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Abstract 

Electroencephalogram(EEG)‑based authentication has received increasing attention from researchers as they 
believe it could serve as an alternative to more conventional personal authentication methods. Unfortunately, EEG 
signals are non‑stationary and could be easily contaminated by noise and artifacts. Therefore, further processing 
of data analysis is needed to retrieve useful information. Various machine learning approaches have been proposed 
and implemented in the EEG‑based domain, with deep learning being the most current trend. However, retaining 
the performance of a deep learning model requires substantial computational effort and a vast amount of data, 
especially when the models go deeper to generate consistent results. Deep learning models trained with small data 
sets from scratch may experience an overfitting issue. Transfer learning becomes an alternative solution. It is a tech‑
nique to recognize and apply the knowledge and skills learned from the previous tasks to a new domain with limited 
training data. This study attempts to explore the applicability of transferring various pre‑trained models’ knowl‑
edge to the EEG‑based authentication domain. A self‑collected database that consists of 30 subjects was utilized 
in the analysis. The database enrolment is divided into two sessions, with each session producing two sets of EEG 
recording data. The frequency spectrums of the preprocessed EEG signals are extracted and fed into the pre‑trained 
models as the input data. Three experimental tests are carried out and the best performance is reported with accu‑
racy in the range of 99.1–99.9%. The acquired results demonstrate the efficiency of transfer learning in authenticating 
an individual in this domain.
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1 Introduction
The research’s interest in cognitive authentication has 
shown an increasing trend in recent years where it uti-
lizes the cognitive state of individuals as the primary basis 
for authentication. The researcher communities believe 
that it could serve as an alternative for more conventional 
personal authentication methods as brain signals have 
specific characteristics that absent in most commonly 

utilized authentication methods. These characteristics 
are more privacy-compliant, unique and harder for an 
imposter to capture from a distance, hence increasing 
their resilience against spoofing attacks.

The brain signals of an individual can be acquired 
through a variety of techniques, including electroenceph-
alography (EEG), electrocardiography (ECG), and elec-
trodermal response (EDR). EEG is one of the methods 
which able to record the electrical activity that originates 
from the brain. It is a direct and the simplest noninva-
sive method to record brain electrical activity as it only 
places electrodes on the scalp’s surface [1]. The recorded 
EEG signals have low spatial resolution and poor signal-
to-noise ratio that could be easily contaminated by noise 
and artifacts [2]. Moreover, the recorded signals are non-
stationary, which indicates the signal’s characteristics 
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change with time. Hence, sophisticated data analysis is 
necessary to retrieve useful information related to spe-
cific tasks from the EEG raw signals. With the ongo-
ing exploration of EEG-based authentication, various 
machine learning approaches have been proposed and 
implemented, with deep learning being the most cur-
rent trend [3, 4]. This approach has received widespread 
attention, specifically, the increasing adoption of convo-
lutional neural networks (CNN) in the image classifica-
tion domain due to its promising performance [5]. Deep 
learning is a kind of machine learning inspired by the 
structure of the human brain. The deep model is designed 
to extract significant and discriminative features from the 
input data by iteratively altering the data through differ-
ent layers and predicting them accordingly.

In the EEG context, deep learning simplifies the data 
processing procedures by enabling an automatic learn-
ing style from preprocessing, and feature extraction to 
the classification phase [6]. Theoretically, deep learning is 
capable of achieving better feature extraction and more 
accurate pattern classification. However, training a deep 
learning model with millions of parameters requires vast 
input data and extensive computational resources [7]. 
The training and testing data in the field of signal pro-
cessing cannot be expected to have the same probability 
distribution as different subjects on the same task may 
generate different features throughout different sessions. 
Moreover, the amount of EEG training data available for 
the various Brain Computer Interface (BCI) tasks is lim-
ited. Deep learning models that are trained with a small 
dataset may experience an overfitting problem [8]. Over-
fitting happens when a model fits perfectly against its 
training data and lacks of generalization ability to make 
accurate predictions on new data. Some of the well-
known CNN architectures, e.g. Alexnet, includes dropout 
layers to minimize the effect of overfitting. Alternately, 
researchers have increasingly employed transfer learning 
to address the aforementioned issue in recent years. It is 
a technique in which a previously trained model, coined 
as pre-trained model, is used as the basis for a model on 
a new targeted problem, in our case, an EEG domain [7, 
9]. It is practical and positively impacts various domains 
where it is difficult to increase performance due to the 
lack of training data [10]. When applied to a new task, 
transfer learning provides much better performance than 
training the model from scratch with little data.

Based on the existing EEG authentication studies, the 
exploration of different transfer learning models is lim-
ited. Although transfer learning research has been greatly 
conducted in different EEG domains, most reported 
results have focused on solving binary problems. It is 
necessary to perform a multi-class classification when it 
comes to user authentication problems. The effectiveness 

of using transfer learning in EEG-based authentication 
remains an open question. It indicates a critical research 
gap that has to be filled by more experimental investiga-
tions. This study describes a state-of-art EEG authen-
tication system based on deep learning for recognizing 
an individual. The features extracted from EEG data are 
learned through multiple transfer learning models. The 
contributions of this work are two-fold. First, the feasi-
bility of transferring pre-trained models’ knowledge to 
a new EEG domain is explored to address the limited 
sample size. Within the investigation, the knowledge of 
six pre-trained CNN models is transferred to adapt the 
EEG domain respectively. Second, beyond merely apply-
ing transfer learning to the EEG domain, comprehensive 
experimental analyses and in-depth performance evalua-
tions are provided.

The rest of this paper is organized as follows: Sect.  2 
begins with an overview of related work, followed by 
Sect. 3, which presents the methodology and the details 
of CNN models. Section  4 contains the results of con-
ducted experiments. Section 5 discusses the major find-
ings of conducted experiments. Finally, the conclusion is 
presented in Sect. 6.

