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Abstract 

Brain–computer interface (BCI), an emerging technology that facilitates communication between brain and com-
puter, has attracted a great deal of research in recent years. Researchers provide experimental results demonstrating 
that BCI can restore the capabilities of physically challenged people, hence improving the quality of their lives. BCI 
has revolutionized and positively impacted several industries, including entertainment and gaming, automation 
and control, education, neuromarketing, and neuroergonomics. Notwithstanding its broad range of applications, 
the global trend of BCI remains lightly discussed in the literature. Understanding the trend may inform researchers 
and practitioners on the direction of the field, and on where they should invest their efforts more. Noting this signifi-
cance, we have analyzed 25,336 metadata of BCI publications from Scopus to determine advancement of the field. 
The analysis shows an exponential growth of BCI publications in China from 2019 onwards, exceeding those 
from the United States that started to decline during the same period. Implications and reasons for this trend are 
discussed. Furthermore, we have extensively discussed challenges and threats limiting exploitation of BCI capabilities. 
A typical BCI architecture is hypothesized to address two prominent BCI threats, privacy and security, as an attempt 
to make the technology commercially viable to the society.

Keywords Brain–computer interface, Brain activity, Machine learning, Neurological disease, Signal processing, 
Augmented reality

1 Introduction
Naturally, humans use their peripheral nerves and mus-
cles to interact with the outside physical environments 
in carrying out the desired actions. This necessity and 
premise for survival comes with a cost for people with 
severe neurological diseases, including amyotrophic lat-
eral sclerosis and brainstem stroke. These people cannot 
control external devices, thus requiring assistance from 

healthy people that may not always be available. Chal-
lenged by the limitation, scientists and researchers have 
developed a brain–computer interface (BCI) technology 
that can transform brain signals into human actions inde-
pendent of the peripheral nerves or muscles.

BCI, also called brain–machine interface, provides 
direct communication between brain and external 
devices, such as computers and robotic limbs  [1–4]. 
Bypassing the conventional communication channels 
for different tasks (e.g., vision, movement, and speech), 
BCI links the brain’s electrical activity and the external 
world to augment human capabilities in interacting with 
the physical environment  [1]. BCI provides a non-mus-
cular communication channel and facilitates acquisition, 
manipulation, analysis, and translation of brain signals to 
control external devices or applications.
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Since its conception in 1973 by Vidal  [5], BCI has 
remained an active area of research with enormous 
promising opportunities  [6–14]. Researchers have, for 
instance, reported remarkable achievements demonstrat-
ing that BCI can efficiently restore capabilities of peo-
ple with disabilities, such as those with schizophrenia 
symptoms (psychosis, emotional disturbances, and cog-
nitive dysfunction)  [15–21]. Generally, BCI applications 
can be classified depending on the industry: gaming and 
entertainment [22–24], security and authentication [25], 
healthcare  [21], education  [26–28], advertisement and 
neuromarketing (commercial marketing using principles 
of neuroscience and cognitive science) [29–33], and neu-
roergonomics (application of neuroscience to ergonom-
ics)  [34, 35]. Given its cross-cutting nature across many 
aspects of developments, BCI may remain an attractive 
and a competitive research area over a longer period.

Despite the promising applications of BCI, there has 
been a paucity of studies on the future of this technol-
ogy and its possible threats when applied to humans. 
The present study covers typical BCI threats, including 
medical safety, privacy, ethics, and security. We stimulate 
discussions within the scholarly community on the readi-
ness to adopt the BCI technology and accommodate its 
challenges and potential threats. Furthermore, because 
the natural working principles of the brain are not com-
prehensively understood, recommendations have been 
provided for researchers to focus more on the short- 
and long-term impacts of BCI on the general welfare of 
humans. In addition, our study surfaces several research 
opportunities in the field of brain–computer interface. 
Researchers and practitioners may capitalize on these 
opportunities to develop safe BCI products that advance 
humanity and improve quality of our lives.

Lastly, we extracted 25,336 metadata from Scopus to 
analyze patterns and trend of BCI research. Results show 
an exponential growth of BCI publications, China being 
the leading country between 2019 onwards followed by 
the United States within the same period. This observa-
tion signals the significance of BCI to the community, but 
raises critical questions on the potential BCI threats to 
humans.

2  Fundamental components of BCI system
The BCI system comprises three fundamental compo-
nents that serve specific roles: signal acquisition, signal 
processing, and application (Fig.  1). These components 
are interconnected and work together to allow the flow 
of brain signals to the target BCI application (e.g., robotic 
arm). In particular situations, control signals from the 
BCI application may be sent back to the brain to stimu-
late some common human functionalities, such as vision 
and hearing.

