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Abstract 

Consciousness is something we experience in our everyday life, more especially between the time we wake up in the 
morning and go to sleep at night, but also during the rapid eye movement (REM) sleep stage. Disorders of conscious-
ness (DoC) are states in which a person’s consciousness is damaged, possibly after a traumatic brain injury. Com-
pletely locked-in syndrome (CLIS) patients, on the other hand, display covert states of consciousness. Although they 
appear unconscious, their cognitive functions are mostly intact. Only, they cannot externally display it due to their 
quadriplegia and inability to speak. Determining these patients’ states constitutes a challenging task. The ultimate 
goal of the approach presented in this paper is to assess these CLIS patients consciousness states. EEG data from DoC 
patients are used here first, under the assumption that if the proposed approach is able to accurately assess their con-
sciousness states, it will assuredly do so on CLIS patients too. This method combines different sets of features consist-
ing of spectral, complexity and connectivity measures in order to increase the probability of correctly estimating their 
consciousness levels. The obtained results showed that the proposed approach was able to correctly estimate several 
DoC patients’ consciousness levels. This estimation is intended as a step prior attempting to communicate with them, 
in order to maximise the efficiency of brain–computer interfaces (BCI)-based communication systems.
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1  Introduction
Disorders of consciousness (DoC) states encompass the 
states in which an individual’s consciousness is impaired. 
Consciousness relies upon the interaction between the 
activity of the thalamus, the brainstem and the cerebral 
cortex of the brain. Damages in one of these systems 
(e.g., after a brain injury) will disrupt this relationship, 
and result in an impairment of consciousness which is 
called DoC [1]. One can distinguish coma, vegetative 
state (VS) formerly known as Unresponsive Wakefulness 

Syndrome (UWS), and Minimally Conscious State (MCS) 
[1]. Patients can be in coma for 2 to 4 weeks during which 
they are “unarousable”. This state is characterised by an 
absence of spontaneous eyes opening and muscle move-
ments [2, 3]. If and when patients emerge from this state, 
they can enter either a locked-in or a vegetative state, 
which in turn can transition to an MCS, or in the worst-
case scenario, into permanent VS and/or death.

To assess DoC patients’ consciousness, most researches 
rely on their active participation using event-related 
potentials in particular, since it proves the patients’ abil-
ity to follow commands, which in turn is seen as proof 
of consciousness [2]. The stimuli used in this case can be 
auditory, tactile, visual or even olfactory [4–8]. This eas-
ily provokes patients’ fatigue. Furthermore, most studies 
do not evaluate patients’ consciousness and willingness 
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to perform the tasks. In this work, several features were 
extracted from the EEG signal and used as input to two 
clustering analysis approaches that subsequently issue an 
estimation of the consciousness level of the DoC patients. 
The idea behind this is to maximise the probability of cor-
rectly determining the patients’ actual states at each time, 
given that signature of probable consciousness detected 
by one feature can be missed by another.

This paper is organised as follows: the patients as well 
as the data recorded from them are presented in Sect. 2. 
This is followed by the introduction of the different meth-
ods used to extract the EEG features. Afterwards, the 
soft-clustering algorithms used to determine the patients’ 
levels of consciousness are described. Then the results 
are presented in Sect. 3 and discussed in Sect. 4, before 
concluding in Sect. 5.

2 � Methods
2.1 � Patients description
The dataset consists of the EEG recordings of two sub-
groups of patients: 11 in MCS and 12 in VS from Austria 
and Belgium [9]. The complete dataset was published in 
[10] and a brief description of them is given in Table 1.

The EEG were acquired from 18 channels placed 
according to the 10–20 system [12] for the Austrian 
group, and 12 channels for the Belgian group at a 
sampling rate of 500 Hz. In this work, the analysis was 
performed on the channels common to both groups, as 
illustrated in Fig. 1. In addition to the EEG, physiological 
signals were also recorded. Moreover, video recordings 
were also labelled into periods of “eyes open” (O) and 
“eyes closed” (C) for every 5-min epoch for the 23 
patients. When the state of the eyes repeatedly switched 
between opening and closure, it was scored as open–
closed (O/C) [10].

2.2 � Description of the approach
All analyses were performed using MATLAB 2018b, the 
FieldTrip toolbox [13], as well as custom written scripts. 
Figure 2 illustrates the modus operandi of the proposed 
method. The acquired EEG data were first band-pass 
filtered from 0.5 to 45 Hz using a third-order Butterworth 
filter, and then segmented into 3-s windows sliding one 
second at a time. No artefacts removal were performed 
on the data given the states of the patients. Afterwards, 
the features of interest are computed for each segment 
and for all channels, and subsequently averaged across 
them. Then, soft clustering analyses are performed on the 
extracted features to obtain a unique value estimating the 
patients’ consciousness levels.