2  Related work
Authentication is a crucial component of any security 
system because it ensures that only authorized users 
have access to sensitive data. Several authentication 
methods have been developed over time in response to 
evolving security threats. These range from conventional 
password-based approaches to more sophisticated bio-
metric. Password-based authentication is one of the 
conventional-based approaches which allow users pro-
vide a username and password to gain access to a sys-
tem or application. It is simple to use as users just need 
to remember a combination of characters and enter their 
username and password on a login page. If the creden-
tials match, access is granted. However, many users 
choose weak or easily guessable passwords making them 
susceptible to brute-force attacks or password guess-
ing [11]. Moreover, some of the users reuse passwords 
across multiple accounts, creating a security risk. If one 
account is compromised, all accounts using the same 
password become vulnerable. Therefore, authentica-
tion systems based on biometric recognition technolo-
gies have received increasing attention from researchers 
in recent years. Biometrics refers to the recognition of 
individuals based on their physiological and behavio-
ral characteristics [12]. Those characteristics are unique 
and measurable which can be used to label or describe 
individuals. In biometric modalities, physiological char-
acteristics are related to the shape of the body such as 
fingerprint, palm veins, face, DNA, palm print, hand 
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geometry, iris, and retina. Behavioral characteristics are 
related to a person’s behavior pattern, which is generally 
hard to copy and imitate. Some examples of behavioral 
biometrics are the way an individual signs their signature, 
voice printing, keystroke, and gesture. The process of bio-
metric authentication involve capturing the physiological 
or behavioral characteristics, preprocessing the captured 
data, extracting relevant features, and comparing them 
with stored templates or reference data to authenti-
cate or identify individuals. The specific algorithms and 
techniques used may vary depending on the biometric 
modality and the level of security required. For example, 
fingerprint authentication is a physiological method that 
involves capturing a user’s fingerprints using a fingerprint 
sensor. The unique ridge patterns and minutiae points 
present in the fingerprints are detected and used for fur-
ther processing. Feature extraction algorithms are then 
applied to extract relevant information from the cap-
tured fingerprint, and matching algorithms are used for 
fingerprint recognition. On the other hand, behavioral 
authentication encompasses various methods, and one 
common example is signature recognition. In this pro-
cess, the user’s signature is captured using a digital tablet 
and stylus pen. The obtained signature is then subjected 
to feature extraction techniques to identify and extract 
the distinctive characteristics of the signature. Pattern 
matching algorithms are employed to analyze and com-
pare these unique signature features for authentication 
purposes. Although physiological and behavioral biomet-
ric modalities offer enhanced security compared to tradi-
tional authentication methods, they still face a prevalent 
issue of spoofing, in which an attacker creates a fake sam-
ple to circumvent the authentication system [13, 14]. For 
example, an attacker can construct a fake fingerprint or 
use a sample of recorded speech to impersonate another 
person. This emphasizes the need for more secure and 
trustworthy biometric authentication methods. Cog-
nitive authentication offers a potential solution to this 
problem. Brain signals are unique to each individual and 
are difficult to replicate, making it difficult for attackers 
to spoof the system. Furthermore, brain signals are more 
private and difficult to be captured by an imposter from a 
distance, thus increasing their resistance against spoofing 
attacks.

With the maturity of computer technology and brain 
science, BCI has emerged as an essential research topic 
for exploring the communication between the human 
brain and computer or digital devices [15]. Applications 
BCI can observe users’ states or let them convey their 
intentions. In the meantime, the users’ brain signals are 
recorded and transmitted to a computer system for fur-
ther data analysis. Afterward, the result is turned into a 
command, and the system is given instructions to carry 

out the desired activity. In the past decade, BCI has 
focused mainly on the medical field, helping patients 
with extensive paralysis, severe neuromuscular disorders, 
or loss of limbs regain some motor or communicative 
control [16]. EEG offers a noninvasive solution for BCI 
systems among different ways of acquiring brain signals. 
Researchers can record the electrical activities of the 
human brain by applying electrode sensors to the human 
scalp. This approach is widely studied because it is rela-
tively convenient and reduces the user risk involved in 
brain signal acquisition [17, 18]. The combination of bio-
metric authentication and brain science has the potential 
to improve security systems by leveraging physiologi-
cal and cognitive characteristics that are unique to each 
individual. This interdisciplinary approach creates new 
opportunities for trustworthy and secure authentication 
methods. In general, an EEG-based authentication sys-
tem consists of 5 major processing steps. First, the exper-
iment needs to record users’ brain activity, which can be 
collected through EEG recordings using designed proto-
cols such as stimulation, resting state, motor imaginary, 
and non-motor imaginary [19]. Second, the recorded 
data should be preprocessed to remove undesired arti-
facts as it could deteriorate the designed method’s perfor-
mance. Third, feature extraction techniques are applied 
to preprocessed data to retrieve meaningful information. 
The next step is classifying the unlabeled data into one of 
the identified classes. Lastly, the final result is given to the 
user for decision-making.

Several methods have been employed to classify 
users based on their brain signals [20–22]. Traditional 
approaches often involve the use of shallow classifiers 
such as Linear Discriminant Analysis(LDA), Support 
Vector Machine (SVM) and K-nearest neighbor (k-NN). 
LDA is a popular linear classification technique that 
seeks to identify a linear combination of features that 
maximally separates classes [23]. SVM, on the other 
hand, is a potent binary classifier that uses a kernel func-
tion to handle non-linear separable data and finds an 
optimal hyperplane to separate data points into distinct 
classes. k-NN is a non-parametric algorithm that uses a 
distance metric to assign a new data point to the major-
ity class among its k nearest neighbors. LDA tends to be 
effective when the classes are clearly differentiated and 
the data follow to the assumptions of linearity and equal 
class covariances. As for SVM, due to its ability to utilize 
kernel functions, it is especially effective when dealing 
with complex and non-linearly separable data [24]. k-NN, 
on the other hand, could be more adaptable and robust to 
complex and non-linear data, but it may be sensitive to 
the selection of value k and computationally costly, par-
ticularly with large datasets. They can typically accom-
plish good classification when the classification border is 
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clear; nevertheless, it may produce unsatisfactory results 
if EEG signals are highly time-varying and contain a 
great deal of hidden and inconspicuous information [4]. 
Moreover, they are some challenges raised by the nature 
of EEG signals. First, EEG signals do not provide good 
spatial resolution on the human scalp due to the physi-
cal dimension of the surface electrodes and the disper-
sion of the signals generated by the sources on the cortex 
[25]. Besides, the signal-to-noise ratio of EEG is poor 
and might include high noises during EEG acquisition. 
In addition, EEG is a non-stationary signal whose statis-
tical characteristics change with time [26]. Variations of 
the signal properties could happen if the EEG data of the 
same user is acquired at different sessions. Therefore, the 
development of robust algorithms capable of recognizing 
individual differences in EEG signals is required  [27].

