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Abstract 

In order to grasp and transport an object, grip and load forces must be scaled according to the object’s properties 
(such as weight). To select the appropriate grip and load forces, the object weight is estimated based on experience 
or, in the case of robots, usually by use of image recognition. We propose a new approach that makes a robot’s weight 
estimation less dependent on prior learning and, thereby, allows it to successfully grasp a wider variety of objects. This 
study evaluates whether it is feasible to predict an object’s weight class in a replacement task based on the time series 
of upper body angles of the active arm or on object velocity profiles. Furthermore, we wanted to investigate how pre‑
diction accuracy is affected by (i) the length of the time series and (ii) different cross‑validation (CV) procedures. To this 
end, we recorded and analyzed the movement kinematics of 12 participants during a replacement task. The partici‑
pants’ kinematics were recorded by an optical motion tracking system while transporting an object, 80 times in total 
from varying starting positions to a predefined end position on a table. The object’s weight was modified (made 
lighter and heavier) without changing the object’s visual appearance. Throughout the experiment, the object’s weight 
(light/heavy) was randomly changed without the participant’s knowledge. To predict the object’s weight class, we 
used a discrete cosine transform to smooth and compress the time series and a support vector machine for super‑
vised learning from the achieved discrete cosine transform parameters. Results showed good prediction accuracy (up 
to 95% , depending on the CV procedure and the length of the time series). Even at the beginning of a movement 
(after only 300 ms), we were able to predict the object weight reliably (within a classification rate of 88− 94%).
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1 Introduction
Recent motor control research has suggested that the 
central nervous system uses so-called forward mod-
els to simulate the sensorimotor consequences of an 
action prior to completing it [1]. Through this simula-
tion, the sensorimotor consequences of an action can 

be anticipated and, if necessary, error corrections can be 
implemented with minimal delay. For example, when lift-
ing or moving an object, the initial grip and load forces 
are scaled according to the anticipated properties of the 
object, such as its weight [2]. The object’s properties 
are typically anticipated based on previous experience 
and knowledge. When we, for example, expect that the 
milk carton we are about to pick up from a shelf is full, 
we anticipate that it will be certain weight and scale our 
grasp and load force appropriately before we pick it up. 
If, contrary to our expectation, the milk carton is empty, 
our forward model would be flawed resulting in exces-
sive lifting velocity and height. To counter this, we acti-
vate feedback-error correction mechanisms. Information 
about an object’s weight can also be extracted from the 
observed kinematics of another person lifting or moving 

Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Brain Informatics

†Lena Kopnarski and Laura Lippert equally contributed to this work.

*Correspondence:
Claudia Voelcker‑Rehage
claudia.voelcker‑rehage@uni‑muenster.de
1 Department of Neuromotor Behavior and Exercise, Institute of Sport 
and Exercise Sciences, University of Münster, Wilhelm‑Schickard‑Str. 8, 
48149 Münster, Germany
2 Applied Functional Analysis, Chemnitz University of Technology, 
09107 Chemnitz, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40708-023-00209-4&domain=pdf


Page 2 of 12Kopnarski et al. Brain Informatics           (2023) 10:29 

the object [3]. That is, heavy objects affect the movement 
kinematics differently than light objects. When handing 
an object from one person to another, this information is 
important for the receiver’s creation of an accurate for-
ward model and, thus, increases the likelihood the joint 
action task will be completed successfully. Therefore, in 
this study, we investigate how changing the weight of 
an object is reflected in the movement kinematics of an 
actor during a pick-up and replacement task.

The prediction of the physical properties of objects 
also plays a major role in robotics [4]. It is assumed that, 
in the future, the use of robotic devices will increase in 
many fields including construction, manufacturing, and 
everyday assistance and care robots [5]. Assistance/care 
robots, in particular, pose the additional challenge of 
human–robot interactions. As a result, interactions with 
unknown objects within unknown environments will 
become increasingly important [6]. To guarantee reliable 
grasping, it is essential that the robot will be able to apply 
a suitable grip force. If too little grip force is applied, the 
object will slip and may be dropped. However, too much 
grip force can damage an object or lead to awkward 
object handovers between humans and robots. To date, 
determining an object’s weight before a robot has had 
physical contact it has been a major challenge and several 
possible solutions have already been proposed including 
image recognition [7] and thermography [4]. Another 
approach that could be important, especially in human–
robot handover actions, is to predict the object’s weight 
by analyzing the human kinematics while they manipu-
late the object. This method could be used to provide a 
suitable online weight estimation before the robot’s first 
contact with the object and would, therefore, have an 
advantage over image recognition by being independent 
of whether the object class is already known or not.