It is hypothesised that conscious states are character-
ised by:

•	 A simultaneous increase of the θ and β powers, since 
on one hand the former increase during verbal and 
spatial memory tasks [15] and on the other hand, 

Table 1  Demographic information of the patients

a Months since injury
b CRS-R: Coma Recovery Scale-Revised, measure to determine consciousness 
levels of unresponsive patients and establish a diagnosis
c TBI: traumatic brain injury
d CVA: cerebrovascular accident
e Anoxia: condition characterised by an absence of oxygen supply to an organ 
or a tissue
f SSPE: subacute sclerosing panencephalitis. SSPE is a progressive neurological 
disorder targeting children and young adults and affecting the central nervous 
system (CNS). It is a rare disease caused by a slow and persistent viral infection 
associated to measles [11]

Patient Age/gender DoC Aetiology Durationa  CRS-Rb

L1 21/M VS TBIc 7 6

L3 16/F VS TBI 1 7

L13 74/F VS TBI 1 3

S12 52/M VS TBI 13 4

S13 58/F VS CVAd 28 4

S14 61/M VS Anoxiae   32 4

S16 50/F VS CVA 45 4

S17 19/M VS/MCS SSPEf 24 3

L4 48/M MCS TBI 8 11

L7 66/M MCS CVA 3 10

L8 62/M MCS TBI 2 8

L9 61/M MCS Anoxia 2 10

L16 43/F MCS TBI 6 21

S2 45/M MCS TBI 12 8

S5 21/M MCS Anoxia 28 13

S6 50/F MCS TBI 113 14

S7 30/M MCS TBI 120 13

Fig. 1  Illustration of the common EEG channels to all DoC patients 
(in blue). The sampling rate is 500 Hz. Patients were based in Austria 
(Austrian group) and in Belgium (Belgian group) [9]
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the latter is highly activated during information 
processing in the brain [16, 17].

•	 Spectral edge frequencies 95% (SEF95) above the 
α band. In anaesthesia research, values below the α 
band indicate deep level [18] while those above the β 
band characterise light anaesthesia [19].

•	 Larger EEG complexity, as complex signals are repre-
sentative of an activated brain [20].

•	 Increased linear and non-linear connectivity in the θ 
band.

Therefore, for each of these different features, the clusters 
centroids with higher values are considered to be repre-
sentative of conscious states.

2.2.1 � Features computation
Different types of EEG signal characteristics were used 
in this study, namely frequency, complexity, and connec-
tivity-based features. The relative powers (RPs) of θ and 
β , as well as the SEF95 were considered. As complexity 
measures, the Ellipsoid Radius Ratio (ERR) of the Poin-
caré plots [21] and the Lempel–Ziv complexity (LZC) 
[22] were used. Brain connectivity was determined using 
the imaginary part of the coherency (iCOH) [23], and 
weighted symbolic mutual information (wSMI) [24]. The 
details of each of these features are developed in the fol-
lowing paragraphs.

2.2.1.1  Spectral features  In normal circumstances, 
the values of the different frequency powers provide 
information about the (current) brain states [16]. For a 

signal x(t), the relative power is obtained using Eq.  (1) 
[25, 26]. The frequency bands of interest are θ (4–8 Hz) 
and β (12–30 Hz):

where  Sx(f ) is the power spectral density (PSD) of the 
signal x(t) at the frequency f [27], f1 and f2 specify the 
lower and upper limits of the frequency band of inter-
est, respectively. In this particular case, fl = 0 Hz and 
fh = 45 Hz (i.e. the upper limit of the cut-off frequency 
of the filter). Practically, Sx(f ) was estimated using the 
MATLAB function SPSVERBc1 with a Hamming win-
dow of 1/8 size of the data segment and a 50% overlap, 
using the Welch method [28].

Investigations of the potential of the relative pow-
ers as markers of consciousness in patients with DoC 
showed that θ and α are among the best features that 
could distinguish MCS from VS patients. Furthermore, 
an increase of θ power is detected during verbal and 
spatial memory tasks [15] and throughout the recovery 
of consciousness after anaesthesia [29]. On the other 
hand, β rhythms (13–30 Hz) are produced when the 
brain is engaged in information processing [25].

