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Abstract 

Objective Clinical and surgical decisions for glioblastoma patients depend on a tumor imaging-based evaluation. 
Artificial Intelligence (AI) can be applied to magnetic resonance imaging (MRI) assessment to support clinical practice, 
surgery planning and prognostic predictions. In a real-world context, the current obstacles for AI are low-quality imag-
ing and postoperative reliability. The aim of this study is to train an automatic algorithm for glioblastoma segmenta-
tion on a clinical MRI dataset and to obtain reliable results both pre- and post-operatively.

Methods The dataset used for this study comprises 237 (71 preoperative and 166 postoperative) MRIs from 71 
patients affected by a histologically confirmed Grade IV Glioma. The implemented U-Net architecture was trained 
by transfer learning to perform the segmentation task on postoperative MRIs. The training was carried out first 
on BraTS2021 dataset for preoperative segmentation. Performance is evaluated using DICE score (DS) and Hausdorff 
95% (H95).

Results In preoperative scenario, overall DS is 91.09 (± 0.60) and H95 is 8.35 (± 1.12), considering tumor core, enhanc-
ing tumor and whole tumor (ET and edema). In postoperative context, overall DS is 72.31 (± 2.88) and H95 is 23.43 
(± 7.24), considering resection cavity (RC), gross tumor volume (GTV) and whole tumor (WT). Remarkably, the RC 
segmentation obtained a mean DS of 63.52 (± 8.90) in postoperative MRIs.

Conclusions The performances achieved by the algorithm are consistent with previous literature for both pre-
operative and post-operative glioblastoma’s MRI evaluation. Through the proposed algorithm, it is possible to reduce 
the impact of low-quality images and missing sequences.
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1 Introduction
Glioblastoma is the most common adult malignant pri-
mary brain tumor [1, 2]. Despite the advances in thera-
peutic options and management, survival of patients 
with glioblastoma remains around 15–18  months, with 
a 5-year overall survival of approximately 5% [3–5]. In 
order to improve the prognosis of the disease, research 
attempts are focused on new tools to individualize the 
therapeutic approach according to clinical, radiological, 
and molecular characteristics. Magnetic resonance imag-
ing (MRI) is an essential tool for glioblastoma evaluation, 
providing necessary information to set up the best thera-
peutic strategy, both in preoperative decisions and in 
postoperative management, for each individual patient. 
Furthermore, MRI-based segmentation allows for volu-
metric assessment of different tumor components and, 
thus, precise surgical planning [6, 7]. The current stand-
ard of MRI segmentation for tumoral lesions relies on 
manual measurements; however, this method is not only 
time-consuming, but also not reproducible due to inter-
operator variability [7–13]. For this reason, semi-auto-
matic and completely automatic segmentation algorithms 
have been developed and evaluated in previous studies 
[14, 15]. With the recent development of Deep Convo-
lutional Neural Networks (DCNNs) such as U-Net, now 
widely used for segmentation of medical images, the level 
of accuracy has increased [16].

Growing efforts to apply Artificial Intelligence (AI) to 
medical imaging analysis has resulted in the availability 
of larger datasets and improvements to software per-
formances [17]. For research purposes, MRIs have been 
collected and benchmarked in large datasets, such as the 
Brain Tumor Image Segmentation (BraTS) dataset [9, 14].

Despite the good results obtained in the evaluation of 
preoperative images [7, 18–20], AI MRI segmentation is 
limited in its postoperative evaluation and external valid-
ity [7, 10]. Limitations in postoperative MRI evaluation 
are partly due to artifacts, caused by blood and air in the 
resection cavity, and logistical issues in collecting data 
regularly from the same patient during follow-up. More-
over, the results obtained from most of the algorithms are 
not easily reproducible in the clinical context since they 
are frequently trained on curated and standardized data-
sets that do not include suboptimal quality images.

