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Abstract 

Early identification of mental disorders, based on subjective interviews, is extremely challenging in the clinical setting. 
There is a growing interest in developing automated screening tools for potential mental health problems based 
on biological markers. Here, we demonstrate the feasibility of an AI-powered diagnosis of different mental disorders 
using EEG data. Specifically, this work aims to classify different mental disorders in the following ecological context 
accurately: (1) using raw EEG data, (2) collected during rest, (3) during both eye open, and eye closed conditions, (4) 
at short 2-min duration, (5) on participants with different psychiatric conditions, (6) with some overlapping symptoms, 
and (7) with strongly imbalanced classes. To tackle this challenge, we designed and optimized a transformer-based 
architecture, where class imbalance is addressed through focal loss and class weight balancing. Using the recently 
released TDBRAIN dataset (n= 1274 participants), our method classifies each participant as either a neurotypi-
cal or suffering from major depressive disorder (MDD), attention deficit hyperactivity disorder (ADHD), subjective 
memory complaints (SMC), or obsessive–compulsive disorder (OCD). We evaluate the performance of the proposed 
architecture on both the window-level and the patient-level. The classification of the 2-min raw EEG data into five 
classes achieved a window-level accuracy of 63.2% and 65.8% for open and closed eye conditions, respectively. 
When the classification is limited to three main classes (MDD, ADHD, SMC), window level accuracy improved to 75.1% 
and 69.9% for eye open and eye closed conditions, respectively. Our work paves the way for developing novel AI-
based methods for accurately diagnosing mental disorders using raw resting-state EEG data.

Keywords  EEG Classification, Transformer Networks, Multivariate Time-series Classification, Class Imbalance, 
Psychiatric Dysfunction

1  Introduction
Electroencephalography (EEG) signals are widely 
used in many applications related to brain–computer 
interfacing [1, 2], motor imagery classification [3–5], 
emotion recognition [6, 7], neuroscience [8, 9], and 
biomedical engineering [10, 11]. In the field of neu-
roscience, EEG signals can serve as useful biomarkers 
and clinically relevant features for the identification of 
neurological and mental dysfunctions. These features 
are further used to monitor and improve the treat-
ment plan for patients. Automated classification of EEG 
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signals has numerous applications in the area of neuro-
logical and mental disease diagnosis and management.

EEG has various advantages, making it one of the 
most widely used tool in the clinical setting, like non-
invasive acquisition, portability, cost-effective, and 
offering high temporal resolution. However, multiple 
challenges are associated with EEG signal processing 
and automated neurological dysfunction classification 
tasks. The EEG signals have a low signal-to-noise ratio, 
low spatial resolution, and high inter-subject variability 
[12]. Although the high temporal resolution is benefi-
cial as rapid changes in brain activity can be observed 
[13], handling such data with limited computation 
capabilities can be challenging. Raw EEG signals are 
also associated with various artifacts introduced by 
different sources that interfere with feature extraction 
and classification. Typically, raw EEG signals are pre-
processed to remove these artifacts [14, 15], including 
pulse and respiratory artifacts, eye movements, muscle 
activity, and other movement artifacts. In some cases, 
the EEG pre-processing techniques might result in the 
loss of important information. An automated model for 
mental dysfunction classification using raw EEG sig-
nals is highly desirable as it might open the possibility 
for more ecological applications of EEG for large-scale 
screening procedures. In addition to the challenging 
nature of raw EEG data, the classification of different 
mental disorders is notoriously difficult because many 
of these disorders share similar symptoms, and many 
of them can be defined as spectrum disorders or syn-
dromes with no clear cutoffs [16]

With the recent advances in deep learning, methods are 
proposed for diverse applications like computer vision, 
natural language processing (NLP), time series, and bio-
medical applications. The deep learning methods have 
produced state-of-the-art performance exceeding human 
experts in some cases. Deep learning methods need copi-
ous amounts of data and a balanced sample distribution. 
Implementing deep learning methods for biomedical 
applications is still a challenging task due to data scar-
city and prevalent class imbalance. Recently, Transformer 
models have shown tremendous success in NLP and mul-
tivariate analysis. They are praised for their capacity to 
model self and mutual attention between serial data [17, 
18]. EEG signal is multivariate time series data having 
information on multiple electrodes for a fixed amount of 
time. It reflects the activation of multiple brain networks 
that interact at different spatio-temporal scales. We 
hypothesize that such multivariate EEG signals can be 
best captured and interpreted using a transformer model.

The proposed work aims to implement a transformer 
model for classifying mental dysfunctions using raw 
EEG data. To effectively evaluate the performance of the 

transformer model, we have used the publicly available 
TDBRAIN dataset [19].