In recent years, deep learning has demonstrated its 
capability to assist in processing EEG signals. Deep learn-
ing enables computational models which consist of mul-
tiple layers to learn data representations with levels of 
abstraction. Previously, this technique has been imple-
mented in processing complex data such as text, images, 
and audio signals [28], where the reported results are 
promising. In contrast to traditional linear classifiers 
such as SVM and LDA, which presume linear separabil-
ity, deep learning models can effectively manage com-
plex, non-linear relationships in EEG signals. This allows 
them to capture more complex patterns and enhances 
their classification performance. Moroever models based 
on deep learning have demonstrated robustness to vari-
ability in EEG signals. They can learn from diverse data 
and generalize well to unknown instances, making them 
more adaptable and able to handle different sessions and 
users. In the EEG context, it is able to derive discrimi-
native features from the raw data and simplify the data 
processing steps, enabling an automatic learning style 
from preprocessing and feature extraction to classifica-
tion while still preserving its competitive performance on 
specific tasks [6].

In [29], the authors initiated the use of deep learn-
ing and proposed 7 classifiers based on the CNN for 
the P300 speller application. Four single classifiers with 
diverse feature sets and three multi-classifiers made up 
the different models. These models were examined and 
compared on data set 2 from the third BCI competi-
tion. Prior to classification, the EEG raw data of 2 sub-
jects were downsampled and bandpass filtered between 
0.1 and 20  Hz. The findings demonstrated the potential 
of deep learning in recognizing EEG signals, and the best 
result was achieved using the proposed multi-classifier 
model, with a recognition rate of 95.5%. CNNs also have 
been employed in classifying motor imagery [9], where 
the authors combined extracted frequency, time, and 

location information from EEG recording signals. The 
results showed that the proposed deep learning meth-
ods could provide better classification compared to other 
approaches. In [30], the study proposed an epilepsy 
seizure prediction system on 24 subjects. The authors 
employed CNN for feature extraction and utilized the 
Support Vector Machine (SVM) for classification. The 
presented results were promising, with an average speci-
ficity of 90.8% and a sensitivity of 92.7%, respectively.

Other than the aforementioned domains, a study also 
explored the feasibility of using CNN to analyze EEG sig-
nals for user authentication [31]. Low frequency Steady-
state visual evoked potentials (SSVEP) signals from 8 
subjects with 2 sessions are extracted for further analysis. 
The CNN design of this study was based on the Shallow 
ConvNet structure proposed by [32]. Some adjustments 
on kernel size and the number of filters were applied 
to fit with the collected data. The results suggested the 
potential of EEG-based authentication based on SSVEP 
data and the CNN model. Besides using visual stimula-
tion protocol, a personal identification system was pro-
posed in [33] to classify resting state EEG signals using 
CNN. Data augmentation was performed on a public 
database called Physionet EEG Motor Movement. Only 
two resting states’ sessions from the public database 
were selected that are 1-min with eye-open and 1-min 
with eye-closed. The findings showed that the proposed 
method has offered some advantages in acquisition time 
and computational complexity. In [34], a Long Short 
Term Memory (LSTM) was applied. LSTM is a modi-
fied version of recurrent neural networks (RNN), making 
it easier to remember past data in memory. The authors 
combined event-related potential (ERP) features and 
SSVEP in authenticating an individual. The EEG data was 
collected from 20 subjects with 2 sessions separately. The 
results reported that the proposed method achieved a 
high verification accuracy rate of 91.44%.

The reported studies have demonstrated its capabil-
ity in feature extraction and classification of CNN, in 
which the obtained results could be better than shallow 
architecture. However, their application to EEG-based 
authentication presents unique challenges that have to be 
addressed. To attain optimal performance, an adequate 
amount of labeled training data is required, posing a sig-
nificant obstacle. Deep learning models are highly capa-
ble of capturing complex patterns and representations, 
but they require a large labeled dataset. Undoubtedly, 
more convoluted architecture can extract more discrimi-
native features, but when there is inadequate training 
data, it frequently results in an overfitting issue that can 
even degrade its classification performance [7]. Overfit-
ting happens when a model fits perfectly against its train-
ing data and lack of the generalization ability to make 
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accurate predictions on new data. Due to the difficulty in 
collecting EEG data under different acquisition protocols, 
the sample size used to train deep learning models varied 
significantly across studies.

In order to cope with this issue, transferring learning 
(knowledge) from a pre-trained model can be an alterna-
tive in EEG-based authentication. It is a powerful tech-
nique as it has the ability to recognize and apply the 
knowledge and skills learned in previous tasks to a new 
domain with limited training data [35]. Transfer learn-
ing has been implemented in numerous domains, includ-
ing image recognition [36, 37], language translation [38], 
biometrics [7, 13], and medical system [39]. Despite 
its advantages, the use of transfer learning in EEG sig-
nal processing is still limited, and the reported results 
of studies in the EEG domain were mostly achieved for 
binary classification [40–42]. When it comes to user 
authentication problem, multi-class classification are 
usually considered to classify the data to the respective 
user identity. Additionally, some well-known CNN mod-
els in other areas that transfer to the EEG domain are yet 
to be explored intensively. Therefore, this study attempts 
to fill in the gap by looking deeper into the implementa-
tion of CNN pre-trained models for EEG authentication.

3  Methods
The overview architecture of the proposed system is 
illustrated in Fig. 1. First, the data acquisition protocol to 
capture an individual’s EEG signals is outlined in this sec-
tion. The raw signal is preprocessed and segmented into a 
similar length trial. Following that, the feature extraction 
that employs Fast Fourier Transform (FFT) to extract 
the feature on the segmented EEG trials is described 
in Sect.  3.3. Section  3.4 describes the pre-trained CNN 
models that were adopted in this work. Experimental 
results of six different pre-trained CNN models are pre-
sented and discussed in Sect.  4 to determine how the 
transfer learning reacts to the EEG features. Discussion 
of the experimental results is presented in Sect. 5. Lastly, 
Sect. 6 is devoted to the conclusions of this work.