Different object properties affect the kinematics in 
reach–grasp–manipulation tasks in different ways. The 
grip force required for a pick-up and replacement task is 
primarily dependent on the object’s weight. When grasp-
ing a known object, it is not only the target grip force 
that increases as object weight increases, the temporal 
pattern of grip force initiation (grip force development 
rate) increases as well. As the grip force development 
rate increases with object weight, the target grip force 
is generated at a similar duration, regardless of whether 
the object being lifted is light or heavy. Consequently, the 
duration between the first contact with the object and 
the start of the lifting movement should be independent 
of object weight [8]. However, this only seems to apply 
when the weight of the object is known. If the object’s 
weight is unknown or different than expected, this affects 
the grip force development rate in the time between first 
contact and the lifting of the object [9]. More precisely, 

if the object is heavier than expected, then the duration 
between first contact and the lifting phase is longer, and 
if the object is lighter than expected, then it is shorter [3, 
10]. Although grasp duration seems to be dependent of 
the object weight, it could be shown that humans prob-
ably mainly consider the lifting velocity in the prediction 
of the object weight [3]. Therefore, it is reasonable to 
assume that observing how a person moves while lifting 
an object might provide information about the object’s 
weight that could facilitate appropriate grip force scal-
ing even if the object’s weight is unknown or it cannot 
be detected reliably based on size alone. Therefore, we 
hypothesize that the movement kinematics following the 
grasp phase of a replacement task might provide the nec-
essary information.

In this study, we investigated whether information 
about the weight (light/heavy) of an object can be deter-
mined based on the movement kinematics of an actor 
in an object pick-up and replacement task. In the past, 
essential information (pattern recognition) has been 
extracted from complex multidimensional kinematic data 
using various multivariate statistical models and machine 
learning algorithms, such as cluster analysis [11]. Our 
literature search identified manifold pattern recognition 
use cases in, for example, the design process for intelli-
gent wearable devices [12], clinical gait analysis [13], and 
non-clinical biomechanical research [14]. One of the 
main goals of machine learning is to search for distinct 
patterns in movement kinematics in order to identify or 
qualitatively classify separate movement phases or actors. 
For example, previous research has shown that machine 
learning can be used to predict different disorders in the 
sensorimotor control system including Parkinson’s dis-
ease [15], cerebral palsy [16], and stroke [17]. These appli-
cations are, therefore, useful because they can identify 
certain degenerative disorders at an early stage, classify 
different subtypes of diseases based on their behavio-
ral impact and assess therapeutic success. Furthermore, 
research on healthy individuals has shown that machine 
learning can be used to classify person’s emotional state 
[18] and to identify the specific movement characteristics 
of various throwing disciplines [19].

Many studies have focused on classifying gait and full-
body kinematics. However, upper extremity tasks includ-
ing object replacements and handover tasks have been 
less frequently investigated. Classifying upper limb move-
ments may be particularly useful in interactions between 
humans and robotic agents. Social gestures, for example, 
can be classified with high accuracy [20] and, as such, 
may be used as an explicit form of communication with 
robots. It may also be possible to use machine learning 
to detect convention in human movements [21] which 
would allow robotic agents to anticipate human actions 
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and develop a response plan/action more quickly. In 
addition, pattern recognition and classification may also 
be useful during joint action tasks, such as a handover, 
as it facilitates the predictive modeling of key parameters 
necessary to successfully participate in such collabora-
tive tasks [22]. The time profiles of kinematic data can be 
used to predict key properties in such scenarios. It has 
already been shown that the object weight class can be 
predicted with an accuracy of around 0.35 above the odds 
in a handover action by using the giver’s kinematics [23]. 
A standardized experimental setup of invariant object 
start position was used in the former study. Therefore, it 
is still an open question whether object weight prediction 
is also possible when the kinematic data originates from 
experimental setups with greater variance by randomiz-
ing the object’s start position.

In this paper, we present a new approach in which we 
use cosine transformation for reduction of multidimen-
sional movement kinematics data from a pick-up and 
replacement task in order to classify the weight class of 
the transported object (light/heavy) from it by use of a 
support vector machine (SVM). Two different types of 
kinematic data were extracted from the dataset: (1) we 
used the time series of the angles between upper body 
segments (upper/lower arm, hand), and (2) the veloc-
ity profiles of the object during object transport. Fur-
thermore, we investigated the prediction accuracy i) in 
relation to time series of different lengths (i.e., to detect 
whether early weight prediction is possible) and ii) in 
relation to different cross-validation (CV) procedures 
based on a) random training/testing subsets over all 

participants or b) training/testing subsets that are split by 
participants. Ultimately, the results of this study will help 
to establish when and how accurately artificial agents 
can anticipate the weight class of an object based on the 
observed movement kinematics of an individual, infor-
mation which, we anticipate, will be an advantage that 
facilitates using robotic devices as receivers of objects in 
joint handover tasks.