Obtaining a reliable system for postoperative auto-
matic segmentation of MRI would bring many benefits 
to clinical practice. First, automatic segmentation would 
guarantee a fast and objective evaluation of MRI. This 
would be useful in optimizing and personalizing admin-
istration of treatment specific to unique features present 
in each case. Additionally, a well-trained algorithm may 
be able to perceive more than human experts can, possi-
bly obtaining further information about the likely disease 

progression. Finally, it is important to train the algorithm 
to be considerate of common clinical practice issues, 
such as the heterogeneity of data and the frequent lack 
of MRI sequences (non-contrast enhanced T1 and T2 are 
not always included in MRI datasets). Hence, the main 
objective of the study is to obtain a valid segmentation 
algorithm in the postoperative scenario that can be a use-
ful tool in the assessment of tumor volumes during the 
oncologic follow up of glioblastoma patients, moving AI 
closer to clinical practice maintaining the level of reliabil-
ity previously obtained in other studies.

2  Methods
2.1  Dataset
The neurosurgery unit of the hospital Molinette (AOU 
Città della Salute e della Scienza di Torino) acquired 
a dataset comprising 71 patients who underwent sur-
gery at the institute, with histologically confirmed Glio-
blastoma Grade IV. All MRI scans acquired in situ were 
accessible by default on the hospital SYNAPSE® Mobility 
PACS system. Scans acquired in a different center were 
routinely uploaded onto the BRAINLAB© neuronavi-
gation system of the neurosurgery department. At the 
time of hospitalization, written consent for personal, 
biological, and radiological data processing for scientific 
purposes was explicitly asked and registered on the Inter-
System TrakCare©information system. The present study 
was approved by the local Institutional Review Board 
(n. 00162/2022). The following exclusion criteria were 
applied: underage subject (< 18  years old), absence of 
T1 contrast enhancing (T1ce) or fluid attenuated inver-
sion recovery (FLAIR) MRI sequences, postoperative 
complications (e.g., hemorrhage or abscess) which could 
possibly invalidate the segmentation, or absence of histo-
logical confirmation. For each patient, one or more scans 
were available, including preoperative and postoperative 
images, with acquisition-time ranging from immedi-
ately after the surgery (max 48 h) to 12 months later. For 
each MRI scan, a volumetric T1ce sequence and a FLAIR 
sequence were added to the radiological database.

The data were anonymized before processing, as 
instructed by the EU General Data Protection Regu-
lation, using the specific function available in the 
HOROS©DICOM image viewer.

2.2  Semi‑automatic segmentation
Both preoperative and postoperative segmentations 
were performed semi-automatically through the Smart-
Brush feature of the Cranial Planning workflow inside the 
BRAINLAB© neuronavigation system (Build 3.3.1.404). 
The volumetric representation was reconstructed by the 
software by combining the semi-automatic segmenta-
tions in the axial, coronal, and sagittal planes. The axial 
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view was then extracted and, if necessary, manually 
adjusted. The process was carried out individually by 4 
neurosurgeons, and 1 medical student. All the segmen-
tations were revised and confirmed by a senior neuro-
surgeon with 25-year expertise in neurooncology and a 
neuroradiologist.

The segmented classes consisted of tumor core (TC), 
enhancing tumor (ET), and whole tumor (WT, includ-
ing ET and FLAIR hyperintensity) for the preoperative 
images; resection cavity (RC), gross tumor volume (GTV, 
including RC and ET) and WT (including RC, ET and 
FLAIR hyperintensity) were the classes for the postop-
erative images. For both preoperative and postoperative 
cases, whole tumor segmentation was performed on the 
FLAIR sequence, whereas the remaining two classes on 
the T1ce one.

2.3  Harmonization
Since the model (cfr. next section for architectural speci-
fications) is pre-trained on the BraTS 2021 dataset, in 
order to allow for processing postoperative MRIs col-
lected from the Molinette Hospital, it is necessary to har-
monize them in a BraTS-like manner by implementing 
both uniform atlas registration and skull-stripping.

The whole pipeline is available through the Cancer 
Imaging Phenomics Toolkit [22, 23], but it was only fol-
lowed for the SRI-24 atlas co-registration portion.

Therefore, co-registration to the SRI-24 template with 
uniform isotropic resolution (1   mm3) was performed 
[21]. Skull-stripping was instead performed through 
SynthStrip [24].