3.1  Data acquisition protocol
EEG signals can be acquired using different designed 
protocols such as resting state, motor imaginary, non-
motor imaginary, and stimulation protocol. As a way 
that enables participants to be more focused and their 
cognitive state to be more controllable by the experi-
menter throughout the data acquisition process [2, 
19], the stimulation protocol is adopted in this study. 
A wireless consumer-grade device is employed rather 
than the cumbersome wired research-grade EEG 
devices to acquire EEG data. It is believed that this 
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Fig. 1 Overview architecture of proposed scheme
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method would be more applicable in daily life, and user 
experiences during the EEG recording process would 
also be enhanced [43]. Thirty healthy volunteers, rang-
ing in age from 18 to 39 years old have been recruited 
for this experiment. The EEG data were collected at a 
sampling rate of 256 Hz using an Emotiv EPOC + wire-
less headset. The device has 14 integrated electrodes 
and 2 reference sensors where each sensor is placed 
in the standard positions of the International 10–20 
systems.

Before the acquisition process, a brief introduction 
was given to the subjects. The study’s goal was briefly 
explained and a formal consent was obtained from each 
subject before the data recording process. They were 
instructed to avoid making large movements because 
it could affect their EEG readings. The entire process 
took place in a standard enclosed room. The stimula-
tion design was based on research conducted by [19] 
in which the authors were motivated from a previous 
work [44] and generated strings and divided them into 
four categories: acronyms, low-frequency words, high-
frequency words, and pseudowords. In order to evalu-
ate the consistency of EEG data throughout multiple 
sessions, the acquisition process was separated into 
morning and afternoon sessions. In each session, the 
subject was presented with two sets of 120 single-word 
stimuli; the first set was presented in sequential order 
according to the wording category, while the second set 
was presented in a randomized mode. The individual 
was instructed to focus on and interpret each word in 
complete silence, with no large body movements per-
mitted. As the subject’s semantic memory may have 
distinctive biometric characteristics, the emphasis is 
all on word presentation. The sample of Inter-Stimulus 
Interval (ISI) setting was shown in Fig. 2.

The 2 sessions yielded a total of four well-collected 
datasets, and the notations of each dataset are as 
follows:

Session 1:

• Sequential Dataset, S1S
• Randomized Dataset, S1R

Session 2:

• Sequential Dataset, S2S
• Randomized Dataset, S2R

3.2  Preprocessing and segmentation
The collected datasets were preprocessed prior to the 
extraction of the appropriate features. First, a bandpass 
filter from 1 to 55  Hz was applied to filter continuous 
EEG data. The data was recorded from a total of 14 dif-
ferent EEG channels, capturing electrical activity from 
various regions of the brain. Next, the ocular artifacts 
that can interrupt the EEG data were removed with the 
help of Automatic Artifact Removal (AAR), one of the 
toolboxes available in the EEGLAB plugin. After preproc-
essing, the preprocessed data were epoched, and Event-
Related Potentials (ERP) were created for each stimulus 
from -1000 ms prior to stimulus onset to 1000 ms follow-
ing probe onset. Epoch rejection was further performed 
on the epoched data to eliminate unwanted artifacts. As 
a result, 100–120 trials were collected from each chan-
nel of the recorded data with a fixed duration of 2000 ms 
or 512 sample points (sampling rate = 256  Hz). Figure  3 
illustrates the sample of segmented trials obtained from 
three different EEG channels (column) of three different 
users (row) from the database.

3.3  Feature extraction
A time-dependent raw EEG signal fluctuates and con-
tains noises unintentionally captured during the record-
ing process. Instead of directly feeding the raw EEG signal 
to the next stage for classification, extracting more stable, 
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Fig. 2 Visual stimulation design
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informative and discriminative statistical features from 
the signal of interest is crucial. In this work, a fast Fourier 
Transform (FFT) as one of the established and proven 
techniques for extracting features from EEG signals [45] is 
adopted. This technique converts the EEG signal from the 
time domain into the frequency domain where the hid-
den features can become visible. In fact, the FFT algorithm 
was introduced based on the Discrete Fourier Transform 
(DFT). However, its signal transformation capability is 
faster than DFT due to the reduction in the looping process 
[46].

Given that a time domain EEG signal of length N  is 
denoted as an where n = 0, 1, . . . ,N − 1 , the steps to con-
vert the signal into a frequency representation are as below:

Step 1: Compute the Fourier transform of the EEG sig-
nal, an . The DFT can be formulated as:

where the e
−j2πkn

N  in the equation called the primitive 
Nth root of unity and the k is the frequency of particu-
lar harmonic. The obtained Ak is the Fourier transform 
coefficients. It generates a complex number of two-sided 
frequency spectrum of the signal, in the form of a+ bi , 
where a and b are the real number and imaginary num-
ber, respectively.

Step 2: Compute the absolute and even the value of the 
two-sided spectrum by its signal length, N  to obtain its 
real magnitude as follows:

(1)Ak =

N−1
∑

n=0

ane
−j2πkn

N

Step 3: Since the two-sided spectrum obtained from 
Step 2 is symmetrical in which the spectrum is con-
structed by positive half and negative half; thus, the 
information on the negative frequency is redundant. 
Hence, the two-sided spectrum is converted to single-
sided spectrum by discarding the second half of the spec-
trum and multiplying all points by 2 as follows:

where i = 1, . . . , N
2
+ 1.

As mentioned earlier, a trial contains 512 sampling 
points. The frequency spectrum after the FFT feature 
extraction generates a length of 257 sampling points. Fig-
ure  4 shows the examples of two-sided frequency spec-
trum (left) and single-sided frequency spectrum (right) 
of EEG data after the FFT extraction. It can be seen that 
the two-sided frequency spectrum is symmetrical to the 
single-sided spectrum with both halves are identical.

To be compatible with most of the pre-trained CNN 
models, all EEG channels are combined by vertically 
concatenating their FFT representations into a single 
matrix. This combination forms a 2-dimensional image 
as a feeding input to the models. This approach aims 
to maximize the accuracy of the results by combining 
the collective information from multiple channels. By 
merging the channels, we aim to capture global charac-
teristics of brain dynamics and potentially enhance reli-
ability and the discriminative power of the extracted 
features. This consolidation of channels into a unified 

(2)Ak =

∣

∣

∣

∣

Ak

N

∣

∣

∣

∣

(3)Al = 2× Ak(i)

Fig. 3 Sample of trials of different EEG channels of three different users
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FFT representation is motivated by the findings that 
combining channels from multiple scalp regions can pro-
vide a more informative input and lead to higher accu-
racy for the subsequent classification models [47]. The 
details are presented as follows:

The FFT features from all 14 channels are vertically 
concatenated to generate a matrix X , which is expressed 
as

where Al is the obtained single-sided FFT features of an 
EEG signal, and the m is the total number of EEG chan-
nels. The generated matrix has a size of m× n,where the 
n denotes length of FFT features. Lastly, to be compatible 
with most of the pre-trained CNN models, the matrix is 
converted into the image files which serve as the input 
images for the pre-trained models. This step enhances 
the compatibility and utilization of the pre-trained 

(4)X =









Al1
Al2
.
.
.