2  Methods
2.1  Participants
Twelve healthy participants (3 female) aged 24.2± 1.7 
years (range 22–28 years) participated in the experi-
ment. All participants had normal or corrected-to-nor-
mal vision. Two male participants were left-handed and 
all other participants were right-handed. All participants 
were students at the University of Münster, Germany, in 
the faculty of Psychology & Sport Sciences.

2.2  Materials
2.2.1  Motion tracking
A passive marker-based optical motion capture system 
(Vicon Motion Systems Ltd, Oxford, UK) with 10 cam-
eras was used to record the participants’ motions and the 
motion of a test object at a sampling frequency of 100 Hz. 
Seventeen spherical reflective markers with a diameter 
of 6.4 mm were attached to the participant’s upper body 
(head, trunk, shoulders, right arm; see Fig. 1). The marker 
set was based on the Plug-in Gait model [24]. The follow-
ing upper body angles were extracted (with Nexus [24]) 
for the right arm: between the upper body and upper arm 

Fig. 1 Marker setup. Positions of the 17 reflective markers (based on the Plug‑in Gait model, Vicon, 2022)
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(flexion/extension, abduction/adduction, internal/exter-
nal rotation), the upper arm and forearm (flexion/exten-
sion), the forearm and hand (flexion/extension, ulnar/
radial deviation), and the hand rotation along the longi-
tudinal axis of the forearm (identified by the Plug-in Gait 
as wrist rotation).

2.2.2  Test object
A self-constructed, 3D-printed test object was used to 
assess upper body movements during a replacement task. 
This test object included four force transducers for the 
measurement of grip forces (not used for this study) and 
five infrared LEDs (embedded in the base) which allowed 
the object’s motion to be tracked in the Vicon system. 
Two different size test objects were used. Both objects 
had an identical base ( 8 cm× 8 cm× 8 cm ) housing the 
LEDs and in which a weight (502  g) could be attached 
inside the object without changing the exterior appear-
ance. The grasping surfaces of the two objects differed in 
size and distance from each other ( 5 cm× 5 cm× 5 cm ; 
8 cm× 8 cm× 8 cm ) and were arranged one on top of 
the other on top of the base (see Fig. 2). Only the upper 
(yellow) grasping surfaces were used for this study. The 
small object weighed 341 g in the light condition (with-
out attached weight) and 843  g in the heavy condition 
(with attached weight). The large object weighed 372 g in 
the light condition (without attached weight) and 874 g 
in the heavy condition  (with attached weight). In order 
to provide more variance in the kinematics (besides the 
starting position of the object), which is independent of 
the object weight class, half of the participants performed 
the pick-up and replacement task with the small object 
size, and the other half with the large object size.

2.2.3  Task and procedures
We designed a pick-up and replacement task, in which 
the participant grasped an object in a defined start 
position and placed it in a specific end position. Two 
objects, different in size and weight, were used to 
capture the upper body kinematics in relation to the 
object’s weight class. Markers were attached to the par-
ticipants’ trunk and upper arm according to the Plug-
in Gait marker set (see Fig. 1). Participants were seated 
at a table on a height-adjustable stool. The stool was 
adjusted so that the elbow was bent at 90◦ when the 
forearm was placed on the table and the palm of the 
hand rested flat on the table. Participants were asked 
to take this position at the beginning and end of each 
trial. Before commencing the experimental trial, the 
setup was calibrated to the participant’s specific model 
by taking a static measurement in the rest position fol-
lowed by a dynamic measurement that involved the 
participant moving all the joints in their arm.

Four different object starting positions (near/ele-
vated, near/on the table, far/elevated, far/on the table) 
were used to ensure some variance in the arm move-
ments. The start position of the object was varied 
in height (3  cm or 18  cm above the table surface, see 
Fig.  3) and distance (see Fig.  4). The target position 
where the object was to be placed remained fixed, a 
20.5 cm× 17 cm area marked with tape and centered 
in front of the participant (see Fig.  3). Four blocks of 
20 trials were performed ( M = 80 ), so that each set of 
conditions was repeated 10 times (4 start positions × 2 
weight classes) in pseudo-randomized order across the 
trials. The Vicon cameras were recalibrated before each 
block, which required the participant to stand up and 
leave the recording field. Accordingly, participants had 
approximately 5  min during each inter-block interval 
in which they could stand and move freely around the 
room.

