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Abstract 

The increasing number of peer-reviewed publications constitutes a challenge for biocuration. For example, Neu-
roMorpho.Org, a sharing platform for digital reconstructions of neural morphology, must evaluate more than 6000 
potentially relevant articles per year to identify data of interest. Here, we describe a tool that uses natural language 
processing and deep learning to assess the likelihood of a publication to be relevant for the project. The tool auto-
matically identifies articles describing digitally reconstructed neural morphologies with high accuracy. Its processing 
rate of 900 publications per hour is not only amply sufficient to autonomously track new research, but also allowed 
the successful evaluation of older publications backlogged due to limited human resources. The number of bio-
entities found since launching the tool almost doubled while greatly reducing manual labor. The classification tool 
is open source, configurable, and simple to use, making it extensible to other biocuration projects.
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1 Introduction
Biocuration is the conversion of peer-reviewed biomedi-
cal information into accessible data understandable by 
humans and machines [1]. The exponential growth of 
the scientific literature makes text mining an indispensa-
ble element of the biocuration workflow [2]. The process 
involves multiple operations: finding the relevant publi-
cations (triage), identifying the bio-entity data within the 
text, extracting and normalizing the selected data, stor-
ing the entries into a database, and validating the correct-
ness of the re-structured information.

Triage is one of the most labor-intensive tasks: bio-
curators use search engines to query potentially relevant 

publications using keywords; they must then inspect the 
resultant collection of articles to identify those contain-
ing information that needs to be extracted.

Multiple machine learning approaches have been 
applied to reduce the effort expended in triage. When 
employing shallow methods such as Naïve Bayes and 
random forest on input consisting of the article title, 
abstract, and figure captions, use of balanced data sets 
generally outperforms imbalanced data sets [3], and the 
same holds true for support vector machines algorithm 
[4, 5]. A more comprehensive study reviews perfor-
mance varying the imbalanced proportions, gradually 
under-sampling the majority class by a factor of 5% 
from 90–10% to 50–50% [6]; although recall improved 
with balance, it was close to random for all the tests per-
formed. In addition, deep methods such as convolutional 
neural networks (CNN) [7] have been combined with 
word embeddings [8] to capture semantic meaning and 
relationships between words. To manage imbalance dis-
tributions, [9] proposed a new model which combines 
Deep Boltzmann [10] with CNN using title and abstract 
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with accuracy between 0.57 and 0.77 depending on the 
data set. To raise accuracy up to 0.82, [11] added evi-
dence fragments (paragraphs which reference a figure), 
PubMed Medical Subject Headings, and captions, reach-
ing 0.91 if including full text. [12] used title, abstract, 
journal information, and publication type over three data 
sets with good precision ( > 0.91 ) and recall ( > 0.93 ) on 
the balanced data sets.

NeuroMorpho.Org is a database of digitally recon-
structed neuronal and glial morphology [13, 14]. 
Digital reconstructions of neural morphology are com-
puter-based 3D representations of the branching struc-
ture of individual cells traced from microscopy images 
with specialized software [15]. These data capture essen-
tial features of neural architecture that underlie brain 
activity and connectivity. Tracking the changes in cel-
lular structure that occur during development, aging, 
and disease or quantifying the differences between spe-
cies, anatomical regions, and cell types are paramount 
to understanding neural function [16, 17]. When search-
ing suitable content for the database, NeuroMorpho.
Org cannot simply rely on keyword queries from jour-
nals and literature indexing engines because of the need 
to differentiate between microscopy imaging and digi-
tal reconstructions. Language models used in machine 
translation, question answering, speech recognition, 
and sentiment analysis can capture syntax, semantics, 
and context meanings. However, these methods are not 
directly applicable to NeuroMorpho.Org, because the 
key paragraphs needed for triage reflect specific techni-
cal details (digital reconstructions) rather than the main 
topic of the publication. On one hand, this makes the use 
of full text necessary [18], rather than only figures and 
abstracts, to prevent missing relevant publications. On 
the other hand, complex algorithms typically deployed 
for full text analysis, like CNN and word embeddings, 
constitute a technological barrier, as they require com-
puter programming and deep mathematics knowledge 
in addition to expensive hardware requirements to be 
trained.