The CaPTk pipeline required the presence of four scan 
modalities—FLAIR, T1, T1ce, and T2—but only FLAIR 
and T1ce were always present in the dataset. Hence, the 
burned-in segmentations, i.e., MRIs with class segmenta-
tion “burned-in” inside of them as high-intensity regions, 
were used as T1 (burned-in T1ce) and T2 (burned-
in FLAIR). SynthStrip was then applied to extract the 
brain mask from the original end-of-pipeline T1ce scan, 
with the resulting mask adopted for all remaining scans 
(Fig. 1).

Once both raw and burned-in data were regis-
tered to the SRI-24 atlas and skull-stripped, all classes 
were extracted by retrieving high-intensity regions. 
The complete segmentation was built by overlapping 
such extracted regions, i.e., by joining the necrosis/RC 
(respectively, for pre/post-operative scans), the ET, and 
the peripheral edema.

2.4  Proposed architecture
The selected architecture was the winning contribution 
to the BraTS 2021 challenge, a 3D U-Net derived from 
the nnU-Net framework [25]. Therefore, following the 

official NVIDIA GitHub repository, the nnU-Net founda-
tional skeleton, the preprocessing and the training sched-
ule were implemented. Pre-training on preoperative 
BraTS dataset was performed for 150 epochs while all 
other relevant hyperparameters such as the ones govern-
ing data augmentation, regularization, cross-validation 
or post-processing, were kept as presented in the work by 
Furtega et al. [25] By processing the complete segmenta-
tions described in the last section into the three overlap-
ping classes previously presented, ground truth for the 
training process was obtained. The network was trained 
on a high performance computing (HPC) server using 
one 32G V100 nVIDIA GPUs. One of the challenges 
do be the tackled was the varying number of sequences 
available in clinical studies. Indeed, T1 and T2 sequences 
were frequently absent in the dataset, whereas exist-
ing architectures for preoperative sequences are trained 
to produce the segmentation based on four sequences 
(which are T1ce, FLAIR, T1, T2). This issue can be 
tackled in several ways: on one hand, one could simply 
remove sequences that are not commonly available in all 
studies to train the postoperative segmentation network.

On the other hand, one could seek to artificially synthe-
size the missing sequences using image modality transla-
tion (IMT) techniques (Fig. 2).

In this work, this last proposal was chosen: a 2D U-Net, 
receiving as input single MRI slices, was built in order 
to learn from the BraTS dataset the non-linear mapping 
between available and desired sequences.

These artificial sequences, although in a way “halluci-
nated” by the network, could be used in place of miss-
ing sequences, thus allowing the network to be trained 
on studies with a variable number of sequences. In 
this study, both strategies were compared. The modi-
fied U-Net structure originally proposed by Osman and 
Tamam [26] was implemented to artificially synthesize 
the missing sequences, stacking T1ce and FLAIR, hence 
exploiting information from both of them, instead of sim-
ply using a single sequence as input. The network was 
trained for 50 epochs with mixed precision on the BraTS 
2021 dataset. The underlying U-Net required 2D inputs, 
therefore for each iteration a 3D scan was selected and a 
random selection of 64 2D slices (being this a reasonable 
amount of slices to balance computational cost and learn-
ing performances), possibly flipped along the two dimen-
sions, was extracted and fed as a batch. The network was 
trained with the default Adam optimizer with a learning 
rate of 0.0003, which decays following a cosine schedule. 
Output images were shaped 224 × 224 so post-processing 
was applied to resize, re-orient and pad them in their 
BraTS form. Gaussian sharpening was also applied as 
further data augmentation. The synthesis was carried out 
using the T1ce MRI acquisition, as the additional use of 
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non-volumetric FLAIR scans would eventually generate 
noisy outputs.

The network proposed by Futrega et  al. [25] and pre-
trained on preoperative brain tumor segmentation, was 
fine-tuned on the Molinette postoperative dataset to 
reap the benefit of Transfer Learning (TL) [27] . Several 
TL—strategies have been investigated to experimen-
tally determine the best balance between underfitting 
and overfitting. All configurations with frozen layers in 
depth levels 1–7 have been studied, but no performance 
improvement or relevant advancement were observed. 
As a result, fine-tuning, consisting of tuning all weights 
from the pre-trained model, was chosen for the final 
experiments.

