relevant number of these 
features are absent in the 30% of the most important ones 
for the other methods, since their importance position 
changes, showing some differences in the feature impor-
tance across the three harmonization methods (these 
results are shown in the tables in the Additional file  1). 
This observation leads us to state that the interpretation 
and evaluation of the most important features, along with 
their potential implications within a specific pathological 
context, are influenced by the choice of a specific harmo-
nization approach and dataset.

4  Conclusion
Our results show that site distinguishability and classi-
fication performances depend on the multicentric data 
harmonization scheme. The external harmonization, 
which is the most widely used scheme, presents the best 
performances in both tasks. These results stand for both 
structural and connectivity features and for each of the 
investigated data selections. However, the best perfor-
mances achieved by the external harmonization scheme 
do not necessarily imply that this is the correct approach. 
The use of a cross validation scheme for which the train-
ing is not completely blind to the test set, may of course 
alter these results.

In our opinion, the comparison between the inter-
nal harmonization scheme and the 4/5 external one, 
for which the size of the sample for the estimation of 
the harmonization parameters is the same, clearly 
shows the presence of a bias for the second method. 

Consequently, also the excellent harmonization per-
formances obtained in the external scheme may be 
affected by this bias. The internal scheme is not able to 
perform a complete elimination of the site effect, but 
provides more reliable results due to the complete sep-
aration between training and test sets.

The features that most contribute to the classification 
task differ significantly among the different harmoniza-
tion schemes. Hence, when a classification task is used 
to identify brain regions, morphological or connectivity 
features which are the most involved in the discrimina-
tion of a neurological or neurodevelopmental disease, 
the dependence of these results has to be taken into 
account. In this case, our suggestion is to use the most 
rigorous harmonization approach, which is the one car-
ried out only on the training dataset, i.e. inside the CV 
loop (internal one).
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ML  Machine learning
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