2.1  Signal acquisition
This component comprises an electronic device with 
electrodes for acquiring brain signals (oscillating elec-
trical voltages caused by biological activities of the 
brain) that define its neurophysiological states. Signal 
acquisition involves capturing of electrophysiologi-
cal signals that represent specific activities of the brain 
(e.g., movement, speech, hearing, and vision). Most 
BCI systems, including the commercial ones, deal with 
the following electrophysiological signals: electroen-
cephalography, brain’s electrical activity measured with 
electrodes placed on the scalp  [36, 37]; electrocorti-
cography  [38–40], electroencephalographic signals 
measured directly with electrodes placed on the surgi-
cally exposed cerebral cortex; local field potential [41], 
electric potential measured around the neuron’s extra-
cellular space; and neuronal action potential  [42, 43], 
rapid and temporary change in the neuron’s membrane 
potential. Before being presented to the next BCI com-
ponent, the captured brain signals undergo filtering, 
amplification, and digitization [21]. The overall perfor-
mance of the BCI system depends heavily on the qual-
ity (signal-to-noise ratio) of the acquired brain signals.

Depending on the signal acquisition method, BCI 
can broadly be categorized into two types: invasive 
(electrodes implanted under the scalp to record signals 
directly from the brain) and non-invasive (electrodes 
implanted on the scalp). Invasive BCI provides a more 
accurate reading of brain signals, but requires surgery; 
non-invasive BCI does not require surgery, but suffers 
from weak brain signals (poor signal-to-noise ratio) 
that require expensive amplification hardware and 
sophisticated signal processing techniques.

2.2  Signal processing
2.2.1  Feature extraction
In this stage, the BCI system extracts critical elec-
trophysiological features from the acquired signals 
to define brain activities, and hence encoding of the 
user’s intent [21]. Similar to the previous stage, feature 
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system
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extraction should be executed accurately, ensuring 
that the features reflect high correlation with the user’s 
intent to enhance the effectiveness and performance 
of the BCI system. Typical BCI systems employ time-
domain or frequency-domain features  [44–51] that 
take different characteristics: amplitude or latency of 
event-evoked potentials (e.g., P300), frequency power 
spectra (e.g., sensorimotor rhythms), or neuronal firing 
rates [21]. Therefore, before designing the BCI system, 
the domain transform and characteristics of features 
should be established. Also, confounding artifacts 
contained in the features that can negatively impact 
the subsequent stages of the BCI system should be 
eliminated.

2.2.2  Feature classification
The extracted features represent brain activities intended 
for desired actions. The classification process helps to 
recognize patterns of the features corresponding to these 
actions. For example, we can recognize features repre-
senting an instruction for moving a robotic arm. This 
component is usually implemented using machine learn-
ing and classification methods [52–54].

2.2.3  Feature translation
In this signal processing stage, the classified features are 
translated and transformed into actual commands to 
operate an external device (BCI application). Examples 
of the outputs given after feature extraction include com-
mands for cursor movement on the computer screen, 
volume control on the audio device, or text writing. One 
important attribute of an algorithm for feature trans-
lation is adaptability  [55, 56]: ability of the translation 
algorithm to adaptively track changes of the features and 
generate an appropriate output.

2.2.4  BCI application
Feature translation generates commands that can con-
trol external devices (BCI applications): cursor  [57–60] 
for letter and text selection on the computer screen [44, 
45, 61], wheelchair [62, 63], and robotic arm [64, 65]. For 
BCI restoration problems, the control signals from the 
BCI application may be transmitted to the brain or other 
body organs.

3  Applications and future of brain–computer 
interface

In this contemporary society, scientists and engineers 
have been striving to apply advanced technologies in 
improving quality of human life  [144]. Of the available 
technologies, BCI has gained considerable attention in 
medicine for its ability to restore emotional and physical 
strength of people with missing or damaged body parts. 

The BCI technology allows physically challenged people 
to control machines using their thoughts. This advantage 
gives such people a revealing experience to interact with 
the external environment and accomplish different activi-
ties without dependence from healthy people.

The BCI field is moving fast with a number of promis-
ing outcomes that can significantly improve human lives. 
Researchers require regular updates to address chal-
lenges hindering further advancement of the BCI tech-
nology. More importantly, given the multidisciplinary 
nature of brain–computer interface, scientists and engi-
neers should work together to develop new and advanced 
BCI applications. Recently, the technology has found 
numerous industrial merits in a range of fields, including 
mining and education. Combined with fourth industrial 
revolution, researchers have demonstrated that BCI may 
accelerate the evolution of robots and neurophysiological 
discoveries  [98, 99, 150]. Other applications of the BCI 
technology include decoding of thoughts, extension of 
human memory, telepathy communication, automation 
and control, intelligence sharing, brain energy harvest-
ing, and optimized (targeted) treatment of damaged body 
parts.