The curators of NeuroMorpho.Org continuously search 
the peer-reviewed literature and actively contact authors 
to acquire, process, and publicly release new data [19]. 
The main bottleneck for the project is the triage task: 
recognizing relevant peer-reviewed publications, which 
are ∼10% of the total set of retrieved documents, takes 
one skilled individual an average of 3.5 h per article [20] 
in addition to the substantial time required for person-
nel training [21]. We developed PaperBot [22], a tool to 
improve the publication identification and acquisition 
process. Adoption of PaperBot drastically increased the 
number of found publications from an average of fewer 
than 800 per year to almost 6000, further aggravating the 

triage problems. Here we propose a simple deep learning 
tool designed to be installed and used without machine 
learning knowledge, and find relevant content that could 
be potentially missed by semantic triage methods. It 
trains quickly on any modern computer and potentially 
could be applied to projects with disparate relevance cri-
teria where previously annotated text is available to re-
train the classifier model. Specifically, the tool assesses 
whether the text is related to the domain of interest (neu-
ral morphology) or off-topic. If the text is related, the tool 
calculates the likelihood that the article describes digi-
tally reconstructed neurons or glia. Moreover, the tool is 
easy to re-train for capturing new features or improving 
performance.

We have deployed and are actively using the tool to 
automatically discard non-relevant publications and sort 
the remaining ones by relevance. This helps us review 
first publications with higher likelihood of containing 
neural reconstructions, increasing the amount of data 
that become available to the research community.

2  Methods
We trained a deep learning classifier to return the like-
lihood that digital reconstructions of neuronal or 
glial morphology were performed during the research 
described in a text. The following subsections describe 
the steps followed to develop this smart tool (Fig. 1).

2.1  Acquiring data: PaperBot
The pipeline starts by finding and acquiring all the new 
research publications that potentially describe digitally 
reconstructed neural morphology. For this task, we uti-
lize PaperBot, a configurable, modular, open-source web 
crawler that automatically identifies peer-reviewed arti-
cles based on periodic full-text searches across publisher 
portals [22]. Queries rely on customizable combinations 
of keywords that, for this project, focus on the trac-
ing systems (e.g., Neurolucida, Imaris, Simple Neurite 
Tracer, NeuronJ), file format extension (SWC), or terms 
related to neural reconstructions (skeleton, Sholl analy-
sis, filament, morphology, dendrites, axons, confocal 
microscopy, etc.).

PaperBot acquires the full text of available publications 
including title, abstract, figure legends, and all sections 
such as Introduction, Methods, Results, Conclusion and 
References. From publishers that offer an Application 
Programming Interface (API), PaperBot gleans high-
quality text made up of paragraphs. When only PDF files 
are provided, the extracted text is of lower quality as it 
contains page headers and footers mixed with the con-
tent as well as occasional split and incomplete words. 
We only utilized the API-derived high-quality text for 
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training the classifier, but also included the PDF-derived 
lower-quality text for analyzing the results.

2.2  Filtering and balancing data
The second step consisted of selecting a pool of publica-
tions suitable for training the classifier based on exist-
ing annotations. Since inception of the NeuroMorpho.
Org project, our manual curation process categorized 
every paper returned by keyword search with one of four 
labels: (i) relevant, if the text describes neural morphol-
ogy that was digitally reconstructed in the course of the 
described research; (ii) linked, if the text describes neural 
morphology that had been digitally reconstructed previ-
ously as described in a cited reference; (iii) uncertain, if 
the text is insufficient for an expert reader to unambigu-
ously ascertain whether or not neural morphology was 
digitally reconstructed; and (iv) irrelevant, if the text does 
not describe digital reconstructions of neural morphol-
ogy. Given the goal of the classifier, we only included 
publications in the first and last category in the training 
data set from the period 2016–2019, which have been 
reviewed to confirm they are correctly labeled.