SEF represents the frequency beneath which a par-
ticular fraction r of the signal power is contained [30, 
31] and is computed using Eq.  (2), where f is the fre-
quency and Fs represents the sampling frequency. In 
this research, normalisation of the values of SEF was 
performed by dividing them to the upper frequency 
limit of the critical frequency during filtering (45 Hz):

(1)RP =
∑f2

f=f1
Sx(f )

∑fh
f=fl

Sx(f )
,

Fig. 2  Signal processing and analysis pipeline. The recorded signal is filtered and segmented, before extracting the different features. Each feature 
is then averaged across selected group of channels before performing the clustering analysis. The probability that the patient is conscious is then 
extracted by applying a decision rule to the obtained results [14]
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SEF are generally used features for sleep analysis and 
classification, with r = 50% and r = 95% . SEF95 (SEF 
with r = 95% ) in particular is usually employed in anaes-
thesia research to evaluate the depth of anaesthesia in 
healthy subjects. Its value decreases as the anaesthesia 
level deepens [18]. More precisely, SEF95 values larger 
than 15 Hz indicate light anaesthesia. Moderate anaes-
thesia is characterised by SEF95 values between 8 and 13 
Hz, while deep anaesthesia have SEF95 values lower than 
7 Hz [19]. Accordingly, a bigger SEF95 value indicates a 
higher level of consciousness.

2.2.1.2  Complexity features  The complexity of EEG 
signals were assessed using the ERR of Poincaré plots and 
LZC. More complex signals are representative of more 
brain activation, hence higher consciousness states [21, 
32, 33].

A Poincaré plot describes the behaviour of the signal 
in the phase space [21]. To obtain it, the signal x(t) is 
plotted against its delayed version x(t + τ ) . Figure  3 
illustrates an example of Poincaré plot of EEG data with 
τ = 1 sample. SD2 and SD1 are, respectively, the stand-
ard deviation of the points from the long axis (line of 
identity) and the short axis (perpendicular to the line 
of identity) [34, 35]. The variable of interest is the ERR, 
which is the ratio SD1/SD2, and is calculated using 
Eq. (3):

(2)
SEFr
∑

f=0

Sx(f ) = r

Fs/2
∑

f=0

Sx(f ).

An increased depth of anaesthesia is characterised by a 
reduced randomness of the EEG signal and the short-
term variability SD1 and, by extension, of the ERR [35]. A 
rounder shape of the ellipsoid (ERR ≈ 1) corresponds to 
randomness, thus more complex signals. Consequently, 
the closer to 1 the value is, the higher the consciousness 
level is.

On the other hand, LZC assesses repetitiveness in a 
binary sequence S = s1s2...sn [22]. It determines the num-
ber of different sub-strings found as the binary sequence 
is streamed from the left to the right. Larger number of 
sub-sequences are representative of a higher degree of 
randomness, which increase the LZC [36, 37]. The binary 
sequence is obtained by transforming the real signal x(t) 
to an analytic signal using Eq. (4) and binarising it using 
Eq. (5):

where xh(t) is the Hilbert transform of x(t) [38].

A normalised version of LZC was recently used to assess 
consciousness levels of different types of patients com-
pared to healthy controls [39].

2.2.1.3  Connectivity features  The different brain regions 
communicate with one another during mental tasks. 
Investigating this may shed some light on the underlying 
brain processes. Generally, high connectivity values 
indicate high cooperation and more information sharing 
between the two underlying brain regions or channels 
[40]. Two different measures, iCOH and wSMI, were used 
in this case.

Coherency assesses the linear relation between a 
pair of signals, channels or brain regions x and y. An 
increased functional relationship between these regions 
is reflected by a higher value of coherence [41]. To reduce 
the influence of volume conduction in the brain, only the 
imaginary part of the coherency is used [23]. Its value at 
a frequency f for each pair of channels is obtained using 
Eq. (6) and normally ranges from −1 to +1:

(3)

ERR = SD1

SD2
=

√
2
2 SD(x(t)− x(t + τ))

√

2SD(x(t))2 − 1
2SD(x(t)− x(t + τ))2

.

(4)xa(t) = x(t)+ ixh(t),

(5)S(t) =
{

0, if abs(xh(t)) ≤ mean(abs(xh(t)))
1, otherwise

(6)iCOHxy(f ) = ℑ





Sxy
�

f
�

�

Sxx
�

f
�

· Syy
�

f
�



,
Fig. 3  Poincaré plot showing its short-term (SD1) and long-term 
(SD2) variability with τ = 1 sample. A round oval pattern of the plot 
represents a random signal, while an elongated shape describes 
signals with linear features
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where Sxx and Syy are the individual power spectral den-
sity of x and y, and Sxy is the cross-power spectral density 
of x and y at frequency f.