Fine-tuning on postoperative cases was performed for 
200 epochs with a learning rate of 0.0007, which decays 
following a cosine schedule having 0.25 as cosine cycles 
parameter. The other relevant hyperparameters were kept 

the same as in the preoperative cases. A more aggressive 
data augmentation strategy was adopted by increasing 
the probability of applying a given transformation from 
0.15 to 0.5: as suggested by Zhang et al., a more aggres-
sive data augmentation might help in improving the 
model´s generalizability when trained on a small dataset 
[29].

2.5  Performance analysis
2.5.1  Cross‑validation
A fivefold cross-validation was performed on the Moli-
nette dataset with the purpose of maximizing the use of 
available data, while providing a more reliable estimation 
[27]. The dataset was split at the patient level to ensure 
that different folds are statistical independent, i.e., the 
network is not trained and tested on scans from the same 
patient. Thus, it was possible to estimate how well the 
model generalizes on never-before-seen individuals.

Fig. 1 Application of the final BraTS harmonization pipeline for the patients in the Molinette dataset, comprising SRI-24 co-registration performed 
with CaPTk and skull-stripping by SynthStrip. A Preoperative (first and whole row—FLAIR; second, necrosis, core rows—T1ce). B Postoperative (first 
and whole rows—FLAIR; second, cavity, enhancing rows—T1ce). The previous figure comprises in detail all the steps required in the pipeline: N4 
bias correction for magnetic field inhomogeneities, LPS/RAI voxel re-orientation, SRI-24 co-registration and skull-stripping. The first two rows show 
the harmonization pipeline for two examples coming from the BraTS dataset (left, preoperative) and the Molinette dataset (right, postoperative). It 
is worth noticing that the Atlas co-registration modifies the depth dimension (i.e., the number of slices), therefore the most similar interpolated slice 
is here shown for visual representation
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Non-volumetric scans were included in order to 
have a dataset representative of common clinical sce-
narios. Nevertheless, patients with non-volumetric 
scans were only included in the training set and not 

in the validation set, since nowadays non-volumetric 
scans are less frequent in clinical practice, and thus it 
was better to test only on standard scans without com-
promising the validation of the algorithm.

Fig. 2 Application of the IMT U-Net architecture to postoperative MRI from the Molinette Hospital dataset. The different rows refer to representative 
slices from five randomly extracted patients (blue: cavity, yellow: enhancing, green: whole)
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Finally, STAPLE algorithm was used to evaluate and 
compare all output segmentations returned by the 
fivefold cross-validation [28] (Fig. 3).

2.5.2  Post‑processing
Post-processing was applied in order to bring back the 
three overlapping regions to the default ones of edema, 
ET, and RC. Specifically, if the probability of a voxel 
being classified as either GTV or edema was ≤ 0.45, it 
was classified as background. Else, if the probability of 
being classified as GTV was ≤ 0.4, then the voxel was 
classified as edema. If the probability of being a GTV 
voxel was > 0.4 and the same held for the probability of 
being classified as RC, then the voxel was identified as 
such (or simply ET if the latter was not true). Moreo-
ver, any connected component identified as RC smaller 
than 16 voxels with an overall probability smaller than 
0.9 was ignored and classified as ET instead (Fig.  3). 
These values were determined via a grid search on 
the 5 folds, starting from the parameters proposed by 
Futrega et al. [25] for the preoperative case.

3  Results
The dataset comprised 237 MRIs (71 preoperative and 
166 postoperative) from 71 patients. All sequences 
were acquired on 1.5 or 3.0 Tesla, with 230*230 mm2 or 
less FOV and matrix size 512 × 512 or 1024 × 1024. The 
characteristics and number of those MRIs are summed 
up in Table 1.

3.1  Preoperative results
Evaluation was performed on two different configu-
rations of available scans: the “complete” one, i.e., the 
one comprising all four sequences (FLAIR, T1, T1ce 
and T2), and the “most-informative subset” one, i.e., 
the one comprising just FLAIR and T1ce sequences. 
The complete configuration included as T1 and T2 the 
ones artificially synthesized through the 2D U-Net IMT 
method described above.