The resultant data set consisted of 1995 relevant and 
2971 irrelevant publications. We balanced this data set 
by random under-sampling to avoid a bias towards the 
majority class as typically observed when learning from 
imbalanced distributions [23]. Random under-sampling 
discards stochastically selected entries from the major-
ity class to match the sample size of the minority class, 
which works well in practice and is simple to implement 
[24]. After balancing, the total number of publications 
was 3990.

2.3  Selecting relevant paragraphs
Each publication contains many paragraphs with hun-
dreds of words each. Only a minority of these paragraphs 
describe digital reconstructions of neural morphology. 
Typically, the critical portions of text necessary for triage 
do not describe the primary subject matter of the publi-
cation. As a consequence, using the full text to train the 
deep learning model resulted in very poor performance. 
At the same time, the essential triage paragraphs are 
not always found in the same article section (methods, 
abstract, figure captions, data and materials, etc.) in all 
research papers. This makes it impossible to decide in 
advance which parts of the text to select. Thus, to reduce 
noise and improve performance, we removed all para-
graphs that did not contain any of the keywords utilized 
in the original PaperBot query described in Section  1.1 
above (the keywords can be found in Fig. 1). This process 
mimics the behavior of human curators performing tri-
age, who search the text for keywords and then evaluate 

the corresponding paragraphs to ascertain the relevance 
of the publication.

2.4  Tokenizing and vectorizing data
Next, we convert the text of the selected paragraphs to 
numerical vectors for use in deep learning through the 
following steps using the spaCy library [25]: 

1. Split text into single tokens (tokenization).
2. Remove punctuation and stop words, which do not 

add context value.
3. Extract the lemma for each word, which is the mean-

ingful root form of a term.
4. Convert all words to lowercase.
5. Out of the resulting vocabulary of ∼ 170k words, 

selected the most frequent 10k to increases perfor-
mance.

Vectorization then converts words into a numerical rep-
resentation using one-hot encoding [26], which creates a 
vector containing 1 if the word is present or 0 if absent. 
We have also tried several alternative approaches for this 
step [26]: count encoding, inverse document frequency 
factor (TF-IDF), and word-embeddings. However, we 
obtained better results using one-hot encoding, due 
to the small vocabulary, the scarcity of the tokens, the 
domain specific language, and the binary nature of our 
classification (relevant/irrelevant).

2.5  Dividing the data into train, validation, and test sets
We randomly split the data into two non-overlapping 
sets: one for train and validation, and the other for test-
ing. The test set represents 10% of the data and is held 
out during training and validation to obtain an unbiased 
estimate of the performance. On the remaining 90% of 
the data, we applied tenfold cross validation [27], where 
the data set is split in two further subsets: one used to 
learn the model and the other used to validate it. During 
this step the data are split 10 times randomly and with 
each iteration a different set of data is held out for valida-
tion. The validation set, consisting of 9% of the original 
data, is used to tune the neural network and search the 
hyper-parameters yielding the best results for the model 
trained using the remaining 81% of the data.

2.6  Training the neural network model
The objective of a feedforward neural network 
∧
y = f (x;�) is to learn the parameters � that result in a 
good estimate function of the data x provided. The net-
work architecture is formed by units grouped in layers 
connected in a chain structure, each layer represented by 
Equation (1):
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Here, n represents the layer which consist of many units 
acting in parallel, each representing a vector-to-scalar 
function; the transpose of matrix W provides the weights 
of a linear transformation along with the bias vector 
b; and the non-linear activation function g is applied to 
compute the values of the hidden layer. To learn a good 
estimate ∧

y , the back-propagation step computes the 
gradient to minimize the deviation between the true 
value and the predicted one, called the loss function 
( Loss(∧y, y) ). For balanced-classification problems, accu-
racy (Eq.  2) is used to measure the performance of the 
classifier based on True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN):

2.7  Selecting the hyper‑parameters
Hyper-parameters are settings that control the behavior 
of the machine learning algorithm, but are not learned by 
the algorithm itself [28]. The goal is to minimize the loss 
function while maximizing accuracy.