The contributions of this work are summarized as 
follows:

•	 Transformer model is implemented for challenging 
raw EEG data of psychiatric patients without pre-
processing and feature extraction.

•	 Comparative analysis of multi-class neurological dys-
function classification model on eye-open and eye-
closed resting state raw EEG data.

•	 Analysis of various methods to curb the class imbal-
ance issue in the publicly available TDBRAIN data-
set.

•	 The performance is analysed on patient-level in addi-
tion to window-level decisions, which are generally 
used in EEG classification frameworks.

The work is organized as follows. Section  2 discusses 
state-of-the-art techniques for classifying EEG signals. 
Section  3 describes the proposed transformer architec-
ture methodology for classifying mental dysfunction. 
The dataset used for experimental evaluation of the per-
formance of the proposed algorithm is also discussed 
here. The evaluation criteria and results are discussed 
in Sect. 4. Finally, we conclude with a summary of main 
findings and some important questions that warrant 
future research in Sect. 5.

2 � Related work
The EEG signal processing majorly comprises tradi-
tional machine learning approaches [20] and deep 
learning methods [12]. The conventional machine 
learning methods include pre-processing, relevant fea-
ture extraction, and classification using machine learn-
ing classifiers. The machine learning methods differ in 
how EEG data is treated before the feature extraction 
step in the time and frequency domain. Initial tech-
niques in the literature include handcrafted feature 
extraction from five major frequency bands: alpha, 
beta, theta, delta, and gamma. Alhudhaif [21] imple-
mented an approach to extract 25-time domain features 
from raw, alpha ( 8− 13 Hz), beta ( 13− 30 Hz), theta 
( 4 − 8 Hz), and delta ( 0.5− 4 Hz) frequency bands. The 
final 125 features are classified using One-Against-All 
(OVA) approach. The adaptive synthetic (ADASYN) 
sampling method is combined with OVA for multi-
class imbalanced EEG signals classification. Hosseini-
fard et  al. [22] proposed a similar approach for binary 
classification of EEG signals into depressive disorders 
and healthy categories. The bandpass Butterworth 
filter is applied to raw EEG signals to extract delta, 
theta, alpha, and beta bands. Correlation dimension, 
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Higuchi, DFA, and Lyapunov exponent methods were 
further applied on frequency bands to extract features 
for all 19 EEG channels. Linear discriminate analysis 
(LDA), Logistic regression (LR), and k-nearest neigh-
bor (KNN) classifiers are used for the binary classifi-
cation. Das et  al. [23] proposed machine learning and 
deep learning approaches on the EEG signal’s discrete 
wavelet transform (DWT) scalograms using SVM, RF, 
AdaBoost, and CNN classifiers. Bajaj et  al. [24] uti-
lized time–frequency representation (TFR) of EEG 
signal using smoothed pseudo-Wigner–Ville distribu-
tion (SPWVD) for seizure classification. Handcrafted 
features like angular second moment (ASM), contrast 
(CON), mean-to-standard deviation ratio (MSR), and 
area are extracted and applied to the least square SVM 
for classification.

Emre et al. [25] implemented a machine learning-based 
approach for multi-class classification of EEG signals. 
Pre-processing and artifact correction is done on the 
EEG dataset, and features are extracted from four fre-
quency bands. An unbalanced dataset for nine classes of 
psychiatric disorders is used for the experiments using 
classifiers, namely, C5.0, random forest (RF), support 
vector machines (SVM), and artificial neural networks 
(ANN). Under-sampling and oversampling methods are 
implemented on the dataset for comparison. The hand-
crafted feature extraction methods rely on expert knowl-
edge related to EEG data which may not be as robust for 
classification.

Deep learning-based methods have recently exhib-
ited superior performance compared to traditional 
machine learning approaches. Deep learning methods 
eliminate the need for feature engineering and rely on 
deep learning networks for automatic feature learning. 
Convolutional neural networks (CNN), deep belief net-
works (DBN), recurrent neural networks (RNN), stacked 
auto-encoders (SAE), and transformers are some of the 
commonly used architectures in literature for the classi-
fication of EEG signals. Although neurological dysfunc-
tion classification is a well-established area of research, 
most machine learning and deep learning-based meth-
ods focus mainly on binary classification of diseases like 
ADHD, SMC, OCD, MDD, post-traumatic stress disor-
der (PTSD), schizophrenia, etc. [26]. In addition, most of 
the works used pre-processed EEG data instead of focus-
ing on raw EEG data. Some of the recently published 
deep learning methods for EEG classification are dis-
cussed further. Moghaddari et  al. [27] proposed a CNN 
architecture for diagnosing ADHD in children using 
continuous mental task EEG. The data is pre-processed, 
and frequency bands are separated to construct the CNN 
network’s input images. Another frequency bands-based 
approach is proposed by Uyulan et al. [28] for classifying 

EEG signals into healthy and MDD classes. ResNet-50, 
MobileNet, and Inception-v3 CNN models are applied to 
topographic maps of frequency bands EEG signals.