Alm









models, empowering them to leverage the merged FFT 
features for accurate classification.

Figure  5 illustrates the sample images of extracted 
FFT features for three different users in concentenation 
process.

3.4  Classification
3.4.1  Convolutional neural network
Classification is a supervised learning concept in machine 
learning that categorizes a set of data into classes. A reli-
able classification method is required to allow or deny a 
claimed user in authenticating process based on a given 
input. Various deep learning architectures have been 
implemented in the EEG domain, with CNN being the 
most prominent. It comprises multiple convolutional lay-
ers, each consisting of a series of filters known as convo-
lutional kernels. These kernels are used to extract high 
dimensional features in which they are matrices that 
implement the dot product with the sub-region of input 
data and build feature maps in order to preserve infor-
mation that is unique to the data. The computed feature 
maps are later transferred to the successive layer and per-
formed in another round of feature extraction [48, 49].

When dealing with high-dimensional data, an activa-
tion function plays a crucial role as it can add non-lin-
earity into neural network and help the  network learn 
complex patterns. Technically, the activation function 
applies non-linear transformation over the input sig-
nal and determines which characteristics are utilized 
or omitted. The transformed output is subsequently 
supplied as input to the next layer. Nowadays, neural 

Fig. 4 FFT features of EEG of two‑sided frequency spectrum (left) and single‑sided frequency spectrum (right)

Fig. 5 FFT matrix image for three different users
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networks use a variety of activation functions. However, 
the Rectified Linear Unit (ReLU) is the most common. 
The key benefit of ReLU is that it does not activate all the 
neurons at once; instead, it only deactivates them when 
the linear transformation’s output is less than 0. Since it 
only activates a subset of neurons, the ReLU function is 
considerably more computationally efficient than other 
activation functions [50].

As the dimension of the generated feature map from 
the convolutional layer could be huge, the pooling layer 
is commonly used to reduce the dimension of the feature 
map. It is used to summarise the features contained in a 
region of the feature map, therefore reducing the number 
of parameters to be learned and the network’s computa-
tional load. In addition, the robustness of feature extrac-
tion could also be enhanced [51]. There are two typical 
types of operations on the pooling layer: average pooling 
and maximum pooling. Maximum pooling selects the 
highest value from the feature map, while average pool-
ing computes the average value from the feature map. 
Typically, a CNN process begins with a number of con-
volutional layers, activation, and pooling functions. The 
final generated features are then fed into a fully con-
nected layer. In this final layer, a softmax activation func-
tion is employed to calculate the probability of an input 
belonging to a specific class and drives the final result of 
classification.

3.4.2  Transfer learning
Since the training dataset in the EEG domain is 
restricted, transferring a pre-trained model that priorly 
learned from a large dataset for a specific task is an effi-
cient technique to obtain acceptable accuracy with less 
training time and training samples [39, 52]. Although 
the EEG-based domain is different from the pre-trained 
models, which focus on object and image recognition, 
it is believed that the deep features learned by the best-
performing pre-trained models will indeed perform well 
in EEG target domains. Thus, this work employs several 
pre-trained models that include GoogLeNet, Incep-
tionV3, RestNet50, RestNet101, EfficientNet01, and 
DenseNet201with the purpose of improving the learning 
in the EEG target domain through the transfer of knowl-
edge from the task that has learned by the models. In this 
section, the details of the architecture of each applied 
pre-trained model are described in depth.

3.4.3  GoogLeNet
GoogLeNet is an inception architecture that is also 
referred to as Inception-V1 that won in the ImageNet 
Large Scale Visual Recognition (ILSVRC) 2014. The 
GoogLeNet model has 22 layers when only layers with 
parameters are considered (or 27 layers if the pooling 

layer is considered). The primary goal of this architecture 
is to obtain high performance with low computational 
cost [53]. It introduced the novel inception block con-
cept to CNN, which integrates multi-scale convolutional 
transformations: divide, transform, and merge. With this 
concept, the problem associated with learning different 
variations present in the same group of different images 
is resolved. Although the computational cost is opti-
mized, its architecture could reduce the feature space in 
the next layer and may lead to the loss of relevant infor-
mation [49].

Generally, these Inception models aim for parallel 
rather than deep layers, resulting in a wider rather than 
a deeper model. The basic module (Naïve) of the Incep-
tion V1 is composed of four parallel layers: 1 × 1, 3 × 3, 
5 × 5 convolution, and 3 × 3 max pooling. The limitation 
of this model is that the 5 × 5 convolutional layer is com-
putationally expensive. Therefore, a 1 × 1 convolutional 
layer is added before every convolutional layer. It results 
in faster computations and dimension reductions of the 
neural network [53].

3.4.4  Inception‑V3
Inception-V3 is an improved version of Inception-V1 
that aims to permit deeper networks while preventing 
the number of parameters from becoming excessively 
large. By achieving this, some modifications are done on 
the Inception-V3 model: the larger convolutions in the 
model are factorized into smaller convolutions, spatial 
factorization is applied to asymmetric convolutions, the 
Auxiliary classifier is used to enhance the convergence of 
very deep neural networks, and the grid size is reduced 
by expanding the activation dimension of the network 
filters. Despite having a deeper network (42 layers) than 
Inception-V1 and V2, the network’s speed has not been 
greatly impacted [54].