At the start of a trial, the participant sat in the start 
position, the Vicon measurement was initiated and the 
object was on a foam pad placed in the object start posi-
tion. The object was then switched on (so that the infra-
red LEDs could be tracked) and the experimenter said 
“okay” signaling to the participant that they could start 
the pick-up and replacement task. The participant then 
moved their right hand to the object, grasped it by the 
upper grasping surface and placed the object in the tar-
get position on the table. Participants were free to choose 
the grasp type and the number of fingers with which they 
grasped the object, with the only restriction being that 
they only touched the yellow surfaces of the object. The 
participant then moved back to the start/end position 
and the experimenter stopped the Vicon measurement. 
In total, each session lasted about 2 h.

Fig. 2 Test objects. Small (left) and large (right) object with a base 
of 8 cm× 8 cm× 8 cm and grasping surfaces of 5 cm× 5 cm× 5 cm 
or 8 cm× 8 cm× 8 cm , respectively. A weight of 502 g can be 
embedded in the base body
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2.3  Analyses
2.3.1  Data preprocessing
The recorded data consisted of time series for the 
object velocity or the measured upper body angles, i.e.,  
αi for i = 1, . . . ,N  . For studying the velocity profiles of 
the object, we calculated the velocity of a point in the 
middle of the object, to be able to neglect the rotation 
of the object in z-direction. In order to compare the 
time series, they were each cut to their start and end 
point. The start point was taken as the first time stamp 
in which increase in the object’s height was detected. 
We then tested ending the time series with two differ-
ent approaches: The first approach was to study the 
time series at the beginning of the lifting process and 
to use the first T measured points. Hence, we modeled 
each time series using the functions

which we sampled at the discrete time points

For comparison, we used a second approach where we 
cut the time series to the time te when the objects’ height 
reached its final position as determined by the measure-
ment of the objects’ height. This resulted in time series of 
different lengths for each trial. The mean length was 163 
time stamps, i.e., 1630 ms, the minimum and maximum 
trial lengths were 1090  ms and 2260  ms, respectively. 
The different trial lengths were normalized to 1, where 
we used for every trial instead of the given time stamps 
t1, . . . , te the normalized time stamps.

Any missing data were interpolated linearly. An exam-
ple based on the upper body angle time series, αi(t) , 
of one participant’s trials, using the first T = 100 data 
points is plotted in Fig. 5.

2.3.2  Prediction procedure
The aim was to extract the information from the time 
series, αi(t) , which classifies the object’s weight. We either 
used the three velocity directions of the object, which 
means N = 3 or all the angles of the right arm, which gave 
a total of N = 7 angles. There were several reasons why it 
was not feasible to use the raw measured time series for 
classification. First and foremost, the measurements were 
noisy and had to be smoothed. Using all, approximately 
163 · 3 = 489 or 163 · 7 = 1141 , data points for each trial 
would have provided far too many features given infor-
mation was collected for 960 trials. Furthermore, at spe-
cific times, the angles were not robust against changes in 
absolute position and the same movement from a slightly 

(1)αi(t), t ∈ [0, 1], i = 1, . . .N ,

0,
t2−t1
tT−t1

,
t3−t1
tT−t1

, . . . ,
tT−1−t1

tT−t1
, 1.

Fig. 3 Experimental setup with both object sizes. Left: small object, near, elevated. Right: large object, far, on the table. The object was placed 
in one of the starting positions marked by the white rectangles on the right‑hand side. The rectangle immediately in front of the participant marked 
the end position of the object

Fig. 4 Task setup. Position of the start (S) and end (E) locations
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different starting position could result in completely dif-
ferent angles.

Therefore, we performed the following feature extrac-
tion: each time series, αi(t) , can be viewed as a smooth 
function defined on [0, 1], which facilitates the decompo-
sition in basis functions. The half-period cosine basis is 
particularly useful in this case as it allows for every angle, 
i, to approximate the corresponding time series well by

The half-period cosine basis is a good choice for the 
approximation of non-periodic functions, as in this 
case, the decay rate is O(n3/2) and the coefficients a(i)

k
 

can be calculated easily and quickly at specific points 
in each time series using the discrete cosine transform 
[25, Chapter 6]. Therefore, we described the time series 
αi(t) using n = 8 parameters a(i)

k
 , k = 0, . . . , n− 1 which 

is, in contrast to the full time series, a very compressed 
expression. Another advantage of this procedure is that 
the sum of cosine functions smooths out any inaccura-
cies in the measurements that caused noisy data in the 
original time series. In Fig.  5, we used dashed lines to 
plot the approximate times series α̃i(t) for n = 8 in addi-
tion to the measured time series αi(t) for the upper body 
angles approach. As seen in Fig. 5, the 8 parameters per 
time series appropriately captured the behavior of the 
functions, while fewer parameters would cause bigger 
discrepancies between the measured and approximated 
times series. For that reason, we worked with n = 8 in the 
following analysis. Similar choices of n did not affect the 
results significantly.