For the raw EEG sinal classification few methods are 
also proposed in the literature. Supakar et  al. [29] pro-
posed an RNN–LSTM based approach for Schizophre-
nia classification from EEG data. The dimension of the 
EEG data is reduced using principal component analysis 
(PCA) and treated as a multi-variate time series signal 
for the LSTM architecture. Erguzel et  al. [30] proposed 
a traditional machine learning approach using SVM, 
KNN, ANN, and Naive Bayes methods for trichotillo-
mania and OCD classification. Based on the literature 
review, it can be concluded that the multi-class classi-
fication for mental dysfunctions is less explored. Lawh-
ern et al. [31] proposed a compact convolutional neural 
network for EEG-based BCIs. The raw EEG signals from 
four publicly available datasets were epoched, and the 
resulting EEG segments were used as inputs for the 
CNN-based architecture. Another similar approach was 
proposed by Schirrmeister et  al. [32], named DeepCon-
vNet, for raw EEG data. The architecture comprised four 
blocks of convolutional and max-pooling operations fol-
lowed by a dense softmax classification layer. Moreover, 
transformer-based architectures have also been proposed 
in the literature to classify EEG signals. For instance, Xie 
et al. [33] proposed a transformer-based approach com-
bining deep learning with spatial–temporal information 
from raw EEG data for motor imagery classification, in 
addition to five different architectures integrating trans-
former and CNN architectures. Song et al. [34] recently 
proposed a compact convolutional transformer for 
EEG-based motor image classification and emotion 

Table 1  TDBRAIN dataset for resting state raw EEG data with eye 
open and eye close

S.No. Indication No. of EEG 
sessions

Formal Dx

1. MDD 426 198

2. ADHD 271 141

3. SMC 119 -

4. OCD 75 58

5. Tinnitus 33 -

6. Insomnia 32 32

7. Parkinson 27 17

8. Burnout 10 10

9. Dyslexia 26 20

10. Chronic pain 14 14

11. Others 80 -

12. Unknown 255 -

13. Healthy 47 -
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recognition tasks, tested on for three publicly available 
datasets. To handle raw EEG data, the suggested archi-
tecture comprised a convolutional module, a self-atten-
tion module, and a fully connected classifier.

From the literature review, it can be concluded that 
EEG signals classification is widely used for motor 
imagery identification and epilepsy detection. Various 
methods were also proposed for classifying different neu-
rological disorders. However, multi-class EEG-based clas-
sification of psychiatric dysfunction is scarce. Perhaps, 
most importantly, it can be noted that most deep learn-
ing methods use EEG signals as input in the frequency 
domain rather than raw EEG signals in the time domain. 
The motivation of this work is to fill the gap in current 
literature by proposing a deep learning based method 

using raw EEG signals in the time domain for multi-class 
psychiatric dysfunction classification. The strength of 
our proposed approach lies in using raw EEG signals in 
the time domain without any subsequent transformation 
to frequency bands or image-based features. Although 
transformer models were previously implemented for 
EEG-based classification, our approach is among the few 
available studies that addressed the challenging question 
of classification of mental dysfunction. As far as we know, 
our work is the first to propose a transformer model 
for raw EEG signals using the TDBRAIN dataset, while 
addressing the problem of class imbalance.

Fig. 1  Proposed framework for neurological dysfunction classification using transformer-based model on raw EEG data

Fig. 2  Transformer Modules (Left to Right): Scaled dot-product attention, Multi-head attention, and Transformer module
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3 � Materials and methods
TDBRAIN dataset for psychiatric dysfunction classifica-
tion is used for experimentation. A transformer-based 
method is used for the classification of raw EEG signals 
into five categories of neurological dysfunction is dis-
cussed here.

3.1 � Data set used for proposed work
The proposed method is employed on the EEG sig-
nals from the recently released ”two decades brain clin-
ics research archive for insights in neurophysiology 
(TDBRAIN) dataset” [19]. The dataset comprises 1274 
raw EEG data of patients with a clinical lifespan of 5− 89 
years. The EEG signals are captured while giving specific 
instructions to patients and following standard protocols. 
The psychophysiological recordings are captured using a 
10–10 electrode international system at a sampling rate 
of 500 Hz.