3.1  Decoding of thoughts
The brain, being a complex human organ, generates and 
controls our thoughts and other physiological param-
eters: emotion, touch, breathing, hearing, motor skills, 
hunger, temperature, memory, and anger. Some param-
eters, such as anger and changes of breathing rate, may 
be manifested outside through physical expressions or 
actions. However, most parameters can only be mani-
fested internally (inside the brain) without the knowl-
edge of other people. The current technologies cannot, 
for example, predict with an acceptable accuracy the 
thoughts of an individual. While this internalization 
of human thoughts—represented as brain signals in 
a BCI system—may have advantages, some situations 
may demand us to accurately decode such thoughts. In 
criminology, for example, policemen would like to under-
stand whether a suspected criminal speaks the truth. 
Recently, researchers have been investigating how BCI 
can improve the performance of polygraphs that measure 
the degree of truth in the arguments from a person (e.g., 
criminal) [2, 66–68]. Perhaps the promising results in this 
direction may be achieved by combining BCI and artifi-
cial intelligence techniques.

Can the BCI application facilitate translation of human 
thoughts accurately into a readable text? How can the 
accuracy of the translated text be measured? Can our 
imaginations be mapped into real objects, such as pic-
tures and texts printed on a piece of paper? Can events 
in the dreams be accurately decoded by the BCI system? 
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Can we extend the applications of BCI to develop wear-
able devices that monitor thoughts or sleeping pat-
terns  [69–71]? Can we extract a will directly from the 
thoughts of a dying person? Can we print physical docu-
ments by sending command signals and data from the 
brain, through the BCI system, to the printer? These 
interesting questions need further scientific inquiry.

This study envisages that future developments of 
brain–computer interface will include sophisticated 
products that can directly map human thoughts into 
physical objects. We believe that, with the growing trend 
of BCI, people (especially those with physical disabilities) 
will drive and control machines (e.g., drones, vehicles, 
and airplanes) remotely using their thoughts  [72]. The 
advanced developments of BCI may surface critical secu-
rity and privacy issues, and hence the technology needs 
to be well-regulated through universal standards [73, 74].

3.2  Extension of human memory
Stephen Hawking theorized the possibility of upload-
ing the human mind into a computer  [75]. This philo-
sophical argument, despite its focus on the human mind 
(consciousness), raises a critical question on whether 
BCI may be a promising future technology to realize the 
concept. Specifically, how do we extract memory signals 
from the brain and decode them for storage into a com-
puter (memory extension)? If successfully implemented, 
humans will be able to upload their memories into the 
computer for quicker processing, retrieval, and transmis-
sion of information, or for control of external devices.

In the recent developments of brain–computer inter-
face, scientists have generated outstanding results show-
ing that brain signals can be harvested and converted into 
data reflecting human intended actions  [76, 77]. Future 
studies on BCI may advance these results to investigate 
how BCI may be used to harvest behaviors and traits 
from humans for research and scientific study purposes. 
But this inquiry should be pursued under strict ethical 
guidelines, a component that has not been well-captured 
by the BCI researchers.

The sensitive information from the brain, if accu-
rately harvested, may be stored into and retrieved from 
the external physical memory. Imagining the future 
of BCI, we envisage that scientists and practitioners 
may develop portable flash drives (or other variations 
of physical memories) that may be plugged into the 
BCI device to extract information from (or introduce 
information into) the brain. One may question a pos-
sible area that may apply the proposed idea. Imagine 
a counselling psychologist armed with accurate infor-
mation (obtained through a BCI device) on the behav-
iors and traits of a person. Evidently, this expert may 
be expected to provide a well-informed advice and 

conclusion, giving an appreciable impact to a person 
being counseled. Achieving this scientific endeavor 
requires an intensive multidisciplinary research.

3.3  Telepathy communication
Rao et  al. demonstrated that BCI, in conjunction with 
the computer–brain interface (CBI)  [78, 79], may 
allow individuals to communicate without physical 
interaction or sensory channels  [80], a process called 
telepathy communication. Integration of BCI and CBI 
forms brain–brain interface that is still in early stages 
of research and development  [81–84]. In future, we 
expect more work in this direction to expand the appli-
cations of telepathy communications in various science 
and engineering fields. As an example, researchers may 
investigate how human brains can be interconnected 
over the Internet of Things (IoT) network to enhance 
exchange of information and experiences among indi-
viduals. While few studies demonstrate the possibility 
of interfacing BCI and IoT [85–90], linking brains and 
IoT over the network remains an open-ended chal-
lenge that deserves attention of researchers. Further-
more, integration of BCI-IoT and other communication 
modalities, such as mind–mind interface and mind–
machine interface, need further investigation to explore 
additional capabilities and functionalities on human–
machine–human communications. All these technolog-
ical advancements should, however, be made in parallel 
with adherence to ethical principles of humanity.