Overall, for M = 80 · 12 = 960 trials, we had n = 8 
parameters for each of the N time series. This can be con-
sidered as data compression. In other words, we received 
a matrix X ∈ R

(nN )×M containing the parameters a(i)
k

 

(2)αi(t) ≈

n−1∑

k=0

a
(i)

k
cos(πkt) =: α̃i(t), i = 1, . . .N .

for every trial. Furthermore, we had the label vector 
y ∈ {−1, 1}M , which assigns −1 to a trial with low weight 
and 1 to a trial with high weight.

For the classification, we used Julia’s SVM, which is 
contained in LIBSVM [26] in the machine learning pack-
age. Different strategies for a train/test split and CV were 
used to evaluate how good our classification was. First, 
when performing the CV for all trials, we split all trials 
randomly 80/20 in training and test data sets. In a sec-
ond analysis (CV person-wise) we used the trials from 2 
participants as the test set and the trials from all other 
participants as the training set. In general, we standard-
ized the values in X in the training trials using a Z-trans-
formation that transformed the mean and the variance of 
every column of X to zero and one, respectively. It was 
necessary to do this because the parameters a(i)

k
 were 

scaled differently. In the prediction of the trials in the test 
set we had to transform the values in X belonging to the 
test trials by the same transformation like the training 
set.

3  Results
The parameters a(i)

k
 cluster by person as shown in Fig. 6. 

It can also be observed (especially in Fig.  6a) that the 
parameters cluster with respect to the object’s start posi-
tion (near vs. far). Thus, the individual and the starting 
position both significantly affect the parameters. Hence, 
in order to predict the object weight class, which is 
depicted in Fig. 6 by the shape of the markers, it is neces-
sary to identify differences in the parameters a(i)

k
 for the 

two different weights. Therefore, as described in Sect. 2.3, 
an SVM as a machine learning approach was used for 
classification.

3.1  Object weight prediction using upper body angles
Using the prediction strategy described in Sect.  2.3, we 
attempted to determine whether the object was light or 

Fig. 5 Exemplary time series data. Solid: data αi(t) of one person for three of the seven angles. Black, dashed: Approximated time series α̃i(t) 
with n = 8 . The colors belong to the heavy (red) and light (blue) object. We show the case T = 100 , i.e., using the first second of the time series. 
For every angle we show three trials for the heavy and the light object, respectively
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heavy based on the participant’s upper body angles. The 
results of the classification rates, as determined by the 
CV for various times (T) in the time series, are summa-
rized in Fig. 7 (solid lines). We always conducted the CV 
procedure 10 times. The mean classification rate is shown 
Fig. 7.

As shown in Fig. 7, the results of the SVM returned a 
successful prediction rate of over 90% . This supports 
our hypothesis that the upper body angles, especially the 
parameters of the cosine transform include information 
about the object weight class. In relation to the best time 
point to predict the object weight, we revealed that, over-
all, the prediction accuracy was good ( 88.3% all trials or 
79.5% person-wise) even within the first 300 ms. The high-
est prediction accuracy ( 92.7% all trials or 81.4% person-
wise) was achieved within the first second. The prediction 
accuracy after 1 s was more reliable than the prediction 
made based on the complete time series ( 87.3% all trials 
or 78.5% person-wise).

Two different CV procedures were performed: the all 
trials CV procedure led to a higher prediction accuracy 
than the person-wise CV procedure at all points in the 
time series.

3.2  Object weight prediction using object velocity
It was expected that the absolute lifting velocity of the 
object would change with the random change of the 
object weight class. Our results confirmed this (Fig.  8). 
We observed that light objects are lifted faster, which 
means that there is a difference in the velocity for lighter 
and heavier objects at the beginning of the lifting pro-
cess. This was observed in all participants. For compari-
son, we give in Fig. 9 the mean maximum vertical velocity 
for every person with respect to the object weight class. 
These maxima differ for all persons, but there is no uni-
versal threshold for all persons, which allows a classifica-
tion with the same accuracy as our approach. A universal 
threshold gives prediction accuracy of about 70% . So, the 

Fig. 6 Parameter distribution. The parameters a(i)
k

 for k = 0, 1 for three of the seven different angles and all M = 960 trials. The different colors 
belong to trials from different persons. The shape belongs to the object’s weight. The two different transparencies belong to the different starting 
positions front/back. We show the case T=100, i.e., using the first second of the time series
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prediction accuracy benefits from the machine learning 
approach.