The imaginary part of the coherency has been used in 
conjunction with artificial neural networks (ANNs) to 
evaluate consciousness level of CLIS patients [42–44], 
and both methods have also been employed with the 
same goal with DoC patients [24, 45]. Periods of unre-
sponsiveness in healthy subjects under anaesthesia are 
portrayed by a decrease of coherence in the δ bands, more 
particularly in the frontal and central electrodes [46]. 
Moreover, a global decrease of coherence is observed 
during ketamine-induced unconsciousness, while an 
increase of power and coherence in the higher frequen-
cies is seen during recovery of consciousness [29].

Given the type of task presented to the patient and that 
θ band plays an important part in working memory [15], 
only the coherency in this frequency band will be used.

wSMI evaluates not only linear, but also non-linear 
relationships between two signals, channels or brain 
regions x and y. It quantifies information sharing between 
the two entities and is computed using Eq.  (7) [24]. The 
signals are first transformed into series of discrete sym-
bols (x̂, ŷ) , organised according to trends in amplitudes 
of k time samples separated by a temporal separation of 
elements τ . wSMI equals 1 when the two signals are com-
pletely dependent, and equals 0 when they are entirely 
independent:

Similar to the previous case, only wSMI in the θ band was 
used. Indeed, especially in that frequency band, wSMI 
was able to precisely assess the long-range connectivity 
patterns that are related to consciousness in theory [47]. 
In this case, k = 3 and τ = 16 ms to capture the patterns 
of the EEG in the θ frequencies [24]. Greater values rep-
resent higher levels of consciousness [48].

2.2.2 � Consciousness level assessment
In this study, the degree to which a subject is conscious 
designates the consciousness level. Its value is determined 
by the outputs of the two soft clustering approaches: 
Fuzzy c-means (FCM) [49] and Gaussian Mixture Models 
(GMM) [50]. On one hand, FCM is the most used soft-
clustering approach; and on the other hand, Gaussian 
model is the most used model in a model-based cluster-
ing [50]. Hard clustering partitions the data points into 
several disjointed clusters. Thus, each data point belongs 
to only one cluster. Soft-clustering analysis allows them 

(7)

wSMI(x, y) = 1

log(k!)
∑

x̂∈X̂

∑

ŷ∈Ŷ

w(x̂, ŷ)p(x̂, ŷ) log

(

p(x̂, ŷ)

p(x̂)p(ŷ)

)

.

to belong to multiple clusters with a certain degree of 
membership. The sum of the degrees of membership to 
all clusters equals 1.

2.2.2.1  FCM  FCM can be thought as the soft version 
of the K-means algorithm by introducing a fuzzy overlap 
m > 1 [49]. Initially, the cluster memberships µij are 
randomly attributed. Then the cluster centres cij are 
calculated using Eq. (8):

where m is the fuzziness parameter ( m = 1 corresponds 
to a hard-clustering), xi is the ith data point. Afterwards, 
the cluster membership values µij are updated using 
Eq.  (9), and then the objective function Jm is computed 
using Eq.  (10). These steps are repeated until the objec-
tive function converges to a minimum, or when a maxi-
mum number of iterations are achieved:

The MATLAB function *|fcm| was used to perform the 
analysis with the following parameters: m = 2 [51], the 
maximum number of iterations is 1000, and the mini-
mum improvement in the objective function between 
two consecutive iterations is ǫ = 1e−5.

2.2.2.2  GMM  GMM, on the other hand, is a model-
based cluster analysis approach that uses a Gaussian 
mixture distribution f

(

xi/zig = 1, θg
)

∼ N
(

µg ,�g

)

 as a 
model (Eq. 11) [52]. It is assumed that the data are produced 
by a random statistical model that the clustering method 
attempts to recover [50]. Given x = (x1, x2, ..., xn) ∈ R

p , 
the random vector xi is assumed to arise from a finite 
mixture of probability density functions:

where:

•	 K is the number of clusters. Each mixture component 
density is associated to a specific parametric class 
and represents a cluster.

(8)cij =
∑D

i=1 µ
m
ij xi

∑D
i=1 µ

m
ij

,

(9)
µij =

1

∑N
k=1

( ||xi−cj ||
||xi−ck ||

)
2

m−1

,

(10)Jm =
D
∑

i=1

N
∑

j=1

µm
ij �xi − cj�2.