3.4  Automation and control
The promising developments in BCI suggests that 
the technology may be useful in automation and con-
trol industries  [91–96]. Currently, BCI has received a 
significant deal of attention in home automation and 
control  [97]. In this scenario, the technology assists 
physically challenged people to automate their daily 
home activities, making it possible for such people live 
independently. As the technology advances, we expect 
positive impacts of BCI in the industrial manufactur-
ing processes. In essence, researchers may attempt to 
investigate the role of BCI in the fourth industrial revo-
lution [98, 99]. For instance, the BCI application may be 
connected over a secure wireless network to automate 
processes in the manufacturing industry. Considering 
sophistication and rapid development in the sensor tech-
nology, BCI may be applied in non-contact control and 
automation industrial systems. This research direction 
requires intensive investigation to overcome inherent 
limitations of the BCI technology and ensure seamless 
interaction with intelligent sensors.
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3.5  Intelligence sharing
Can the BCI, in conjunction with the CBI, help to repro-
gram the brain, hence allowing sharing of intelligence 
between individuals? Although it may be imagined as a 
fiction, the fundamental principles of the technology 
suggest that brains may be reprogrammed artificially. 
Achieving this milestone, however, requires solid under-
standing on the nature and functioning of our brains—a 
stage that has not been reached by the current state of 
knowledge.

3.6  Brain energy harvesting
The human brain takes only 2% of the body’s mass and, 
for an average adult in a normal state, consumes 20% 
of the whole body energy budget to execute its activi-
ties [100]. This proportion of energy consumption makes 
it the third most energy-hungry body organ  [101]. We 
hypothesize that the BCI technology may be combined 
with other advanced technologies to harvest portion 
of this enormous amount of energy for powering low-
energy external devices. Studies are needed to realize the 
idea, investigating how much energy can a typical BCI 
system harvest from the brain.

3.7  Localized brain–computer interface
In BCI, the process of brain signals acquisition is not dis-
criminatory. Virtually, the electrodes acquire all the avail-
able signals within the vicinity of its location (under or on 
the scalp). Consequently, a huge amount of signals and 
noise are collected for a single intended task (e.g., move-
ment of the artificial leg), making the processing of such 
signals rather difficult. We can, however, tap the specific 
signals intended to control a targeted body part by local-
izing the BCI system. For example, considering a person 
with speech problems, the BCI system may be placed in 
an area that directly receives speech control signals from 
the brain. This advancement may improve the perfor-
mance of the BCI system and reduce its size.

4  Trend of BCI research
In analyzing the trend of BCI research, we, on 26 August 
2022, extracted metadata of 25,336 publications from 
Scopus.1 The search string used was “brain computer 
interface” that, as per the Scopus research rules, includes 
other similar string variations: brain-machine interface; 
Brain Computer Interface; Brain-Computer Interfaces; 
Brain-computer Interface; Brain Machine Interface; 
Brain-computer Interface (BCI); Brain Computer Inter-
faces (BCIs); Brain-computer Interfaces; Brain-machine 

Interface; Brain Computer Interface (BCI); and Brain-
Computer Interface. Next, some publications incorrectly 
classified as related to BCI were omitted. In our extended 
dataset,2 all the extracted metadata were organized into 
continents, regions, and countries3 for analysis. The 
VOSviewer4 served a purpose of organizing and analyz-
ing the bibliographic networks of the investigated BCI 
publications.

Our analysis reveals that the BCI field has constantly 
been evolving over the years, with publications ranging 
from theories and fundamental principals to practical 
applications. Studies demonstrate that BCI may signifi-
cantly improve the quality of life for physically challenged 
people  [77, 102]. Given its broad applications in many 
fields, researchers have invested more time to address 
practical challenges in BCI systems. Analyzing previous 
BCI studies, we have observed an exponential growth 
of the BCI field to date (Fig.  2a). Within a 5-year inter-
val (between 2016 and 2021), for instance, the number of 
BCI publications increased steadily by approximately 1.5 
times. This trend suggests an increasing demand of BCI 
to the scientific and general community, an indicator call-
ing for a need to conduct advanced BCI research.

Figure  2b, c shows that Asia, specifically the Eastern 
region, has generated more BCI publications over the 
years. China demonstrates a steadily growing trend of 
the publications on brain–computer interface, topping 
other countries from 2019 onwards (Fig. 2d). This inter-
esting trend may be caused by an increased research 
funding and support by the China government to under-
take advanced research [103, 104]. In the Made in China 
2025  [105] strategy, China has established ambitious 
plans to become a leading superpower by 2049. The 
strategy, coupled with a higher population size and an 
increased number of academic and research institutions, 
could be a driving factor for China to achieve a remark-
able achievement in BCI research.