There are two approaches to selecting hyper-param-
eters in a neural network model: manually when the 
computational resources are limited or automatically 
otherwise. We applied the manual approach: we fixed 
all values except one to be determined, starting from 
the most important parameters. In each case, we aimed 
to search through a broad enough range to find good 
results, but sufficiently contained to finish the task in a 
reasonable amount of time. To facilitate the process, we 
plotted accuracy and loss (Fig. 2) and selected the most 
promising value from the tested ones (Table 3). The order 
and role of the hyper-parameters is the following. 

1. The learning rate is the fractional amount by which 
the weights are updated during training and controls 
the training speed; a low rate typically yields results 
closer to optimum at the cost of a slow process, while 
high rates can produce faster learning, with the risk 
of non-monotonous (e.g., oscillatory) convergence.

2. The model weights are updated by gradient descent 
after each batch of data. Using the entire training set 
as batch requires high memory, while using a single 
stochastically sampled element is noisy and ineffi-
cient. The mini-batch gradient descent size is a value 
between 1 and the whole training data set.

3. The number of hidden units form the width of the 
neural network. Increasing this number typically 
improves the model representation while increasing 
computational cost.

(1)h(n) = g (n)(W (n)Tx + b(n))

(2)Accuracy =
TP + TN

TP + TN + FP + FN

4. The number of hidden layers represent the depth 
of the neural network. Increasing this numbers also 
typically improves the model representation while 
increasing computational cost.

5. The optimization algorithm finds the optimal values 
for the weight vectors.

6. The recommended activation function for modern 
neural networks is the rectified linear unit (ReLU) 
[29–31], defined as the positive part of the argument, 
because it generalizes robustly and works effectively 
with gradient descent algorithms [28]

7. The epochs are the number of iterations performed 
over the entire training set. We observed that our 
neural network model reaches stable results after 30 
epochs.

8 The loss function measures how close the estimated 
output is compared to the input class value.

We performed hyper-parameter selection once. Per-
formance remained stable for new re-trained model 
versions conducted when more data were available. Indi-
cating that additional tuning was not required.

2.8  Selecting the thresholds
The decision or classification thresholds are the likeli-
hood values selected to decide the belonging to a given 
class. We defined three thresholds identifying four dif-
ferent categories: Positive High publications are directly 
accepted as relevant; Positive Low and Negative Low pub-
lications are reviewed by curators to check the relevance 
classifier label; and Negative High publications are auto-
matically discarded.

2.9  Coding the tool
We developed the code in the Python programming lan-
guage. To create the model, we used the deep learning 
open-source framework Keras [32], which runs on top of 
TensorFlow and facilitates its use. TensorFlow is a deep 
learning library developed and maintained by Google 
that provides low and high-level APIs built to run on 
multiple CPUs or GPUs [33].

The tool is containerized with Docker as a service and 
exposes a REST API that offers three services: Train, 
Classify, and Search Keywords.

The Train service reads all files storing the training 
text instances, vectorizes the texts, and trains the classi-
fier. Two new files are created as a result of the classifi-
cation: the tokenizer vocabulary and the classification 
model. Both files will be used in the classification step to 
vectorize new data and predict the relevance. The out-
put returns data in json format containing the accuracy 
and loss values for the train and test sets, the epochs or 
training iterations, the number of train and test samples, 
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the version of the model used when classifying (in case 
multiple versions are maintained and evaluated), and 
the classification result for each of the test samples [true 
value, classification value] (Fig. 3A).

The Classify service returns json format data with 
the likelihood of relevance of the given text. First, it 
searches for the relevant paragraphs on the text; a para-
graph is relevant if it contains any pre-defined keywords. 