The final raw EEG signals include 26-channel record-
ings. The EEG recordings were taken while the patient 
was resting with eyes open (EO) and eyes closed (EC) for 
2 min each. During the EO task, the patients were asked 
to focus on a red dot at the center of a computer screen 
while in resting state. The EC samples were recorded in 
the patient with closed eyes and retaining the same posi-
tion as the EO task. Differences between EO and EC have 
been previously reported in terms of topography as well 
as power levels [35]. Among 1274 patients, EEG data was 
captured for mental dysfunctions, namely, major depres-
sive disorder (MDD), attention deficit hyperactivity dis-
order (ADHD), subjective memory complaints (SMC), 
obsessive–compulsive disorder (OCD), tinnitus, Insom-
nia, Parkinson, Burnout, Dyslexia, Chronic pain, and 
Healthy. Individual distribution of each class is shown in 
Table 1.

3.2 � Pre‑processing and data preparation
The proposed work focuses on classifying five main 
classes highlighted by Dijk et  al. [19]: ADHD, MDD, 
OCD, SMC, and healthy. As shown in Table  1, ADHD, 
MDD, and SMC classes have a relatively higher num-
ber of samples than OCD and healthy classes. Based on 
this observation, experiments were performed on differ-
ent cost functions to address the class imbalance issue. 
In addition to five class classifications, experiments 
with three majority classes were also performed. The 
TDBRAIN dataset comprises EO and EC EEG signals 
for each patient. The proposed model is implemented 
for both types of signals separately. Bandpass filtering is 
applied to the raw EEG signal with 50 Hz frequency [35]. 
Each EEG signal is then down-sampled using a sampling 
frequency of 100 Hz to reduce the temporal resolution of 
the EEG time series data. The EEG data is finally cropped 

by 3s from both ends to remove any potential artifacts 
introduced due to the filtering and down-sampling pro-
cess. Z-score normalization is applied to the EEG signal 
as follows:

where S is the original EEG signal and S∗ is the normal-
ized EEG signal. µ is the mean value of the signal along 
the electrodes, and σ is the standard deviation. The pre-
processed EEG signals are divided into epochs of window 
size 10 seconds with 2 seconds overlapping. Each win-
dow comprises all 26 electrodes of an EEG signal.

3.3 � Model architecture
Transformer network architecture originally proposed by 
Vaswani et  al. [17] is adopted for classifying EEG signals 
from the TDBRAIN dataset as shown in Fig.  1. The raw 
EEG signal is pre-processed as described in Sect. 3.2 and 
applied to the transformer network for three and five-
class classification. The transformer network follows an 
encoder–decoder structure. In this work, the encoder part 
of the transformer is used for feature extraction, followed 
by the softmax layer for multi-class classification. The 
transformer encoder comprises two sub-layers: a multi-
head attention layer and a fully connected feed-forward 
layer. A residual connection is around these sub-layers, fol-
lowed by layer normalization operations. The multi-head 
attention layer comprises of scalar dot-product attention 
block as shown in Fig. 2. The input vector is multiplied with 
three different weight matrices to construct three vectors. 
The query vector (Q), key vector (K), and values vector (V) 
are applied in the scaled dot-product attention for weighted 
value calculation, as shown in the following equation:

The combination of several such scaled dot-product 
attention layers in parallel is applied to create a multi-
head attention layer. The multiple attention layers allow 
the model to focus on features from different subspaces 
at different locations. The output of the multi-head atten-
tion layer is calculated as follows:

where

The multi-head attention layer is combined with a fully 
connected feed-forward layer to create a transformer 

(1)S
∗

=

S − µ

σ

(2)Attention(Q,K ,V ) = softmax

(

QKT

√

dk

)

V

(3)
MultiHead(Q,K ,V ) = Concat(Att1, ....,Atth)W

O

(4)Atti = Attentioni(Q,K ,V )



Page 6 of 13Gour et al. Brain Informatics           (2023) 10:25 

block. A typical transformer architecture for classifica-
tion comprises multiple transformer blocks. We have 
used four encoder transformer blocks, each having eight 
attention heads for the multi-attention layer.

Recently, the transformer network originally pro-
posed for natural language processing is adapted for 
multi-variate time series data [36]. The EEG signal as 
input to the transformer network is formulated as multi-
variate time series data with electrodes as variables. 
In this work, each training sample is represented as 
X ∈ R

m×e
= [x1, x2, ..., xm] . The training sample consti-

tutes m feature vectors as input of length as number of 
electrodes (e).