The results of this prediction from object velocities are 
also shown in Fig. 7 (dashed lines). Considering the CV 
results at the different points in the time series, together 
with the results of both CV procedures (all trials and per-
son-wise), the total performance of the prediction based 
on object velocity was better than that based on upper 
body angles. In the all trials CV procedure, the object-
based prediction reaches an accuracy of more than 95% 
and is also nearly 95% for all time series lengths T. Also in 

the person-wise CV test, the object-based prediction led 
to better performance of more than 90% . Also the stand-
ard deviations for the object-based predictions is smaller 
compared to upper body angle-based approach.  In con-
trast: The prediction made based on the normalized 
complete time series led to similar prediction accuracy 
(86.4 % all trials or 78.5 % person-wise) as the prediction 
using upper body angles.

4  Discussion
In this study, we investigated whether the weight class 
of an object can be predicted based on upper body and 
object kinematics during an object replacement task and 
whether the prediction can be successful regardless of the 
participant and the object’s starting position. Therefore, 
we used discrete cosine transformation for smoothing 
and data compression as well as SVM for classification 
using basis function parameters. Furthermore, we inves-
tigated how different (i) data lengths and (ii) CV proce-
dures affect prediction accuracy.

The results showed that varying the object’s start posi-
tion and the individual characteristics of participants 
have a large influence on the upper body profile of each 
move. Nevertheless, the object weight class was pre-
dicted with a high classification accuracy rate based on 
the upper body angles or object velocity, both when con-
sidering 300ms after the participant’s first contact with 
the object and the entire object transport in a time-nor-
malized manner.

4.1  Classification accuracy in other studies
To predict the object weight class, we used upper body 
angle time series. We could not find any study in which 
object properties were predicted based on kinematics 
in a pick-up and replacement task. However, previous 
studies have investigated machine-learning approaches 
and classification based on human movement kinemat-
ics in other domains. For example, Shetty and Rao 
[13], proposed an approach to detect Parkinson’s dis-
ease based on gait kinematics and achieved an accu-
racy of about 83%. Classification procedure in Shetty 
and Rao [13] differed remarkably from our approach. 
They selected individual temporal parameters within 
the gait data, such as the duration for which both feet 
are in contact with the ground in a gait cycle. In addi-
tion, relative gait data were taken into account, such as 
the percentage of time in a gait cycle when both feet 
are in contact with the ground. When comparing the 
prediction accuracy, which was similar to that of our 
approach, it should also be noted that the participants 
in Shetty and Rao’s [13] study were known Parkin-
son’s patients while the participants in our study were 
healthy young adults. Considering that the gait quality 

Fig. 7 Mean classification rates. Mean classification rates 
of object weight prediction out of upper body angles (solid lines) 
versus out of velocity profiles of the object (dashed lines) using 
different CV strategies and different length of the grasp‑process. 
The solid lines belong to the prediction from the upper body 
angles of the participant. For comparison, the dashed lines belong 
to the prediction from the velocity profiles of the object. The 
vertical lines depict the standard deviation of the classification rates, 
respectively

Fig. 8 Object velocities. The mean of the absolute values 
of the object velocity in z‑direction for all trials for the different 
weights of the objects. The standard deviation is shaded, respectively
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of a Parkinson’s patient is usually very different from 
that of healthy subjects, it can be assumed that the 
discrimination should not be a major challenge for a 
machine-learning approach. Accordingly, we consider 
the classification accuracy we obtained from a homo-
geneous group as stronger than the classification accu-
racy achieved by Shetty and Rao [13]. Furthermore, it 
should be kept in mind that we were able to show, as 
other studies have [22, 27–30], that the kinematics of 
each individual are distinct. As a person is assigned to 
either the patient or healthy group and cannot switch 
between these roles, individual factors (unrelated to 
Parkinson’s disease) may improve classification. How-
ever, this would only increase the performance in a 
sample study, not in the field.