The United States, however, remains a leading coun-
try in terms of the overall number of BCI publications 
(Fig.  3). Given the higher technological and economi-
cal muscle of the United States, this observation would 
be expected. Perhaps an intriguing question for future 
inquiry would be on why the number of BCI publications 
for this country started to decline from 2019 onwards. 
One way that the United States may improve the trend of 
BCI publications is to promote co-authorship with Chi-
nese universities and research institutions (Fig. 4).

1 https:// www. scopus. com.

2 https:// drive. google. com/ drive/u/ 0/ folde rs/ 1vcam Ddm4o NaPtm 5ktWk 
TaiT6 LMmOEE-h.
3 Link of continents/countries/regions:https:// stati stics times. com/ geogr 
aphy/ count ries- by- conti nents. php.
4 https:// www. vosvi ewer. com/.

https://www.scopus.com
https://drive.google.com/drive/u/0/folders/1vcamDdm4oNaPtm5ktWkTaiT6LMmOEE-h
https://drive.google.com/drive/u/0/folders/1vcamDdm4oNaPtm5ktWkTaiT6LMmOEE-h
https://statisticstimes.com/geography/countries-by-continents.php
https://statisticstimes.com/geography/countries-by-continents.php
https://www.vosviewer.com/
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Figures  4 and 5 show five countries with higher vol-
ume of BCI publications: United States, China, Germany, 
Japan, and India. Authors from these countries collabo-
rate to foster the development of BCI research. Given 
the value of BCI technology in human socio-economic 
development, we recommend the efforts to be adapted 
in other countries, specifically those in the global south. 
Institutions from low-income economies, as defined 
by the World Bank, should be empowered to conduct 

advanced BCI research with a focus on addressing the 
third sustainable development goal, “good health and 
well-being”.

Africa lags behind in BCI research (Fig.  2b), generat-
ing only 0.95% of all the BCI publications globally. This 
small proportion may be attributed to insufficient fund-
ing for supporting and advancing BCI research (Fig.  5). 
Funding organizations may need to observe Africa as a 
potential continent for BCI research. With an estimated 
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population of 1.426 billion people by 20225—approxi-
mately three times that of Europe6—and with more 
than 2,000 universities and institutions,7 Africa can sig-
nificantly contribute in BCI research. The methods and 
results from studies on BCI can improve the quality of life 
for millions of Africans. According to statistics from the 
United Nations, more than 80 million people in Africa 
are disabled, including those with severe mental health 
conditions and physical impairments that may be benefi-
ciaries from BCI results. Therefore, supported by funding 
organizations and governments, African researchers and 
innovators should exploit the capabilities of BCI technol-
ogy to address the existing practical challenges in Africa. 
Another possible reason causing low number of BCI pub-
lications in Africa could be the inadequate level of tech-
nology to undertake BCI research that requires advanced 
equipment and complex infrastructure. Collaboration 
with the developed world, especially China and United 
States, in undertaking BCI research may be an effective 
and a feasible strategy for Africa to achieve the desirable 
output in BCI research.

Generally, the BCI research opens up several interest-
ing problems that demand attention within the scholarly 
community. Our study discovered that countries address 
the BCI problem differently depending upon their local 
contexts. For example, while BCI studies from devel-
oped countries focus on the industrial applications of 
the technology, those from developing countries mostly 
deal with how the technology contributes in improving 
life quality of humans (e.g., increasing life expectancy). 
United States and China, which have shown significant 
advances in BCI research, provide promising prospects 
of BCI in the fourth industrial revolution  [98, 99] with, 
however, a serious concern of the potential threats that 
the technology may impose if misused. These countries 
have, in fact, practically applied BCI in the real-world 
to advance humanity. Critically analyzing metadata of 
the 25,336 reviewed articles, we observed sophisticated 
BCI research laboratories8,9,10 that generates results with 
positive practical impacts. Developing countries, such 
as those in Africa, lack a support infrastructure for BCI 
research. Therefore, it may be relatively challenging in 
these countries to comprehensively explore competitive 
advantages of the BCI technology.

5  Challenges and potential threats of brain–
computer interface

The BCI technology, despite its broad applications, poses 
threats to humans that need to be addressed. As we strive 
to make the technology friendly and useful, research-
ers should develop BCI applications that resonate with 
the standard principles of humanity. In essence, a bet-
ter technology should enhance our lives while consider-
ing human factors, including convenience, ease-of-use, 
privacy, security, and safety  [106–108]. Before adopting 
the BCI technology for use by the community, research-
ers and practitioners are obliged to engage users and 
ensure that the technology has passed predefined quality 
standards.