3.4 � Class imbalance
The proposed method is implemented on the TDBRAIN 
dataset for neurological dysfunction classification. In the 
original study published by Dijk et al. [19], more empha-
sis was given to the five main classes of mental dys-
function: MDD, ADHD, OCD, SMC, and Healthy. We 
selected these classes to evaluate the transformer model 
in our work for the first section of the experimental setup. 
The distribution of these classes (as shown in Table  1) 
shows the prevalence of class imbalance in the TDBRAIN 
dataset. The number of samples of MDD, ADHD, and 
SMC classes is relatively higher than in OCD and healthy 
classes. The second experimental section involves imple-
menting transformer models for three majority classes, 
MDD, ADHD, and SMC. An ablation study is also per-
formed using three different loss functions to address 
the class imbalance issue in the TDBRAIN dataset. The 
transformer model is trained with categorical cross-
entropy (CCE), weighted sparse categorical cross-entropy 
(WCCE), and focal loss functions. The CCE loss adjusts 
model weights during training [37]. The CCE loss func-
tion is calculated between the ground truth label and the 

predicted probability score of each class and defined as 
follows:

where n is the number of classes, ti is ground truth label, 
pi is probability by softmax function for ith class. The 
WCCE loss function is implemented by applying the 
class weights of each class from the training dataset. The 
class weights for each class are calculated by the method 
given by King et al. [38]:

where Wi is the weight of class i, N is the total number 
of EEG signals, k is the total number of classes, and Ni 
is the number of EEG signal samples in class i. The class 
weights are applied during transformer weight learn-
ing and penalize the classification of minority class into 
majority class. The WCCE loss function is defined as 
follows:

Training the deep learning models using focal loss [39] is 
another method for the dataset with class imbalance. The 
focal loss function down weights the influence of major-
ity classes, resulting in efficient learning for minority 
classes. The focal loss is calculated similarly to the vanilla 
CCE loss function with an added modulating factor for 
class imbalance. The focal loss is defined as follows:

(5)LCCEq = −

n
∑

i=1

ti log(pi)

(6)Wi =
N

k × Ni

(7)LWCCE = −

n
∑

i=1

Witi log(pi)

(8)LFL = −

n
∑

i=1

(i − pi)
γ log(pi)

Table 2  Performance of transformer model for EEG signals with eyes open on different methods for five class (ADHD, MDD, OCD, SMC, 
and Healthy) classification

The best performance is in bold

Decision Method Accuracy F1-score Precision Recall

Window-level Trans + CCE 63.21 41.99 42.51 41.49

Trans + Focal Loss ( γ = 2) 61.25 40.91 41.65 40.20

Trans + Focal Loss ( γ = 0.5) 60.27 37.59 36.38 41.27

Trans + WCCE 53.30 43.67 44.64 42.73
Patient-level Trans + CCE 64.38 42.90 42.81 43.96

Trans + Focal Loss ( γ = 2) 68.49 43.29 45.00 41.72

Trans + Focal Loss ( γ = 0.5) 61.64 38.78 39.66 40.90

Trans + WCCE 57.53 45.03 45.33 44.75
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where γ is a modulating factor that can be tuned accord-
ing to the dataset. In our work, the values of γ are 
selected based on the through empirical study performed 
for object detection in class imbalance conditions. The 
work by Lin et al. [39] suggest the best value for γ as 2. 
In addition a grid analysis is done on the proposed model 
to get the best value for γ as 0.5 for TDBRAIN dataset in 
some cases (as shown in subsequent Sect. 4).

3.5 � Training setup
The EEG classification in literature is divided into 
within-individual and cross-individual training setups. 
These setups differ in how training and testing sets are 
extracted from the dataset. In a within-individual setup, 
multiple sessions of the same individual are divided into 
training and testing sets. Within-individual setup leads to 
higher accuracy during testing. However, in the real-life 
scenario, the cross-individual setup is more relevant. The 
model trained on training individuals is tested on new 
individuals. The cross-individual setup provides more 
robust and generalized models due to information trans-
fer among individuals. This work uses a cross-individual 
setup to create training, validation, and testing sets from 
the TDBRAIN dataset. The five and three class samples 
are divided into 80% , 10% , and 10% for training, valida-
tion, and testing sets, respectively.

The transformer model is trained and tested with 
window-level signals as described in Sect.  3.2. Dur-
ing the testing stage, the window-level predictions are 
aggregated using a majority voting technique to obtain a 
patient-level prediction. The classification scores for each 
window for a particular patient are aggregated together. 
Majority voting is applied to the windows to get the final 
decision for each patient.