3.4.5  ResNet50 and ResNet100
Since a deep learning model contains a number of lay-
ers to solve complex problems, the accuracy levels may 
gradually degrade as the number of layers of the neural 
network increases. This deterioration in performance 
may result from the problem of vanishing or exploding 
gradients. ResNet was designed specifically to address 
this issue. It was introduced in 2015 under the name of 
Residual Network and won the ILSVRC2015 classifica-
tion competition with a 3.57% error rate [55]. While 
Inception models concentrate on the width, ResNet 
focuses on the links between layers and adds a direct con-
nection channel to the network. It is similar to Highway 
Network in that it allows original input information to be 
sent directly to the back of the layer. Hence, this neural 
network layer can learn without the whole output but 
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instead learns the residual of the preceding network out-
put [56]. ResNet introduced shortcut connections within 
layers to enable cross-layer connectivity. This method 
could speed up the convergence of the deep model and 
avoid gradient vanishing problem [49]. Although other 
studies have attempted to address the gradient van-
ishing problem, the ResNet algorithm stands out as a 
noteworthy solution. There are several ResNet versions 
with different convolutional layers while ResNet-50 and 
ResNet-101 are adopted in this study due to their promis-
ing results as reported in [55]. ResNet-50 is the version 
consisting of 50 layers, whereas ResNet-101 contains 101 
layers. The architecture of both of these models can be 
found in [55].

3.4.6  EfficientNet‑B0
EfficientNet, introduced by Tan and Le in 2019 [57], 
is one of the efficient models that achieves state-of-art 
accuracy on image classification tasks. The authors pre-
sent a new scaling method that uniformly scales all the 
depth, width and resolution dimensions using a simple 
but effective compound coefficient. Given the fact that 
the model scaling does not modify layer operators of 
the baseline network, a good baseline network is neces-
sary. Therefore, the authors built Efficient-B0, a mobile-
size baseline, by performing a neural architecture search 
using an architecture similar to MnasNet [58] that 
optimizes FLOPS and accuracy. There are various scal-
ing ratios for the models, for instance, EfficientNet-B1, 
B2, B3, B4, B5, B6, and B7. In this study, the baseline 
Efficient-B0 is chosen due to its architecture is the least 
complex and working on smaller images. The structure of 
EfficientNet-B0 can refer to [57].

3.4.7  DenseNet201
DenseNet, was developed by Huang et al. [59] as a contin-
uation of ResNet in order to tackle the vanishing gradient 
problem. Besides, it is also used to overcome the limita-
tion of ResNet. Although ResNet enables better infor-
mation and gradient flow by directly adding the input to 
the output, a direct path is established from the previous 
layer to the current layer. However, simply adding up all 
the features might result in losing important information. 
DenseNet provides a solution that is more appropriate 
for this condition in which the authors used the concat-
enation concept and connected each layer to every other 
layer in a feed-forward fashion, allowing the output (fea-
ture maps) of all previous layers to be used as inputs into 
all subsequent layers [49]. Since DenseNet concatenates 
the previous layers’ features rather than adding them, fea-
ture reuse could be achieved as all previous layers’ feature 
maps are accessible. This approach could increase com-
putational efficiency while also improve the information 

flow throughout the network. DenseNet is available in 
several versions, including DenseNet-121, DenseNet-169, 
and DenseNet-201, where the numbers represent the 
number of neural network layers in that particular model. 
In this research work, DenseNet-201 is adopted as it 
performed well in classifying different domains, includ-
ing medical image recognition [52] and image-based 
drowsiness detection [60]. DenseNet-201 comprises four 
dense blocks with 6, 12, 48, and 32 convolution blocks, 
respectively. Between the dense blocks are transition lay-
ers that contain the following operations: batch normali-
zation, convolution, and pooling. The architecture of the 
DenseNet-201 can be found in [59].

3.4.8  Transfer learning configuration
Overall, the choice of GoogLeNet, InceptionV3, Rest-
Net50, RestNet101, EfficientNet01, and DenseNet201 
in this study are chosen based on their architectures 
in relation to spatial exploitation, depth, width, and 
multi-path [49]. The transfer learning model configu-
ration is illustrated in Fig.  6. The selected CNN mod-
els, each was first trained on a large-scale dataset on a 
source domain, e.g. ImageNet dataset, and the knowl-
edge (weights and biases) was transferred to EEG tar-
get domain. As illustrated in the figure, the pre-trained 
model denoted as Q was trained on the self-collected 
EEG dataset A. The dataset was split into training data 
and testing data with a ratio of  MA:NA, where  MA is 
the ratio of training data and  NA is the ratio of testing 
data in dataset A, and  MA >  NA. In this case, the ratio 
of 7:3 was used. The training set was used to train the 
model, whereas the test set was used to independently 
evaluate the model’s performance. Before incorporat-
ing these pre-trained models into the EEG domain, the 

Fig. 6 Transfer learning proposed model
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final three layers were replaced with new settings con-
sisting of a fully connected layer with 30 nodes (30 sub-
jects leading to multiple classes), a softmax layer, and a 
classification output layer. For each pre-trained model, 
the architecture of the main model is preserved, as are 
the remaining parameters of the original model.

4  Experimental analysis
4.1  Settings
All the experiments were run using Matlab R2018a, and 
the computing systems were equipped with an i7-8700 
core processor operating at 3.2 GHz, 64 GB of Random 
Access Memory (RAM), and the GPU specification as 
the NVIDIA GeForce GTX 1080Ti with 11 GB of video 
RAM. To match the data to the pre-trained models, the 
height and width of every image feature were rescaled 
to 227 by 227 pixels before sending into the input layer, 
with the exception of Inception-V3 where the images 
were resized to 299 by 299 pixels as the model’s require-
ment. The network’s initial learning rate was set to 0.01, 
and its minibatch size and maximum epochs were 32 
and 30, respectively. It created up to 2910 maximum 
iterations at a rate of 50 each epoch.

In order to achieve consistent and fair performance 
results, each experiment was conducted five times for 
each dataset. Each time, a random selection of tri-
als from the dataset was made for training and testing 
purposes. As noted in the preceding section, the data 
collection of this study consists of two sessions, with 
each session producing two sets of EEG recording data. 
In total, 4 sets of datasets were obtained: S1S, S2S, S1R, 
and S2R. A series of experiments have been conducted 
to investigate the viability of employing pre-trained 
deep learning models in EEG-based authentication. The 
details are discussed in the subsequent section.

To comprehensively assess the performance of the clas-
sification on the imbalanced datasets, the performance 
metrics: accuracy, precision, specificity, sensitivity, and 
F1-score were calculated based on four parameters: true 
positive (TP), true negative (TN), false positive (FP), and 
false negative (FN), where they are generated as follows:

(5)accuracy =
TP + TN

TP + TN + FP + FN

(6)precision =
TP

TP + FP

(7)sensitivity =
TP

TP + FN

The outcomes that were found and reported in this 
paper include the averaged accuracy as well as the 
standard deviation (STD), which represents the degree 
of variation or dispersion around the average.