5.1  Privacy
In the article by Luigi Bianchi,11 the author informs 
lack of specific standards that govern development of 
BCI applications. This challenge, as noted by Takabi 
et  al.  [109], has resulted in BCI applications with unre-
stricted access to brain signals. The authors’ results show 
that these applications may, as a consequence, extract 
sensitive information from users without their knowl-
edge. As an attempt to address privacy concerns, stand-
ards should be established to define acquisition methods, 
access control protocols, and encryption techniques, 
among other attributes. Klein and Ojemann suggest that 
the privacy concerns and other threats may be addressed 
through adherence to best practices when developing 
BCI systems and incorporating such concerns into the 
informed consent protocols [110].

In this work, we have hypothesized a functional model 
of the BCI system that accounts for privacy and secu-
rity issues (Fig.  6). This model, which extends the work 
of Mason and Birch  [111], contains components that 
may prevent unauthorized access of sensitive personal 
information without the user’s awareness. Recalling 
Fig.  6, before acquisition of brain signals, the BCI sys-
tem engages the user with predefined access rules to 
ensure high integrity and privacy of information. In the 
signal processing block, a component “Feature selec-
tion” retains quality features intended for classification 
and translation. Next, for BCI applications linked with 
networked devices over the Internet, we propose encryp-
tion of the translated features (control commands) before 
transmission. This process prevents attackers from alter-
ing the control commands, a consequence that may 
threaten the user’s safety. Other advanced technologies, 
including blockchain [112], may also be used to prevent 

8 https:// about. bci- lab. info/.
9 https:// www. cmu. edu/ bme/ helab/ Resea rch/ BCI/ index. html.
10 https:// www. etsu. edu/ cas/ psych ology/ bcilab/.

11 https:// lifes cienc es. ieee. org/ lifes cienc es- newsl etter/ 2019/ april- 2019/ on- 
brain- compu ter- inter face- stand ards/.

7 https:// www. webom etrics. info/ en/ Africa? page= 20.

6 https:// ec. europa. eu/ euros tat/ web/ produ cts- euros tat- news/-/ ddn- 20220 
711-1.

5 https:// world popul ation review. com/ conti nents/ africa- popul ation.

https://about.bci-lab.info/
https://www.cmu.edu/bme/helab/Research/BCI/index.html
https://www.etsu.edu/cas/psychology/bcilab/
https://lifesciences.ieee.org/lifesciences-newsletter/2019/april-2019/on-brain-computer-interface-standards/
https://lifesciences.ieee.org/lifesciences-newsletter/2019/april-2019/on-brain-computer-interface-standards/
https://www.webometrics.info/en/Africa?page=20
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220711-1
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220711-1
https://worldpopulationreview.com/continents/africa-population
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unauthorized access of the control commands by the 
attackers. Lastly, the model contains a feature decryption 
block that decodes the encrypted control commands for 
use by the BCI applications.

5.2  Security
The field of BCI has made a significant progress in the 
development of medical applications and products to 
improve the patients’ quality of life (e.g., restoration 
of damaged sight or hearing)  [113]. However, given the 
increasing demand for BCI-internet communications, 
security concerns have emerged [114–116]. The advance-
ment of brain–computer interface creates opportunities 
for cyber attackers to intervene in the normal operations 
of the BCI application  [117]. The attackers may alter 
commands derived from the feature translation compo-
nent (Fig. 1) and cause adverse effects to the target sub-
ject. Therefore, researchers should investigate security 
threats and vulnerable BCI components that can be easily 
attacked, then find robust solutions.

5.3  Safety
Safety concerns can generally be observed in invasive 
BCI types. Because of being implanted into the brain tis-
sue, invasive BCI can damage nerve cells and blood ves-
sels, hence increasing the risk of infection.12 Additionally, 
the natural defence system of the body may reject the 
implant, treating it as a foreign entity (biocompatibility 
concern). Another safety concern of invasive BCI is the 
possible formation of scar tissue after surgery, a conse-
quence that may gradually degrade the quality of the 
acquired brain signals. Addressing this challenge requires 

a comprehensive knowledge on how the human body 
works and interacts with foreign matters. The knowl-
edge should be used by BCI scientists and engineers to 
develop safe and quality BCI applications. This knowl-
edge should, in addition, equip neurosurgeons with more 
accurate information on specific brain regions to implant 
BCI electrodes.

5.4  Ethical, legal, and social concerns
The BCI research raises a number of ethical, legal, and 
social concerns on privacy, security, safety, accountabil-
ity, and accessibility  [118]. The society would prefer the 
BCI technology that addresses their questions. For exam-
ple, should people be concerned by privacy and security 
of the BCI applications? Does the technology guarantee 
safety? Does the society get equal access to the technol-
ogy? In a situation of negative technological or technical 
impacts, who will be accountable and what are the legal 
implications? These questions require careful considera-
tions and further research before administering this tech-
nology to the society.