DS values and H95 are obtained by comparing results 
obtained from the automatic segmentation performed 
by the trained algorithm with those obtained by human 
experts using Brainlab software.

The overall mean DS and H95 are 91.09 (± 0.60) and 
8.35 (± 1.12), respectively, for the “complete” subset and 
90.77 ± 0.67 and 8.35 ± 1.12 for the “most-informative” 
one (Fig. 4).

Results show that, even if optimal performance is 
obtained on the “complete” configuration (overall 
DS: 91.09 ± 0.60), reliable outcomes are also achieved 
with the two most informative MRI scans (overall DS: 
90.77 ± 0.67).

Results obtained during a fivefold cross-validation of 
the BraTS 2021 dataset are in line with those presented 
by Futrega et  al. (Dice Score (DS): 91.63). The result 
obtained (DS: 91.09) confirms the foundation of such 
an nnU-Net implementation for preoperative brain 
tumor segmentation in MRI.

Fig. 3 Positive effect of STAPLE fusion for resection cavity segmentation. Results obtained from the fivefold cross-validation process (fold seg.) 
are merged by the STAPLE algorithm to obtain a final result (STAPLE seg.). The figure shows, as an example, how the STAPLE convergence is able 
to recognize oversegmentation of a hypointense region misclassified as resection cavity (blue: cavity, yellow: enhancing, green: whole)

Table 1 Quantitative description of the postoperative dataset 
from Molinette Hospital (NC: no cavity, NE: no enhancing, C: 
complete, NV: non-volumetric)

Number of 
MRI scans

Number of 
patients

MRI scan type Total

1 22 NC: 5 | NE: 7 | C: 10 22 (NV: 4)

2 25 NC: 3 | NE: 14 | C: 33 50 (NV: 9)

3 9 NC: 8 | NE: 8 | C: 11 27 (NV: 12)

4 + 15 NC: 12 | NE: 22 | C: 33 67 (NV: 21)

Total 71 NC: 28 | NE: 51 | C: 87 166 (NV: 46)
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3.2  Postoperative results
As for preoperative scans, evaluation was performed 
for “complete” subset, and the “most-informative sub-
set” one. The overall mean DICE score was 72.44 
(± 3.49), while Hausdorff 95 distance was 23.43 (± 7.24) 
for the postoperative “most informative subset” assess-
ment, as shown in Fig.  5. Similar results are obtained 
with the “complete” subset (DS: 72.31 ± 2.88, HD95: 
23.85 ± 7.20) (Fig. 5).

Remarkably, the RC segmentation obtained a mean 
DS of 63.52 (± 8.90) in postoperative MRIs (Table 2).

Again, the lack of T1 and T2 has not been proven to 
significantly impact the results achieved. The addition 
of synthetic T1 and T2 scans did not improve the over-
all segmentation, as suggested by previous literature.

Graphical examples of automatic segmentation with 
difference map from manual segmentation, both for 
preoperative and postoperative MRI from Molinette 
database, are shown, respectively, in Fig. 6A and B.

4  Discussion
As previously stated, currently the gold standard for vol-
umetric assessment is manual segmentation. Numerous 
efforts have been taken to improve volumetric assess-
ment and segmentation of the tumoral lesion in the pre-
operative context [18–20, 30].

Available automatic algorithms were developed mainly 
for preoperative images; this results in low reliability for 
postoperative assessment [6].

The practical reason behind this is the intrinsic dif-
ficulty in postoperative MRI segmentation [7, 30]. In 
fact, the RC is frequently a source of artifacts in the MRI 
because of blood residuals and air bubbles [31, 32]. In 
addition to this, brain anatomy may be partly altered 
as a consequence to the surgical act, the post-surgical 
edema and the tumor itself [32]. These problems lower 
the accuracy of available algorithms in obtaining post-
operative evaluation of MRI, in addition to logistical 
issues concerning regular post-surgical follow-up [33]. 