Fig. 2 Hyper-parameters accuracy and loss drawings used to select the most promising values. A Learning rate. B Mini-batch size. C Number 
of hidden units per hidden layer. D Number of hidden layers. E Optimization algorithm: Stochastic gradient descent (SGD) [38]; adaptive gradients 
methods RMSProp [39], and Adam [40]

Fig. 3 API json results for each of the calls. A Train service. B Classify service—example of irrelevant publication. C Classify service—example 
of relevant publication, with likelihood. D Search Keywords service
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Occasionally Google Scholar returns publications that do 
not contain any of the query keywords, an unintended 
side effect of its expanded semantic search approach; our 
tool identifies these cases as off-topic and classifies them 
as irrelevant (Fig.  3B). If there are relevant paragraphs, 
their text is vectorized using the tokenizer file created in 
the previous step and sent to the classifier to predict the 
relevancy likelihood (Fig.  3C) using the model file also 
created in the previous step.

The Search Keywords service selects all instances 
found in the text from the user-configurable set of key-
words by extracting the token and comparing the lemma. 
The result is a json data format object composed by 
each of the file names and the list of the found keywords 
(Fig. 3D).

2.10  Adapting the tool to new biocurations projects
To use the tool in new biocuration projects, it is neces-
sary to train the model with new data. This involves pro-
viding training data in the form of JSON files labeled as 
Positive or Negative, followed by an index (e.g., Posi-
tive_1.json, Positive_2.json, Negative_1.json). Each of 
these files contains a JSON data structure with a list of 
the texts paragraphs. The file name represents the corre-
sponding class value (Positive or Negative) used for clas-
sifier training. Additionally, the keywords used to select 
the relevant paragraphs are stored in separate files, with 
one keyword per line.

We hypothesize that no further hyper-parameter tun-
ing is needed because of the similarity observed among 
research papers. However, it is important to note that 
this hypothesis has not been substantiated or proven yet.

3  Results
PaperBot was installed in January 2016 and tested dur-
ing a 2-year period. It was then launched retroactively 
to search automatically what was previously queried by 
hand, and found several missed publications from previ-
ous years. In 2018 the set of keywords used to find pub-
lications was vastly increased taking advantage of the 
automated processing capability. Once launched, it out-
performed the manual task in the current years while 
still finding missed publications for previous periods 
(Fig.  4A). On the downside, the number of irrelevant 
publications found increased accordingly (Fig. 4B).

We trained and tuned the deep neural network 
described in the Methods (Fig.  1) until its performance 
fulfilled our lab requirements: an average accuracy 
greater than 93% minimizing loss (Table 1). Correctly and 
incorrectly labeled results for the test set are shown as a 
confusion matrix in Table 2.

Approximately 10% of all the publications found are 
relevant (between 9% and 13% depending on the year: 
Fig. 4B). Triage is an intrinsically probabilistic operation, 
as each publication is assigned a relevancy likelihood. 
Thus, choosing different thresholds for NeuroMorpho.
Org depending on the damage of mislabeling proved to 
be a successful strategy. Mistakenly labeling a relevant 

A B

Fig. 4 Number of publications found using manual (clear background) and automated (gray background) searches. A Relevant publications 
by the year in which they were found grouped by published period: before 2012 (white stacked bars), 2012–2015 (light grey), and 2016–2022 (dark 
grey). B All publications by the year in which they were found grouped by relevancy: relevant (black background) and irrelevant (clear background)