(11)f (xi,�) =
K
∑

g=1

πg�
(

xi/µg,�g

)

,
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•	 πg > 0, (g = 1, ...,K ) and 
∑K

g=1
πg = 1 are the mix-

ing proportions.
•	 � = (π1, ...πg−1,µ1, ...µg ,�1, ...,�g ) is the parameter 

vector.
•	 �

(

xi/µg,�g

)

 is the underlying component-specific 
density function with parameters µg , σg , g = 1, ...,K  . 
The parameters in � are estimated by the maximum 
likelihood optimisation, more precisely by using the 
iterative Expectation-Maximisation (EM) algorithm 
[50].

The model in Eq.  (11) generates ellipsoidal clusters cen-
tred at the mean vector µg , and σg controls the other geo-
metrical properties of each cluster. Difference of means 
in the different component models suggest that the 
model distinguishes among the K classes [53].

The EM algorithm consists of an E-step, during which 
it calculates posterior probabilities (conditional prob-
ability that is assigned after the relevant evidence is 
taken into account) of cluster memberships; and an 
M-step, during which it estimates the cluster parameters 
by applying maximum likelihood and using the cluster-
membership posterior probabilities as weights. These 
steps are iterated until the algorithm converges to a local 
optimum. Once it reaches it, the soft partition is obtained 
by assigning each data point to the cluster with the high-
est posterior probability.

The MATLAB functions |fitgmdist| and |posterior| 
were used to perform the analysis with the same param-
eters as with FCM.

2.2.2.3  Ensemble average  The previously computed 
features were normalised and used as input vector 
to the clustering analysis. Its dimensionality is 
Nsamples × Nfeatures . Given that the aim is to distinguish 
between conscious and unconscious states, the number of 
clusters is then N = 2 . So accordingly, the consciousness 
level is indicated by the degree of memberships to the 
cluster representing conscious states. This means that an 
unconscious state is represented by a 0, while a value of 
1 would imply conscious states. To obtain a final unique 
value that will determine the patients’ consciousness 
levels, the results of FCM and GMM were averaged using 
Eq. (12):

where P(c,m1) (resp. P(c,m2) ) is the probability that the 
object i is a member of cluster c in partition m1 ( m2 resp.).

(12)Pavg(c,m1m2) = avg(P(c,m1),P(c,m2)),

3 � Results
Results can be grouped into two categories: a group for 
which the proposed method was functional, and another 
one for which said approach was amiss. An example from 
each category will be showcased in this section, respec-
tively, those of patients L1 and S7. The results for the 
remaining patients are presented in Additional file 1.

3.1 � Patient L1
3.1.1 � Estimation of the patients’ consciousness levels
Patient L1 is a 21-year-old patient in a VS following a 
traumatic brain injury (TBI) that happened 7 months 
before the data recording. This patient was the 
only one which EEG features produced practically 
concurring results, although not clearly visible for 
iCOH. These results can be seen in Fig. 4. Additionally, 
patient L1 also possesses the most eyes scoring 
information.

The results of this particular patient illustrate the per-
fect case in which all results are mostly consistent with 
one another. In other words, their values increase or 
decrease at the same time. A higher consciousness state 
is characterised by a larger value of each specific fea-
ture, and inversely. For example, the definite decrease 
observed during the time frame delimited by the red rec-
tangle in Fig.  4 indicates that the patient was certainly 
unconscious. Likewise, the higher values observed before 
the same time frame may indicate that the patient was 
conscious.

The two clustering analysis (FCM and GMM) 
previously introduced were then applied to the input 
vector consisting of all the calculated features. They 
obtained results were subsequently averaged using 
Eq.  (12). Figure  5 illustrates this averaging for patient 
L1. This result is consistent with the observations on 
each unique feature. As already mentioned earlier, the 
degree of membership to the conscious cluster is chosen 
as the consciousness level of the patients. Accordingly, 
the patient was undoubtedly conscious during most the 
recordings, but was unconscious in particular during the 
same time frame delimited by the red rectangle in Fig. 4.

Figure  6 presents the eyes scoring of patient L1. A 
comparison between these scores and the estimated 
consciousness levels shows that open eyes were observed 
during the times when the algorithm estimated higher 
consciousness levels, and most closed eyes were detected 
during the times with lower consciousness levels.