Fig. 4 Illustrates the trend DICE scores (A) and Hausdorff 95 distance scores (B) on the “complete” configuration for preoperative segmentation. y 
axis: DS and H95 values; x axis: each point represents a patient from the Molinette hospital dataset. Segments considered are TC, ET and WT
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Nevertheless, some studies recently reported good accu-
racy in postoperative segmentation of MRI, though it is 
still far from the level of accuracy achieved in preopera-
tive evaluation [7, 33].

Another limit of the available algorithms is that they 
are often trained on cured and standardized datasets that 
do not include low-quality images. Though this selection 
bias makes the training process easier, it is not as easily 
transferable to real-world clinical practice. In fact, subop-
timal quality of data is very common in clinical practice, 
including non-volumetric scans, missing sequences, and 
artifacts [34].

In this study, we aimed to train an AI algorithm for 
the postoperative MRI evaluation of glioblastoma in 
order to prospectively introduce this tool in clinical 
practice as support for the decision-making process. 
For this reason, the MRI database used for the training 
is representative of the real-world clinical scenario, fre-
quently including heterogeneous and incomplete data. 
Even if a few cases were excluded from this study (e.g., 
in case of postoperative abscess or hemorrhage), we did 

not apply restrictive inclusion criteria concerning the 
quality of the available data in order not to affect the 
results with selection bias. Having images with different 
resolution (since FOV may differ) and contrast (1.5  T 
or 3  T) makes the learning process more complex but 
results in increased adaptability of the algorithm to dif-
ferent clinical scenarios. In fact, MRI acquisition pro-
tocols are slightly different according to the institution 
and may change over time within the same hospital.

Low-quality images were also included (e.g., non-vol-
umetric imaging). We did not benefit from incorporat-
ing non-volumetric imaging in the training phase, since 
its inclusion in the dataset creates a difficult scenario 
for the algorithm to be correctly classified. The bene-
fits resulting from the incorporation of these data are 
related to clinical applicability of the algorithm, since 
the presence of non-volumetric images is related to old 
acquisition protocols, but their presence in the clinical 
scenario was relevant, accounting for almost 25% of the 
MRIs collected in the Molinette database. As a conse-
quence, this data was not excluded from the study as it 

Fig. 5 Illustrates the trend DICE scores (A) and Hausdorff95 distance scores (B) on the “complete” configuration for postoperative segmentation. 
The graphs show trend DICE scores for postoperative segmentation, considering the RC (Cav. Dice and Cav. H95), the GTV (GTV Dice and GTV H95), 
the whole tumor (WT: Whole + Cav. Dice and Whole + Cav. H95), the average result (avg). The fivefold are considered separately and altogether
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Table 2 Experimental dice scores and Hausdorff 95 distances obtained during fivefold cross-validation on the postoperative 
Molinette Hospital dataset for the two available modalities configurations

Model Available 
modalities

All
(Dice score)

GTV
(Dice score)

Cavity
(Dice score)

Mean
(Dice score)

All
(Hausdorff 
95 
distance)

GTV
(Hausdorff 
95 
distance)

Cavity
(Hausdorff 95 
distance)

Mean
(Hausdorff 95 
distance)

Fold 0 FLAIR, T1ce 74.45 74.52 69.77 72.91 15.20 9.96 8.78 11.31

FLAIR, T1, 
T1ce, T2

73.07 72.70 71.23 72.33 14.77 10.70 12.07 12.51

Fold 1 FLAIR, T1ce 77.80 74.89 54.78 69.16 8.09 16.36 59.18 27.88

FLAIR, T1, 
T1ce, T2

76.62 82.39 50.05 69.69 7.99 15.87 57.70 27.19

Fold 2 FLAIR, T1ce 76.10 71.41 55.93 67.81 11.40 11.60 75.23 32.74

FLAIR, T1, 
T1ce, T2

75.07 75.48 55.85 68.80 13.71 12.55 75.98 34.08

Fold 3 FLAIR, T1ce 77.16 81.23 71.82 76.74 7.83 7.03 47.00 20.62

FLAIR, T1, 
T1ce, T2

76.86 81.38 71.96 76.73 7.83 6.59 46.30 20.24

Fold 4 FLAIR, T1ce 77.02 80.43 69.31 75.59 9.34 6.56 57.94 24.61

FLAIR, T1, 
T1ce, T2

73.93 79.58 68.50 74.00 10.00 6.96 58.70 25.22

Mean + -STD FLAIR, T1ce 76.51 ± 1.16 76.50 ± 3.75 64.32 ± 7.38 72.44 ± 3.49 10.37 ± 2.72 10.30 ± 3.56 49.63 ± 22.32 23.43 ± 7.24