The architecture hyper-parameters were chosen 
according to the original transformer encoder mod-
ule [17]. Based on empirical experimentation, the 

hyper-parameters of the transformer model were subse-
quently tuned during model validation on the raw EEG 
signals of the TDBRAIN dataset. Different values of 
attention heads, head size, number of transformer blocks, 
and dense layer size were explored during the experimen-
tation. Based on the performance, the values for atten-
tion heads, head size, number of transformer blocks, and 
dense layer were fixed at 4, 32, 4, and 512, respectively. 
The multi-head attention layer was implemented with 
a ReLU activation function with a dropout rate of 0.25. 
The training hyper-parameter tuning was done for learn-
ing rate, batch size, and number of epochs. The trans-
former model was trained using the Adam optimizer 
with a 0.001, 0.0001, and 0.0005 learning rate. The best 
result was obtained with a learning rate of 0.0005. The 
models were trained on NVIDIA Tesla P100 GPU with a 
memory size of 15GB, for which the batch size was set to 
4 to accommodate the computational capabilities. Dur-
ing initial tests, we explored training for 100, 200, and 
300 epochs for hyper-parameter tuning of the number of 
epochs. The number of epochs was set to 100 based on 
the achieved performance during these initial tests. The 
model was trained for 100 epochs with the early-stopping 
and checkpoint method to choose the best model among 
the trained models. The best models were selected based 
on the highest validation accuracy, and the training was 
stopped using a patience parameter of 20. The code is 
implemented on Python 3.8 on the TensorFlow backend 
with CUDA: 9.1.85 and cuDNN: 7.1.1 versions.

4 � Results and discussion
The proposed method is applied to raw EEG signals of 
the TDBRAIN dataset. The models are tested on hold-
out 10% of the TDBRAIN dataset. The performance is 
evaluated and compared on the confusion matrix-based 
parameters. Accuracy, F1-score, Precision, and Recall 

Table 3  Performance of transformer model for EEG signals with eyes close on different methods for five class (ADHD, MDD, OCD, SMC, 
and Healthy) classification

The best performance is in bold

Decision Method Accuracy F1-score Precision Recall

 Window-level Trans + CCE 61.74 46.57 51.24 47.83
Trans + Focal Loss ( γ = 2) 55.28 31.34 35.77 32.70

Trans + Focal Loss ( γ = 0.5) 65.85 45.60 51.99 45.03

Trans + WCCE 49.61 36.94 37.06 37.72

Patient-level Trans + CCE 67.12 49.84 63.55 49.54
Trans + Focal Loss ( γ = 2) 57.53 32.00 40.79 32.84

Trans + Focal Loss ( γ = 0.5) 68.49 44.59 49.51 45.11

Trans + WCCE 52.05 36.89 35.79 38.25
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parameters are calculated and compared with different 
experiments. The F1-score (12) is defined as the har-
monic mean of precision and recall parameters. Accuracy 
(9), Precision (10), and recall (11) are defined in terms of 
true positive (TP), true negative (FP), false positive (FP), 
and false negative (FN) as follows:

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)Precision =

TP

FP + TP

(a) EO - Trans + CCE (b) EO - Trans + FL (γ = 2.0)

(c) EO - Trans + FL (γ = 0.5) (d) EO - Trans + WCCE

(e) EC - Trans + CCE (f) EC - Trans + FL (γ = 2.0)

(g) EC - Trans + FL (γ = 0.5) (h) EC - Trans + WCCE

Fig. 3  Confusion matrices for the five-class classification eye open and eye closed samples
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We have compared the results of the proposed method 
for the EO and EC EEG signals based on accuracy, 
F1-score, precision, and recall parameters. The final 
decision is made window level and patient level for the 
three- and five-class classification. It is observed that 
the performance with patient-level decisions is relatively 
better than window-level decisions. Tables 2 and 3 sum-
marize the performance of the transformer model for 
five-class classification on EO and EC samples. The pro-
posed method shows superior performance using EO 
samples in terms of accuracy for all loss functions. How-
ever, better performance is observed in terms of F1-score, 
precision, and recall five-class classification performance 
with EC samples. The transformer model with WCCE 
loss function shows improved performance with respect 
to CCE loss function in the case of EO five-class classi-
fication for window level decision. The best accuracy of 

(11)Recall =
TP

TP + FN

(12)F1− Score = 2×

[

Precision× Recall

Precision+ Recall

]

68.49% is achieved with focal loss ( γ = 2) in patient-level 
decision for EO experiment and 68.49% for EC experi-
ment with focal loss ( γ = 0.5) in patient-level decision.

The confusion matrix of window level decision for each 
experiment shows the advantage of using WCCE and 
focal loss function for classification (as shown in Fig. 3). 
The model trained on EO samples is biased toward the 
ADHD class, and the minority classes, i.e., OCD and 
healthy, are not recognized (Fig.  3(a)). However, it can 
be seen in Fig.  3(b) and (c) that the models recognize 
some of the samples of minority classes. This can also 
be observed in the improvement of F1-score parameters 
in the WCCE case. In the case of the EC experiment for 
five classes, the healthy class is recognized more effi-
ciently than other cases (Fig.  3(d–f)). The recognition 
of minority class led to better F1-score, precision, and 
recall parameter values among other experiments for five 
classes.