The only study, we are aware of that has also exam-
ined arm kinematics was undertaken by Bosco and 
colleagues [31]. Participants in that study were asked 
to perform grasping movements towards visually indi-
cated targets. Bosco and colleagues [31] were able to 
predict performance (trajectory deviation) from the 
kinematics of grasping movements. For this purpose, 
both healthy participants and a participant with a 
parieto-occipital lesion were tested. Based on the per-
formance, the researchers were able to distinguish the 
patient from the healthy subjects using a linear dis-
criminant function. Overall, the prediction accuracy 
varied between 75% and 95% and a prediction accu-
racy of about 90% was achieves after only 20% of the 
movement had been executed. They analyzed arm 
movements using a much simpler classification pro-
cess. Yet, the prediction accuracy for the distinction 
between patients and healthy subjects was very high. 
However, as in the study by Shetty and Rao [13], it can 
be assumed that this distinction was not as demand-
ing as it would have been in a homogeneous group. The 

prediction accuracy of the healthy subjects was around 
80%. Therefore, our results show higher accuracy in 
comparison to this study as well.

4.2  Accurate classification can be achieved as early as 300 
ms

One of our aims was to evaluate the classification accu-
racy depending on the length of the time series (e.g., 
whole time series vs. the first 300 ms of the time series). 
Our results show that this approach achieved a good pre-
diction accuracy within the first 300 ms, with the high-
est prediction accuracy achieved when considering the 
first second. This result is in line with previous studies 
that have shown that the early part of the lifting phase is 
particularly valuable for object’s weight prediction [3, 32]. 
That is, the prediction was more reliable based on the 
data from the first second of the movement than if the 
entire trial was taken into account. We suggest that this 
is due to the fact that time-normalization was necessary 
to compare time series of different lengths. Within this 
normalization some information about time and velocity 
was lost. In contrast, when using the first T time series 
data points, velocity information was retained. Further-
more, we assumed that considering the entire movement 
included more noise, which led to a lower prediction 
accuracy.

One likely explanation is that important information 
needed for the prediction of the object’s weight class is 
contained in the beginning of the lifting movement. 
When a receiver observes a giver lifting an object prior to 
a joint handover action, adjustment of the internal model 
is possible as early as 300  ms into the movement. That 
is, the prediction accuracy improves within the follow-
ing 300  ms (see Fig.  7), after which it deteriorates. This 
means that robots should focus, primarily, on the first 
600  ms in total instead of seeking to observe the whole 

Fig. 9 Maximal vertical velocity The mean of the maximum vertical velocity of the object in z‑direction (left) and the mean time for reaching this 
maximum (right) for the two object weight classes (person‑wise)
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action. This result also suggests that robots (intended to 
perform joint handover actions with humans) should be 
designed with a focus on observing the start of a lifting 
movement when making weight class predictions and 
calculating the necessary grip and load forces. In addi-
tion, this would have the additional advantage that, after 
the initial prediction there is still time to carry out the 
calculation of the grip and load forces.

Being able to predict object weight class at an early 
point in the action makes this approach a promising pos-
sibility in human–robot interaction. For example, if a 
robot is able to classify the object properties at such an 
early point in the handover action, this may facilitate an 
online adaptation of the required execution.

4.3  Person‑wise CV yields poorer classification accuracy 
than all trials CV

When analyzing Fig. 6, we noticed that the data seems to 
be clustered by person, which is presumably due to par-
ticipant anthropometry on the one hand, but also indi-
cates a high degree of individuality in the movement. 
This individuality occurs even though the data were 
recorded under controlled laboratory conditions. This 
observation has also been made in previous studies in 
other actions, including gait [27–30], eye movement [33], 
and facial movement [34]. Moreover, this individuality of 
movement has also been detected in hand movements or, 
more precisely, handover actions [22]. We assume that 
this individuality is also the reason for the variation in 
prediction accuracy between CV procedures. If the train-
ing and test data were split between persons (person-wise 
CV), this led to a generally lower prediction accuracy 
compared to randomly splitting the data across all par-
ticipants (all trials CV). Due to the inter-individual dif-
ferences in movements, the prediction works well when 
the data from one person are contained in both the train-
ing and test data. However, in order to implement this 
prediction approach in possible joint actions between 
humans and robots, we need to obtain classification 
strategies that are as universally valid as possible. This 
would make it possible to run spontaneous actions with 
different people smoothly without the need for a prior 
learning phase. In order to avoid this application issue, 
particularly large training data sets, based on as many 
different people as possible, should be used. Therefore, 
we suggest that this approach be tested in more com-
plex setups and with a variety of different people to test 
whether our results can be generalized.