Table 1 Performance of validation and test sets

Accuracy Loss

Validation sets 0.934± 0.181 0.052± 0.015

Test set 0.942 0.033
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article as irrelevant is harmful for the project, because it 
means the reconstructions cannot be requested and will 
be effectively lost. Conversely, incorrectly labeling an 
irrelevant article as relevant only wastes labor since we 
request the data and then correct the records manually 
when the authors reply indicating that no relevant data 
were collected. Therefore, instead of using a traditional 
binary classification (relevant vs irrelevant), we convert 
the probability returned by the classifier into four labels, 
adding low confidence and high confidence to each of 
the classes as described in section 1.8. To select the most 
appropriate values for each of the thresholds we calcu-
lated the percentage of labor saved from curators against 
the percentage of incorrectly classified publications 
(Fig. 5A and B). Specifically, we selected the 0.18 thresh-
old as Irrelevant with high confidence, which saves 96.4% 
of manual processing time with only 3.10% of misclassi-
fied articles. At the opposite end, we selected a thresh-
old of 0.98 as Relevant with high confidence, which saves 
83.06% of manual processing time while misclassifying 
just 0.97% of articles. After these fully automated steps, 
3.63% of low-confidence irrelevant articles (probability 
between 0.18 and 0.5) and 16.94% of low-confidence rel-
evant ones (probability between 0.5 and 0.98) remain for 
manual review. On average, with the selected thresholds, 

from a set of 100 publications identified by PaperBot, 
only 5 need to be reviewed, of which 2 will be relevant 
and 3 irrelevant. From the remaining 95 not reviewed, 3 
publications will be miss-classified (Fig. 5C).

The final version of the classifier has been operating 
in the lab since November 2020 in review mode, where 
all the publications are reviewed by an expert after being 
labeled by the classifier. Most of the publications are 
correctly labeled by the classifier thanks to the low loss 
obtained for the classification model.

In the real environment, PaperBot retrieves both high-
quality text from the publishers’ API, which represents 
62% of the total, and lower-quality content extracted from 
pdf files. This remaining 38% was not used for model 
training but is still included in the analysis. As expected, 
when separately analyzing the model on high- and low-
quality text, the latter results in lower performance. The 
Relevant with high confidence publications represent 
75.37% of the high-quality text pool, but only 50.42% for 
the low-quality text pool, implying a 25% increase in arti-
cles requiring review. Similarly, the Irrelevant with high 
confidence publications are 68.18% of the high-quality 
texts, but only 44.54% of the low-quality ones, increasing 
the need for manual review by 23.64% (Fig. 5D).

From the practical viewpoint of NeuroMorpho.Org, 
the most important success metric for the relevancy clas-
sification is the number of mined reconstructions and 
corresponding availability of shared data. From this per-
spective, we can compare the number of reconstructions 
mined and shared by the authors during three main time 
periods: manual search and evaluation, automated search 
and manual evaluation, and automated search and evalu-
ation (Fig.  6). Although during the automated search 
many publications were found, it has been impossible 
to process all of them because of the human resources 
required to manually evaluate the publications.

Once the automated evaluation was deployed, we were 
able to process all of these publications, increasing by 
2.37-fold the yearly average reconstructions mined com-
pared to the previous period (Fig. 6A).

Interestingly, we found that requesting data on time 
improves the shared rate (Fig.  6B). We are currently 
requesting data for old publications that were missed 
during the manual search period. However, this attempt 
is often frustrated by many challenges: the contact infor-
mation may be outdated, essential lab personnel may no 
longer be available, or the data may be lost due to storage 
obsolescence.

From a technological standpoint, using a simple neu-
ral network approach has allowed us to train, test, and 
tune many parameters very efficiently. Reading the data 
from pre-processed files and performing 30 training 
iterations for 10 k-fold takes 2.5 min on a modern GPU 

Table 2 Confusion matrix of the test set

Real class

Relevant Irrelevant

Predicted class Relevant 183 13

Irrelevant 10 193

Table 3 Hyper-parameters used to train the deep neural 
network

Hyperparameter Applied Value

Hidden units 64

Hidden layers 2

Optimization algorithm Stochastic Gradient Descent:

(1) 

∧
y =

1
m
∇θ

m∑

i=1

L(xi; θ; yi)

(2) θ = θ − α
∧
y

Learning rate ( α ): 0.01

Mini-batch size (m): 8

Loss Function (L) : Mean Square Error = (y −
∧
y)2

Activation functions (g) Hidden layers : ReLU = max(0, z)

Output layer : σ =
1

1+e−z

Epochs Number of training iterations over the data 
set: 30
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A B