The results of the three-class classification on EO and 
EC samples are shown in Tables  4 and 5, respectively, 
for window-level and patient-level decisions. The three 
majority classes’ experiments perform better than the 
five-class classification. Due to the prevalence of class 

Table 4  Performance of transformer model for EEG signals with eyes open on different methods for three class (ADHD, MDD, and 
SMC) classification

The best performance is in bold

Decision Method Accuracy F1-score Precision Recall

Window-level Trans + CCE 71.87 66.57 65.57 71.56

Trans + Focal Loss ( γ = 2) 71.43 62.10 68.09 59.67

Trans + Focal Loss ( γ = 0.5) 75.11 63.87 82.62 60.25

Trans + WCCE 67.86 64.01 61.73 72.42
Patient-level Trans + CCE 68.75 60.01 60.37 61.87

Trans + Focal Loss ( γ = 2) 73.44 63.96 74.84 60.36

Trans + Focal Loss ( γ = 0.5) 76.56 65.75 91.07 60.71

Trans + WCCE 70.31 67.04 64.78 74.39

Table 5  Performance of transformer model for EEG signals with eyes close on different methods for three class (ADHD, MDD, and 
SMC) classification

 The best performance is in bold

Decision Method Accuracy F1-score Precision Recall

Window-level Trans + CCE 67.97 64.86 66.25 63.92
Trans + Focal Loss ( γ = 2) 69.87 60.55 66.21 57.48

Trans + Focal Loss ( γ = 0.5) 68.64 59.13 63.61 63.54

Trans + WCCE 66.18 62.63 67.15 61.15

Patient-level Trans + CCE 67.19 64.83 72.75 60.92

Trans + Focal Loss ( γ = 2) 70.31 61.19 75.52 56.05

Trans + Focal Loss ( γ = 0.5) 70.31 61.87 66.53 65.36
Trans + WCCE 65.62 60.91 72.62 57.43
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imbalance, the performance parameters get affected in 
five-class classification. The transformer model trained 
with EO samples shows better performance than EC 
samples. The EO experiment with the CCE loss function 
achieved 76.56% accuracy compared to 70.31% accuracy 
achieved by the EC experiment with focal loss ( γ = 0.5) 
in patient-level. The advantage of using focal loss can 
be seen in the case of precision of EO case with value as 
91.07%.

Figure  4 shows the confusion matrices for the three-
class classification for window-level decisions. As shown 
in Fig.  4(a)   and (d), for the EO experiment using CCE 

and WCCE loss functions, ADHD and SMC classes are 
classified better in comparison to MDD class. A similar 
pattern is observed in the case of EC experiments using 
CCE and WCCE loss functions (Fig. 4(e) and (h)). In case 
of MDD class, the EO and EC experiments using focal 
loss function shows higher number of true positives as 
shown in Fig. 4(c) and (f ).

The transformer model was trained for 100 epochs, 
and the best model was selected using the early stopping 
and checkpoint method. During training, a checkpoint is 
created when the validation error is less than the previ-
ous epochs, and the current model is saved as the best 

(a) EO - Trans + CCE (b) EO - Trans + FL (γ = 2.0) (c) EO - Trans + FL (γ = 0.5)

(d) EO - Trans + WCCE (e) EC - Trans + CCE (f) EC - Trans + FL (γ = 2.0)

(g) EC - Trans + FL (γ = 0.5) (h) EC - Trans + WCCE
Fig. 4  Confusion matrices for the three-class classification eye open and eye closed samples
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model. The training and validation accuracy plots for 100 
epochs for the five-class classification are shown in Fig. 5. 
It can be seen from the plot that the best validation accu-
racy for the eye-open EEG data was identified at epoch 
number 45 (Fig. 5(a)). Likewise, the best validation accu-
racy for the eye-closed EEG data was identified at epoch 
50 (Fig. 5(b)). Beyond these identified epochs, the model 
started overfitting the data with no further improvement 
to validation accuracy.