4.2  Results
This section shows the experimental results and analyses 
of different pre-trained CNN models on the extracted 
EEG frequency signals. Using various combinations 
of EEG datasets, three experiments were conducted. 
Detailed descriptions of the experiments are provided in 
the following sections.

4.2.1  Experiment 1
The objective of the first experiment is to investigate the 
applicability of the individual EEG datasets derived using 
FFT transform to various pre-trained models, including 
GoogLeNet, Inception-V3, ResNet-50, ResNet-101, Effi-
cientNet-B0, and DenseNet-201. Each dataset, including 
S1S, S2S, S1R, and S2R was used to train and test six pre-
trained models individually using a ratio of 7:3. Tables 1 
and 2 show the classification performance of these six 
pre-trained models for both session 1 and session 2 data-
sets, respectively. As seen in the tables, both pre-trained 
models provided promising results, each achieving an 
accuracy above 99%. Based on the results of Session 1, 
ResNet-50 and DenseNet-201 had the best accuracy 
in the S1S dataset at 99.98%, while Inception-V3 and 
DenseNet-201 attained 99.95% accuracy in the S1R data-
set. As for results in the Session 2, DenseNet-201 and 
Inception-V3 obtained the best accuracy performances 
with 99.98% and 99.95% among the pre-trained mod-
els in S2S and S2R datasets, respectively. Although these 
models achieve the best results, it is seen that the differ-
ences among other models are very trivial. Additionally, 
the small standard deviations among the reported perfor-
mance measurements show the stability and consistency 
of the proposed method in user authentication. Figure 7 
illustrates the summary of accuracy performances sepa-
rated by different pre-trained models.

4.2.2  Experiment 2
A second experiment was undertaken using a larger data-
set to examine the classification performance and validate 
the previous experiment’s findings. The different session 
datasets were merged to create a new dataset known as 

(8)specificity =
TN

TN + FP

(9)F1 score =
precision ∗ sensitivity

precision+ sensitivity
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Seq dataset (S1S + S2S) and Rand dataset (S1R + S2R). The 
training and testing procedure adhered to the 7:3 ratio 
and five runs were executed for a fair evaluation. Tables 3 
and 4 summarise the performance of the pre-trained 
models in EEG classification with the merged datasets. 
Observed from the experimental results for Seq data-
set, all pre-trained models obtained consistent results of 
around 97% accuracy, with Inception-V3 obtaining the 
best accuracy at 97.75%. On the other hand, the experi-
mental results for Rand dataset gained close to perfect 
accuracy except for GoogleNet, with an accuracy of 
97.56%. The DenseNet-201 is reported to have the high-
est accuracy of 99.95%. As compared with both Seq and 
Rand datasets, it is also found that the latter has slightly 
outperformed the former. It can be due to the randomize 
datasets (S1R and S2R) are more consistent than the 
sequential datasets (S1S and S2S). Again, the low discrep-
ancies in the standard deviation of all the performance 
measurements demonstrate the consistency and stabil-
ity of the method. Figure 8 shows the summary accuracy 
performances of both the Seq and Rand datasets sepa-
rated by different pre-trained models.

4.2.3  Experiment 3
This experiment aimed to assess the classification capa-
bility of EEG signals across different datasets within the 
same session in user authentication. There are two types 
of settings: the S1S dataset was utilized to train the mod-
els, and the S1R dataset was used for testing. Similarly, the 
second setting used S2S for training and  S2R for testing. 

The classification performances of six pre-trained mod-
els are summarised in Table 5. The performances of both 
settings deteriorated dramatically compared to the pre-
vious two experiments. It was because the datasets used 
for training and testing were separated and thus, yielded 
low performances. It can be seen that the accuracy per-
formance was degraded in the range of 41.45% to 58.48% 
for both settings. The ResNet-101 achieved the best accu-
racy performances in all sessions’ settings, with 58.48% 
and 51.19%, respectively. It is also observed that Goog-
LeNet yielded the worst performances. The accuracy per-
formances of these experiments are also summarised and 
illustrated in Fig. 9.

5  Discussion
Transfer learning has been exploited in this study. Sev-
eral experimental tests were conducted to evaluate the 
performance of pre-trained models in authenticating 
an individual’s identity using EEG signals. Three experi-
ments were conducted to assess the performance of 
the proposed method on different datasets. The overall 
results obtained in this study reveal that the multi-class 
classification problem can be well addressed by applying 
the transfer learning method. The self-collected data-
base is relatively small. With the extracted FFT inputs, 
the proposed pre-trained models could learn effective 
features and achieve good classification results in experi-
mental tests 1 and 2. Although GoogleNet produced 
lower results among the pre-trained models, the accura-
cies reported in experimental Test 1 and 2 were between 
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97.56% and 99.79%, which is within a promising range. 
It is speculated that the number of convolutional lay-
ers in GoogleNet is slightly insufficient for the task to 
identify the data to the correct classes as compared with 
other models. In the case of Inception-V3, the accuracy 
ranged from 97.75% to 99.95% in both experimental tests, 

respectively. In experimental Test 1, this pre-trained 
model performed well, achieving the greatest accuracy in 
the S1R and S2R individual datasets. Furthermore, it also 
exhibited the highest performance in the Seq (S1S + S2S) 
dataset for experimental Test 2. Despite having a simi-
lar structure to GoogleNet, its improved concepts have 

Table 3 Experimental results for combined sessions‑ Seq (S1S + S2S) based on different pre‑trained models

The bold values indicate the highest accuracy

Model Comparison of classification accuracy (Averaged% ± Standard deviation)

Acc. Pre. Sens. Spec. F1

GoogLeNet 97.61 ± 0.34 97.93 ± 0.85 97.54 ± 0.34 99.91 ± 0.001 97.45 ± 0.23

Inception‑V3 97.75 ± 0.46 97.80 ± 0.54 97.69 ± 0.46 99.92 ± 0.02 97.64 ± 0.47

ResNet‑50 97.37 ± 0.08 97.30 ± 0.08 97.30 ± 0.08 99.91 ± 0.003 97.30 ± 0.08

ResNet‑101 97.05 ± 0.23 96.97 ± 0.23 96.96 ± 0.23 99.89 ± 0.01 96.96 ± 0.23

EfficientNet‑B0 97.10 ± 0.15 97.04 ± 0.15 97.02 ± 0.14 99.90 ± 0.01 97.01 ± 0.13

DenseNet‑201 97.24 ± 0.27 97.16 ± 0.27 97.16 ± 0.27 99.90 ± 0.01 97.16 ± 0.27

Table 4 Experimental results for combined sessions‑ Rand (S1R + S2R) based on different pre‑trained models