4.4  The highest classification accuracy achieved 
by observing object velocity profiles

Our study revealed, that the weight class of an object 
can be classified by observing the upper body angle 

profiles of a person grasping and replacing the object or 
observing the object velocity profiles. Overall, our clas-
sification accuracy based on object velocity profiles was 
higher than for our classifications based on upper body 
angles. This could be because the object weight class was 
changed randomly, i.e., the participants did not know the 
weight class of the object in any given trial. Therefore, 
they could not anticipate the lift force required, which 
resulting in greater difference in lifting velocities depend-
ing on the object’s weight class [8, 9]. This indicates 
that, there is a large amount of information contained in 
object velocity , which is consistent with earlier findings 
[3, 32, 35]. This conclusion is supported by Figs. 8 and 9 
which shows that the velocity profile, especially the ver-
tical dimension, in a replacement task are influenced by 
the object weight class. Furthermore, this result is con-
sistent with a previous study by Johansson and Westling 
[8] which demonstrated that the maximum lifting veloc-
ity depends on object weight. The prediction accuracy of 
the object velocity-based approach might be reduced if 
the person is aware of the object’s weight class and can 
anticipate the load force required. It follows that further 
studies should examine whether the proposed object 
weight class prediction approach is robust to the person’s 
awareness of the object’s weight class. Furthermore, it is 
demonstrated (see Fig. 7) that the CV procedure has less 
influence on the object velocity-based classification than 
on the upper body angle-based approach. We assume 
that the CV procedure has a minor influence on the pre-
diction accuracy of the object-based approach, as inter-
personal physiological differences are negligible when 
considering object velocity alone.

4.5  Limitations
It should be noted that in this experiment a very simple 
and standardized action was performed, namely a pick-
up and replacement task. However, everyday life involves 
much more complex object transport actions (e.g., hand-
over actions). In contrast to the experiment conducted 
here, more time-critical actions and variations in the 
object’s end position increase the variance in a person’s 
movement. Therefore, we propose that this approach 
should be tested further in relation to more complex 
actions.

Furthermore, it should be noted that the upper limb 
Plug-in Gait model is a simplified model that is pro-
posed for the study of arm movements during gait, but 
it is unclear how well the calculated angles are suited for 
a comprehensive consideration of arm kinematics. Nev-
ertheless, the results of our study show that, even using 
this simplified model, predictions about the object weight 
class can be made with high accuracy.
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Only two different weights were used in this study, 
i.e., only a distinction was made between the two object 
classes “light” and “heavy”. Therefore, it is difficult to 
assess whether it is possible to estimate the weight of an 
object based on the arm kinematics. To overcome this 
limitation, we suggest that future studies should inves-
tigate whether the approach presented here also works 
with a higher number of different weight classes and 
finer gradations between the weight classes. Such further 
research could then indicate whether and, if so, how the 
estimation of object weight based on upper body angles 
could be implemented in such actions.

Due to the random variation in object weight class, 
the participants could not develop an accurate internal 
model for the object property weight. Accordingly, it 
can be assumed that a flawed forward model was used 
to generate grip and load forces each time the task was 
performed. This would have necessitated a large feedback 
correction. This feedback correction is reflected in the 
results of the object velocity in z-direction (Fig.  8) and 
we observed the expected effect of excessive lift velocity 
and height during the trials involving the lighter object 
weights. It is possible that the velocity profile of the lifting 
movement was influenced more by the conditions (light 
vs. heavy) than would have been the case if the partici-
pants had known the object weight class before perform-
ing the task. Therefore, we suggest that future studies 
include an additional control block in which the partici-
pants have to replace the light and then heavy object in a 
blocked condition.

5  Conclusion and future directions
In this study, our aim was to predict the object weight 
class using time series of the upper body angles and 
object velocities in a replacement task. We found that it 
was possible to distinguish between “heavy” and “light” 
objects with a high prediction accuracy, even very early 
(after 300ms) in the execution of the movement. Fur-
thermore, it was shown that the accuracy of the predic-
tion depends on the CV procedure used, that is, splitting 
the data across all trials leads to a higher accuracy than 
splitting by person due to the significant inter-individual 
differences. This raises the question of whether the pre-
diction approach can become reliable enough for robot–
human interactions, or whether more emphasis should 
be placed on individualized analysis. The prediction 
based on object velocities was less affected by the CV 
procedure and provided higher overall accuracy.

This approach enriches robotics research in the field 
of human–robot interaction. In order to make actions 
between humans and robots (e.g., handover actions) as 
intuitive as possible, robots need to be able to estimate 
the weight of an unknown object in order to anticipate 

the grip forces needed in any given situation. To improve 
this ability, the approach presented here could supple-
ment and improve the adaptability of current methods 
such as image recognition [7] and thermography [4].
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