5.5  Convenience and flexibility
Most BCI applications require calibration data to reverse 
undesirable changes caused by neural plasticity or micro-
movements of the electrode arrays  [77]. This necessity 
calls for frequent decoder retraining, an inconvenient 
and time-consuming process that unnecessarily burdens 
the user. Willett et al. [77] highlight the challenge in their 
seminal work on brain-to-text communication through 
handwriting. Despite the promising performance 
achieved by the authors’ model, daily decoder retrain-
ing was unavoidable. Future studies may investigate more 
effective techniques for decoder training without physi-
cally engaging the user. In essence, the BCI application 

Feature 
selection

Feature 
classification

Feature 
translation

Signal processing
Feature 

extraction
Feature 

encryption

Feature 
decryption

Transmitter

Receiver

Feedback

Signal 
acquisition

Access rules Internet

Wheelchair

Fan

Bulb

Television

BCI Applications

Fig. 6 Brain–computer interface (BCI) system with encryption and decryption components for enhancing privacy
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should operate adaptively with respect to the stochastic 
changes in the neural activities of the brain. Automatic 
self-calibration approaches may be employed to update 
operation of the BCI application accordingly, hence pro-
moting convenience and flexibility.

5.6  Multidisciplinarity
The BCI field involves multiple disciplines that should 
be linked to establish advanced principles and more 
effective BCI applications. In our analysis from Scopus, 
we observed that some important disciplines have not 
been adequately engaged in the BCI research (Fig.  7). 
For example, only 1% of the BCI-related publications 
originate from psychology, a discipline dealing with study 
of human mind and behavior. Psychology, when com-
bined with other disciplines, may provide a milestone to 
develop even better and practical BCI systems that can 
revolutionize humanity positively. Establishing research 
teams from varied disciplines may require strategic plans 
and funding, but such multidisciplinary teams are impor-
tant to fully harness the BCI promising capabilities.

5.7  Big data
The brain stores an enormous amount of information 
serving different human tasks. In addition, this central 
body organ generates a vast amount of electrical signals 
that control, monitor, and regulate human activities. Evi-
dently, BCI raises a big data problem that needs sophis-
ticated techniques to address. Unfortunately, because of 
insufficient knowledge on the brain working principles, 
BCI researchers may not have collected and utilized all 
the brain data and signals. Researchers need to under-
stand key neurological features, including neuroplasticity 
that flexibly allows re-organization of neurons in learning 
or injury recovery [119]. In non-invasive BCI, researchers 
should determine resolution of the electrode network on 
the scalp for optimal collection of brain signals. Similarly, 

invasive BCI requires electrodes optimally positioned 
under the scalp.

5.8  Availability of participants for clinical trials
BCI, being an emerging and a relatively new technology, 
offers promising opportunities to several disadvantaged 
groups. Most people, especially those from developing 
countries, are unaware of the merits and demerits of the 
technology as evidenced from a smaller number of BCI 
publications collected from such countries (Fig.  2b). 
Therefore, engaging an acceptable number of people 
in testing the BCI medical products may be relatively 
challenging.

Following ethical guidelines, people should express 
their consent to accept, adopt and use the BCI technol-
ogy. In this work, we noted limited attempts to start 
clinical trials of BCI devices. On 28 July 2021, Synchron 
became the first BCI company to receive approval from 
the United States Food and Drug Administration for con-
ducting (investigational device exemption) clinical trial 
of a permanently implanted device, Stentrode13  [120]. 
Other initiatives for clinical trials of BCI products can 
be observed at the University of Pittsburgh14 (sensori-
motor microelectrode brain–machine interface) and 
the United States National Library of Medicine15 (e.g., 
BrainGate216 [121] and BCI device from the University of 
Grenoble [122, 123]). Morinière et al. introduced a dual-
arm exoskeleton for evaluating BCI products in clini-
cal trials  [124]. Despite these initiatives, including those 
from startups and companies, the number of participants 
involved in the clinical trials seems insufficient for gen-
eralization across the global community. We recommend 
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13 https:// synch ron. com/.
14 https:// www. rnel. pitt. edu/.
15 https:// clini caltr ials. gov/.
16 https:// www. brain gate. org/.
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diversification and increased number of participants for 
clinical trials from different countries, considering cul-
tural and traditional values. Furthermore, studies may be 
needed to understand acceptance of the BCI technology 
to the society. In this work, we located a few studies that 
attempt to determine human behavioral factors towards 
acceptance of BCI devices [125, 126]. Our recommenda-
tion is that, despite the advantages that this technology 
provides, the development of such devices should con-
sider the factors.