C D

Fig. 5 Selecting the most convenient thresholds. A Proportion of irrelevant articles incorrectly classified as relevant (false relevant) as a function 
of the fraction of labor saved by accepting the automated classification without review. The inset displays the enlarged range between 75% 
and 100% of saved labor. B Proportion of relevant articles incorrectly classified as irrelevant (false irrelevant) as a function of the fraction of labor 
saved by accepting the automated classification without review. The inset displays the enlarged range between 75% and 100% of saved labor. 
C Using test labeled data we select optimal thresholds to maximize saved labor while minimizing misclassification errors and the number 
of publications to be manually reviewed. D Once the classifier is deployed, we analyze the results by type of text: high-quality text obtained 
from publishers’ APIs and low-quality raw text extracted from PDFs
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Fig. 6 Numbers of mined and shared neural reconstructions. A Number of mined and shared reconstructions by year of evaluation for three 
periods: manual search and evaluation (2012–2015), automated search and manual evaluation (2016–2019), and automated search and evaluation 
(2020–2022). In addition to the more than tripled mined volume between the first and third period, note that only ∼35% of mined data were shared 
from the first period and more than 80% in the last period. B Number of reconstructions shared (green), not shared (red), and pending or being 
requested (blue) to determine the availability for the evaluation years 2020–2022 grouped by published date
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laptop. Most important, the classifier evaluates one pub-
lication every four seconds. One person manually search-
ing publications online, finding the full text, reading it, 
and assessing the relevance spends 3.5  h per relevant 
publication found. During the testing period of the tool 
described here, this time went down to 1.68 h, which we 
expect to further decrease when we stop reviewing and 
confirming the classifier results.

4  Conclusions
The number of peer-reviewed publications continues to 
grow every year, making biocuration an arduous task; for 
scientists in general to keep up to date on new research, 
the step of triage must be automated. For the specific 
use-case of NeuroMorpho.Org, ordering all articles by 
relevance likelihood helped prioritize the data requests 
starting from the publications that were most likely to 
contain reconstructions, which increased the sharing 
rate. Timely identification is essential because delayed 
data requests were shown to be less frequently fulfilled.

Triage remains an open problem, because different labs 
typically develop ad-hoc solutions tailored to their own 
personalized needs. Thus, the resultant tools tend to only 
perform well for the original data sets for which they 
were designed. Conversely, the services we introduced 
here could be scalable to different biocuration projects 
with alternative definitions of relevancy. While we dem-
onstrated the successful application to NeuroMorpho.
Org, the same strategy could be expanded in many other 
triage applications [34].

Deep learning has released curators in our lab from 
non-creative work resulting in a better use of our time 
and saving almost 2 h per relevant paper reviewed. While 
we have so far selected very conservative thresholds, 
relaxing them could save even more resources at the cost 
of marginal data loss.

Working with large texts is often not feasible for many 
projects. Additionally, the process of selecting relevant 
paragraphs, which are not always found in the main body 
of papers, has been identified as crucial. It was observed 
that after setting the hyper-parameters, the selection of 
keywords to identify the relevant paragraphs had the 
most significant impact on performance. Currently, this 
task is performed manually, which may be impractical for 
new projects lacking extensive contextual data. As a sug-
gestion for future research, it could be valuable to explore 
the possibility of using machine learning techniques to 
automate the paragraph selection process. By training 
models to learn the criteria for identifying relevant para-
graphs, the efficiency and practicality of such projects 
could be enhanced.

A potential direction to extend this line of research is 
to combine and integrate the described work with the 

recently introduced automated extraction, from the 
same articles, of rich metadata pertaining to the identi-
fied reconstructions, such as the animal species, sex, and 
age; the brain region and cell type; and the histological 
and imaging protocols [35]. At the same time, it may be 
worth exploring in future research the possibility of com-
bining full text with figures [36, 37], morphological meta-
data, and bibliographic information (such as journal and 
authors), to learn new models and improve the results 
further.
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