4.1 � Comparision with methods from literature
The proposed transformer model is also compared with 
other state-of-the-art deep learning-based models that 
were previously developed for raw EEG-based classi-
fication. Two CNN-based methods (i.e. EEGNet [31] 
and DeepConvNet [32]), originally proposed for clas-
sifying raw EEG data for brain–computer interfaces, 

were selected. The two methods were tested on the 
TDBRAIN dataset while keeping the same parameters 
settings according to the original implementations [31, 
32]. To ensure an unbiased comparison, our model was 
compared against the two methods under their opti-
mal original parametrizations for the five-class clas-
sification problem. More specifically, the two methods 
used the CCE loss function for raw EEG classification, 
therefore, our proposed method with the CCE loss 
function was used here for comparison purposes (see 
Table  6). Our proposed method outperformed both 
methods in terms of Accuracy, F1-score, Precision, and 
Recall. Interestingly, our proposed transformer-based 
architecture is relatively close in terms of the number 
of training parameters (#TP) to the compact EEGNet 
architecture [31], but have much less parameters than 
the DeepConvNet method [32], which suggests that our 

Fig. 5   Accuracy plots for five-class classification of eye-open and eye-closed samples (Blue plot: training curve and orange plot: validation curve)

Table 6  Performance comparision of transformer model with state-of-the-art for Raw EEG classification for five classes (ADHD, MDD, 
OCD, SMC, and Healthy)

The best performance is in bold

Author Method Accuracy F1-score Precision Recall # TP

 Eye Open EEG

 Lawhern et al. [31] EEGNet 54.89 36.53 42.04 41.13 53.86k
 Schirrmeister et al. [32] DeepConvNet 59.49 35.77 37.26 37.99 207.53k

 Proposed Method Transformer 63.21 41.99 42.51 41.49 72.64k

 Eye Close EEG

 Lawhern et al. [31] EEGNet 55.28 40.84 44.64 42.92 53.86k
 Schirrmeister et al. [32] DeepConvNet 59.78 38.04 55.52 42.15 207.53k

 Proposed Method Transformer 61.74 46.57 51.24 47.83 72.64k
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model achieved higher performance with a reasonable 
number of training parameters.

4.2 � Limitations and future work
We observed that the models trained on complex raw 
EEG data did not provide high performance that could 
be clinically useful. An attempt has been made to analyze 
possible limitations and future solutions for classifying 
the TDBRAIN dataset. TDBRAIN dataset suffers from 
class imbalance, a classical problem in medical datasets. 
To address this issue, we have implemented the trans-
former model with class weights and focal loss function. 
The results obtained by these methods are not yet suitable 
for real-life deployment. The transformer model imple-
ments a window-level approach based on the assumption 
that EEG signals of 10 s are robust stationary representa-
tions of brain dynamics that are patient-specific.

As future work, we plan to investigate whole EEG sig-
nal analysis for mental dysfunction analysis. Various 
techniques like large margin nearest neighbor, sampling 
methods for imbalanced classification, and EEG signal 
augmentation can be implemented to further address the 
issue of class imbalance. The raw EEG signals are used 
in this work to train the classification model. Classifying 
raw EEG signals is challenging, and artifacts present in 
the signal may hinder the learning process. However, raw 
EEG signal analysis can open the possibility for near real-
time applications for diagnostic purposes, including fast 
analysis of raw signals from portable EEG devices. Our 
rationale was also motivated by the fact that different 
clinical populations might not show similar artifacts (e.g. 
neurotypicals might display fewer artefacts than people 
with mental deficits), which could in turn help the classi-
fication. Nonetheless, the value of pre-processing should 
not be overlooked, as it is expected that better perfor-
mance can be obtained after artefacts removal. Likewise, 
it is also most likely that spectral features might yield bet-
ter classification of the different mental conditions than 
features extracted in the time domain.

5 � Conclusion
An automated psychiatric dysfunction classification 
method using raw EEG signals is proposed in this work. 
The proposed method implements a transformer model 
with three different loss functions for classification. 
Two sets of experiments are performed using samples 
collected during rest from patients with eyes open and 
closed. The novelty of the work lies in the implementa-
tion of transformer models for multi-class classification 
and the addition of specialized loss functions to address 
the class imbalance issue in the publicly available 
TDBRAIN dataset. The approaches are employed for 
classification into five and three categories of mental 

dysfunction. The raw EEG signal is taken as input for 
the transformer block with eight attention heads. The 
extracted features from the transformer blocks are 
applied to a fully connected layer and classified using 
the softmax function. The parametric evaluation of the 
training and testing phase shows that the transformer 
with categorical cross entropy shows better accuracy 
for five-category classification. The transformer with 
weighted categorical cross entropy performed better 
in the open-eye case in terms of F1-score, precision, 
and recall. For the three-category classification case, 
the transformer with categorical cross-entropy yielded 
better accuracy for eye-open samples than that with 
the focal loss for eye-closed samples. Classwise perfor-
mance of all the models is also analyzed using confu-
sion matrices. The proposed work can be incorporated 
with real-life clinical systems to analyze and classify 
neurological and mental dysfunctions. Future work 
needs to implement robust methods to address the 
class imbalance in the TDBRAIN dataset.
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