5.9  Standardization and approval by regulatory 
authorities

We have witnessed an increasing number of initiatives 
to develop BCI devices with advanced features17,18 [119, 
127]. Startups and companies have been developing com-
mercial BCI devices for use by the society. Our study 
found ongoing efforts for developing universal standards 
governing neurotechnologies for BCI devices.19 These 
efforts should be accelerated to match with the increased 
commercial demands of the BCI devices. Currently, 
people may raise concerns on the practical suitability of 
the BCI technology with respect to general quality and 
ethical guidelines. In addition, guided by the best prac-
tices for developing and administering medical devices, 

information on clinical trials for the commercially viable 
BCI devices remains unclear. We could locate from pub-
lic medical databases only a few clinical trials with lim-
ited number of participants. Considering the delicacy 
and possible long-term impact of BCI technology to 
humans, approval procedures from respective regulatory 
authorities seem necessary before commercialization of 
BCI devices (Fig. 8). This necessity, however, introduces 
another challenge that some developing countries may 
be inadequately equipped with advanced facilities and 
expertise to test and approve BCI devices.

5.10  Battery lifetime
Implantable BCIs require materials that can sustainably 
operate over longer periods of time, preferably decades, 
without deterioration  [119, 128–130]. The warm aque-
ous nature of our brains, however, affects the power-
retention capability of the implants. Water (cerebrospinal 
fluid), being a powerful solvent, gradually corrodes the 
insulating materials of the electrodes. Over time, short 
circuits may be created, increasing crosstalks between 
electrodes. This challenge reduces battery lifetime and 
limits the amount of signals collected by electrodes. 
Researchers need to study different insulating materials 
to understand how they interact with the brain relative 
to the BCIs battery lifetime. In addition, computation-
ally efficient algorithms should be developed to ensure 
optimum utilization of battery power. Even more impor-
tantly, alternative energy sources (e.g., micromovements 
inside the brain) for powering implantable BCIs should 
be investigated.

5.11  Affordability and portability
Commercially available BCI devices can hardly be 
afforded by the general public because of their prohibi-
tively high costs [131–134], perhaps due to their sophisti-
cation and construction materials. Also, the current BCI 
systems are complex and bulkier, making them suitable 
only in laboratory and industrial settings. Researchers 
should develop cost-effective and portable BCI systems 
for ordinary people, potential users of the technology. 
This solution will be more useful for people in developing 
countries.

6  Conclusion
In this study, insights have been given on the perspective 
of the brain–computer interface. Inspired by its benefits, 
the society needs to seize the available opportunities that 
the technology advocates. To maximize the benefits and 
increase usability of the BCI technology across the soci-
ety, researchers and scientists should address the poten-
tial threats of the technology highlighted in our work. 
We can fully exploit the benefits and capabilities of the 
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United- States.
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technology through multidisciplinary efforts to address 
limitations of the current BCI systems.

In view of the BCI components, five possible research 
directions can be taken: cognitive psychology, medicine, 
biomedical electronics, signal processing, and engi-
neering. These directions necessitate multidisciplinary 
research where researchers work closely to address the 
BCI sub-challenges. Psychologists and medical doc-
tors should provide the fundamental working principle 
of the brain; scientists should develop effective signal 
acquisition devices along with algorithms for processing 
brain signals (extraction, classification, and translation 
of features); and engineers should develop physical BCI 
applications and evaluate their performance based on the 
predefined standards.

We assert that the BCI field has many research oppor-
tunities that have not been explored. From all the 
reviewed literature, an observation was made that the 
existing challenges in brain–computer interface have 
received little attention. The research community is rec-
ommended to address the challenges and extend the 
capabilities that BCI offers, including development of 
BCI-Internet and BCI-CBI communication devices. In 
addition, researchers may explore how mind–body inter-
vention methods, such as hypnotherapy, can improve 
BCI systems  [135–137]. In whatever situation of devel-
opment, however, the primary goal of BCI should be to 
advance humanity by improving the quality of people’s 
lives.

Notwithstanding the promising capabilities and mer-
its of BCI, a significant number of challenges and threats 
have not been adequately addressed. In addition, the 
current number of participants in the clinical trials 
seems low and undiversified, making generalization of 
the results questionable. Furthermore, global standards 
should be established to develop safe and quality BCI 
products with threats significantly minimized. In this 
regard, although BCI unlocks our future for well-being, 
this emerging technology requires intensive research, 
including many clinical trials, for practical applications. 
With the existing challenges and threats unsatisfactorily 
addressed, the technology may not be ready for con-
sumption by the society. This conclusion is partly sup-
ported by a few other studies  [138–144] and scholarly 
communications.20

Our future work will be focused on addressing 
some threats originating from the middle BCI com-
ponent, signal processing. Using the publicly available 

dataset21,22  [145–149], we will develop computationally 
inexpensive algorithms for encrypting, extracting, clas-
sifying, and translating features from the brain. Measures 
of accuracy will be established to ensure that the devel-
oped algorithms give computer commands that accu-
rately emulate users’ actions. Note that there has been no 
universally acceptable standards for measuring the accu-
racy of BCI applications, and we will attempt to narrow 
this research gap.
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