The bold values indicate the highest accuracy

Model Comparison of classification accuracy (Averaged% ± Standard Deviation)

Acc. Pre. Sens. Spec. F1

GoogLeNet 97.56 ± 0.27 97.76 ± 0.64 97.50 ± 0.27 99.91 ± 0.01 97.44 ± 0.20

Inception‑V3 99.78 ± 0.08 99.79 ± 0.07 99.78 ± 0.07 99.98 ± 0.003 99.79 ± 0.07

ResNet‑50 99.84 ± 0.08 99.84 ± 0.08 99.84 ± 0.07 99.98 ± 0.003 99.84 ± 0.08

ResNet‑101 99.79 ± 0.08 99.79 ± 0.08 99.78 ± 0.07 99.98 ± 0.002 99.78 ± 0.08

EfficientNet‑B0 99.73 ± 0.02 99.73 ± 0.01 99.73 ± 0.01 99.98 ± 0.002 99.73 ± 0.005

DenseNet‑201 99.95 ± 0.02 99.95 ± 0.03 99.94 ± 0.01 99.99 ± 0.002 99.94 ± 0.002
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proven its competitiveness against other advanced train-
ing models such as ResNets and DenseNet-201, which 
incorporate multiple paths and deeper layers. When 
comparing EfficientNet-B0 to other pre-trained models 
in terms of accuracy, it may exhibit slightly lower accu-
racy in specific sessions. It is relatively smaller and less 
complex which may limit its ability to detect and repre-
sent complex data patterns and characteristics. Never-
theless, despite these constraints, EfficientNet-B0 still 
demonstrates stable accuracy in the first experimental 
test where its accuracy ranged from 99.84% to 99.89% 
and in the second experimental test, from 97.10% to 
99.73%. Overall, EfficientNet-B0 performs reliably in 
EEG-based authentication tasks. As can be observed 
from the results, the DenseNet-201 and ResNet-50 
slightly outperformed the other pre-train models in 
terms of accuracy, precision, specificity, sensitivity, and 
F1-score. Consideration must be given to the architec-
tures of these pre-trained models to comprehend why 
their outcomes are superior to those of other models. 
First, ResNet-50 consists of multiple residual blocks, each 
consisting of an identity mapping layer and shortcuts. 
This unique architecture enables an increase in precision 
with increasing layer depth. ResNet-101 is based on the 
same concept as ResNet-50 but with a larger number of 
layers. Although ResNet-101’s performance is slightly 
lower than ResNet-50, it still demonstrates a good level 
of accuracy. On the other hand, DenseNet is an enhanced 
version of ResNet designed to overcome decreased per-
formance caused by losing information due to longer 
paths between the input and output layers in the neu-
ral network. Using the concepts of concatenation and 

feature reuse, this architecture has complete access to the 
feature maps of all preceding levels, freeing the network 
of the need to relearn previously useful features. There-
fore, it implies that the benefits of DenseNet are effective 
in recognizing EEG multi-class problems. Although it 
is reported that these models achieved the best results, 
the performance differences among other models are 
trivial. The contribution of other pre-trained models 
that achieve comparable outcomes cannot be neglected. 
Additionally, the minor differences in the standard devia-
tions of all the reported performance measurements 
demonstrate the stability and consistency of the EEG fea-
tures towards the pre-trained models that are capable of 
accurately classifying the identification of an individual.

In experimental test 3, the best performance in authen-
ticating individuals was obtained by the ResNet-101 with 
an accurate rate of 58.48% and 51.19% in Session 1 and 
Session 2, respectively. The performance degradation 
and a significant drop in accuracy was observed from 
remaining models as well when the training and testing 
data were drawn from separate datasets. Consistent with 
the findings of experimental tests 1 and 2, GoogleNet, 
which has the fewest convolutional layers, obtained the 
lowest accuracy, followed by EfficientNet-B0. These 
results suggest that models with a lesser number of con-
volutional layers may have difficulty capturing complex 
patterns and features in the EEG signals, resulting in a 
decrease of accuracy. On the other hand, models with 
deeper architectures, such as ResNet-101, ResNet-50, 
and DenseNet-201, demonstrated greater accuracy, high-
lighting the benefits of employing deeper  architectures 
for enhanced performance. Although Inception-V3 did 
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not attain the highest level of accuracy, its performance 
was promising. In spite of its slightly lower accuracy than 
the best-performing models, Inception-V3 remains a via-
ble option for EEG-based authentication tasks, especially 
when computational resources are restricted.

In addition to considering the model’s architecture, it 
is essential to take into account the inherent challenges 
associated with EEG signals: poor signal-to-noise 
ratio and non-stationary nature. Therefore in order to 
develop a robust EEG-based authentication system, 
the classification model may require a method to train 
and adapt diverse input data from different datasets. By 
incorporating techniques for dealing with variations in 
signal quality, the model can enhance its ability to accu-
rately classify and authenticate individuals based on 
EEG signals.

6  Conclusion
This paper explored the effectiveness of transfer learn-
ing in EEG-based user authentication, and six pre-
trained CNN models were adopted and compared. 
These pre-trained models consist of GoogLeNet, Incep-
tion-V4, ResNet-50, ResNet-101, EfficientNet-B0, and 
DenseNet-201which employed on the self-collected 
EEG database to classify the extracted FFT frequency 
features and perform multi-classes user recognition. 
Three experimental tests were conducted, and the 
results were analyzed and discussed. The highest accu-
racy of 99.98% was attained using the DenseNet-201 
model to classify thirty subjects. Experiments dem-
onstrate that without requiring CNN model training 
from scratch, the proposed pre-trained models are able 
to transfer relevant knowledge (weights and biases) to 
authenticate an individual. In addition, this study also 
assessed the test–retest repeatability of all the subjects. 
The results indicate a decline in performance when dif-
ferent datasets were utilized. In future work, the issue 
of repeatability over time can be further studied, and 
novel approaches that can train and adapt diverse input 
data from different datasets in authenticating individu-
als could potentially be explored.
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