FLAIR, T1, 
T1ce, T2

75.11 ± 1.48 78.31 ± 3.67 63.52 ± 8.90 72.31 ± 2.88 10.86 ± 2.88 10.53 ± 3.49 50.15 ± 21.27 23.85 ± 7.20

Fig. 6 Examples of preoperative (A) and postoperative (B) segmentation on 4 patients randomly extracted from the Molinette dataset
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would limit prospective application of the algorithm in 
clinical practice.

Moreover, postoperative images have different acquisi-
tion times given the time-course of the disease and the 
treatment schedule. This means that the postoperative 
MRI database contains images from different points in 
time: immediate postoperative, before and after adjuvant 
treatment, and regular follow-up. Herein, the algorithm 
is exposed to different biological entities such as post-
surgical residual, RC, progressively growing lesion, and 
edema.

Herein, the results achieved are similar to the ones 
reported in other studies, considering both preopera-
tive (average DS: 91.09 ± 0.60) and postoperative (aver-
age DS: 72.31 ± 2.88) evaluation. In particular, the DS is 
comparable if not slightly better than the work by Gazit 
et  al. [35] (average DS 0.71) and by Nalepa et  al. (aver-
age DS 0.69) [36] and lower than Chang et  al. (average 
DS 0.76), a multicenter study with a very large number 
of patients, although no results are reported for resection 
cavity which was the volume with the most difficulty in 
segmentation [33].

From the results obtained, it is evident that the accu-
racy in the postoperative setting is still far away from 
that in the preoperative scenario. This contrast in accu-
racy is especially remarkable for the RC segmentation, 
with a mean DS of 63.52 ± 8.90. This element causes both 
cases of hyper-segmentation, including adjacent regions, 
and sub-segmentation, excluding some parts of the cav-
ity. Nevertheless, the evaluation of the RC is complex 
with less accurate results even for expert human opera-
tors performing manual segmentation. Possible reasons 
behind poor segmentation of cavity may be the presence 
of air or blood products in the resection cavity. They are 
only present in the first postoperative MRI (as a conse-
quence of recent surgical procedure) and therefore the 
numbers were too small for adequate algorithm train-
ing. A larger cohort and better characterization of these 
confounding effects, particularly through a temporal 
stratification, may allow effective stratification of blood 
products and air sacs and lead to a better ability to man-
age these cases.

The novelty of the proposed method is to use strategies, 
such as TL or STAPLE segmentation, to overcome low 
sample numbers and heterogeneous or non-volumetric 
MRI images, making the algorithm closer to clinical prac-
tice. Particularly the use of TL, which coenables the algo-
rithm to learn from the preoperative images, where there 
are very large and more standardized databases, to use 
the information acquired in postoperative segmentation.

Furthermore, the level of accuracy reached in this study 
was moderately improved by the application of data aug-
mentation, cross-validation and an ensemble of models 

aggregated through the STAPLE algorithm in order to 
compensate for the limited amount of data. Another 
challenge for applying automatic segmentation in clini-
cal practice is the variable number of sequences available. 
IMT is a technique that takes information from existing 
sequences to create the missing ones, but it is still at an 
experimental level. In this study, IMT architecture from 
Osman et al. [26] was applied to T1ce sequences to cre-
ate T1 and T2 whenever they were not available in the 
Molinette database. In preoperative segmentation, the 
additional presence of these sequences proved to be non-
essential but they slightly improved (non-significatively) 
the performance of the algorithm. In our study, we did 
not observe any benefits associated with IMT, unlike sug-
gested by previous literature [37], resulting in the least 
effective strategy of those used. However, it is possible 
that with larger or more diverse datasets the quality of 
the synthesized images could be improved, especially in 
the postoperative setting.

In addition, the impact in terms of time sparing that 
the use of this algorithm might entail in clinical prac-
tice should not be overlooked. Segmenting manually or 
even semi-automatically is a time-consuming process in 
itself, and this problem is exacerbated in the postopera-
tive setting where there are many follow-up MRIs to seg-
ment, with the previously reported difficulties due to the 
presence of artifacts post-surgery or following adjuvant 
treatments.

4.1  Limits of the study
Institutional studies with private datasets are essential 
to scientific and informatic research, but they have some 
limitations [38]. Literature reports that models developed 
and tested with data from one collection hardly achieve 
similar results when applied to data from a different 
institute [39]. It is therefore advisable to corroborate the 
results from this study with multi-institutional data, con-
sequently increasing the level of reliability.

Even if selection bias wanted to be limited, some cases 
were excluded from the postoperative MRI database, e.g., 
hemorrhage and abscess cases.

In addition, several studies highlight that reference 
standards based on the expertise of radiologists are not 
completely objective [40]. It is reported that the number 
of operators performing the segmentation should be at 
least three [38], while, in this study, the manual segmen-
tation was performed by four neurosurgeons, one medi-
cal student and revised by a senior neurosurgeon and a 
neuroradiologist in order to overcome interobserver 
variability.

A further limitation in the proposed work is the final 
post-processing pipeline proposed to bring back labels 
to tumoral segments of the postoperative evaluation 
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(edema, enhancing tumor and resection cavity). Even if 
the parameters are obtained by averaging grid-search 
outputs, the limited amount of data decreases the reli-
ability of these values.

As the training phase influences the outcomes of the 
algorithm, quality assessment of MRIs used in this step 
would be helpful. Moreover, results would be more accu-
rate if the FLAIR sequence was always volumetric, how-
ever, the purpose of this work was to avoid selection bias 
of data to get an algorithm reliable in clinical practice. 
For this reason, the possible improvement relies on more 
accurate protocols of MRI acquisition in common clinical 
practice and not on image selection for research studies.

4.2  Future perspectives
Due to the benefits granted by informatic tools and strat-
egies, our results are in line with the existing literature 
on this topic. Different from previous studies, this work 
is not biased by restrictive inclusion/exclusion criteria 
for MRI scans. Therefore, we present this work as a start-
ing point to apply AI to clinical practice for glioblastoma 
with remarkable reliability both in the preoperative and 
postoperative context.

Future studies should involve multiple institutions, 
allowing for an increase in the sample size of the database 
overall and of glioblastoma postoperative MRIs acquired 
from different protocols and machines. Moreover, exper-
imental techniques such as IMT could be refined, add-
ing greater support to the algorithm. The elimination 
of non-volumetric scans and low-quality imaging from 
clinical practice would be essential not only for research 
purposes but also for future clinical application of the AI 
technologies. All of these initiatives may improve the AI 
algorithm performance and lead to clinically reliable use 
of AI in glioblastoma evaluation.

Finally, working with AI requires simultaneous special-
ized technical competences and a comprehensive view of 
the clinical scenario. Thus, it is advisable to face the cur-
rent limitations of biological, clinical, logistical, and tech-
nical issues within the analysis from a multidisciplinary 
point of view. This outlook highlights the importance of 
clear communication between the neurosurgical team 
and the engineers in searching for appropriate solutions.

5  Conclusions
This study sought to create a reliable tool for automatic 
postoperative MRI segmentation of glioblastoma, mak-
ing it closer to a realistic clinical setting. The algorithm 
obtained still has some limitations, but the results of 
the study are in line with the existing literature. Moreo-
ver, the authors chose to train the algorithm to be reli-
able in clinical practice, especially in cases of missing 
sequences or low-quality images. Some strategies have 

been proposed in this work to overcome these limita-
tions, with promising results. In the future, the remaining 
challenges ahead may be faced by increasing the dataset 
size and implementing innovative technical strategies.
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