3.1.2 � Features contributions
Table 2 shows the contribution of each feature to the final 
estimation for patient L1. The values were determined 
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with a Spearman correlation [54]. SEF95 is the measure 
that contributes the most with a correlation of 0.9039, 
followed by Pbeta with 0.8571. On the other hand, for this 

patient, the connectivity features iCOH and wSMI were 
the less contributing ones.

Fig. 4  Different features for patient L1. From left to right and then from top to bottom: relative powers of θ and β , ERR, iCOH, SEF95, LZC and wSMI 
resp. represented in the y-axis. The recording lasted for around 24 h: from 15:44 until 15:50 the next day. The shaded areas represent the night 
time. Higher values of each feature are representative of higher levels of consciousness and inversely. The different features showed similar results, 
particularly a noticeable drop between the time frame delimited by the red rectangles in the figure, indicating a definite decrease of consciousness. 
The patient was certainly unconscious then
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Fig. 5  Estimated consciousness level for VS patient L1 obtained with the average ensemble. The x-axis represents the time, and the y-axis the level 
of consciousness. 0 corresponds to unconscious and 1 represents conscious. The shaded area represents night time. The decrease observed 
inside the red rectangle with the different features were effectively observed here in the estimated consciousness level
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Fig. 6  Eyes scoring of patient L1. The time is represented in the x-axis. On the y-axis: O: eyes open, C: eyes closed. O/C: intermittent opening 
and closing of the eyes, Na/nv: scoring unavailable due to some technical problems. The blank areas are the time frames during which no eyes 
scoring were recorded
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The FCM clustering results between the two most 
and the two least contributing features are illustrated 
in Figs.  7 and 8. Unconsciousness is represented in 
blue, while consciousness is in red. Ideally, the data 
points representing unconscious states are located in 
the left bottom area of the plot, while the conscious 
states are situated on the top right area of the plot. In 
Fig.  7, which shows the two EEG characteristics with 
the largest inter-cluster differences, the degree of 
membership of the data points progresses smoothly 
from blue (bottom left of the plot) to red (top right of 
the plot), i.e. from unconscious to conscious states.

Figure  8 illustrates the two features with the worst 
inter-cluster distance. It can be seen that in this case, 
data points with different degree of membership values 
to the conscious cluster are intermingled. Most data 
points representing low degrees of membership are still 
located in the lower part of the plots, as it should be. 
However, the upper part contains objects with different 
degrees of membership. It can be inferred from these 
result that the best features for patient L1 are LZC and 
SEF95, while the connectivity measures produced non-
distinguishable clusters for both clustering analysis 
methods.

3.2 � Patient S7
Patient S7 is a 30-year-old patient in an MCS. His con-
dition also results from a TBI that occurred 120 months 
before the data recording. This is the longest time since 
injury across in this group of patients. Apart from that, 
patient S7 also exhibited the lowest centroid linkage dis-
tance (separation between two objects belonging to two 
different clusters, computed with the Euclidean distance) 
in the clustering results.

3.2.1 � Consciousness levels estimations
Figure 9 illustrates the results obtained from the different 
features for patient S7. It shows that the results of the 
individual EEG signatures are sometimes divergent. For 
example, results obtained from the spectral features and 
the complexity measures are similar, but are differing 
from those of the connectivity measures. When an 
increase is observed on the former group, a decrease is 
detected on the latter, and inversely. For example, while 
an increase of the θ and β relative powers, SEF95, and 
ERR was observed between 22:25 and 00:40, LZC and 
wSMI values were dropping. Normally, low values suggest 
a reduced consciousness level. However, considering the 
values of the features, especially the SEF (above the alpha 
band, represented in green in Fig. 9) and the complexity 

Table 2  Spearman correlation coefficients for VS patient L1 
between all features and estimated levels of consciousness

The cells in grey represent the correlation coefficients with p > 0.05

FCM GMM Ensemble

Ptheta 0.5016 0.6331 0.5159

Pbeta 0.8407 0.9449 0.8571

SEF95 0.8928 0.9579 0.9039

ERR 0.5391 0.5433 0.5350

LZC 0.7254 0.8003 0.7385

iCOH 0.0062 0.0197 0.0058

wSMI 0.2963 0.2782 0.2888
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Fig. 7  FCM clustering results for patient L1: largest inter-cluster 
difference. In an ideal case, data points representing unconscious 
states are located in the lower left part of the plot, while those 
indicating conscious states are located in the top right part

Fig. 8  FCM clustering results for patient L1: smallest inter-cluster 
difference. In an ideal case, data points representing unconscious 
states are located in the lower left part of the plot, while those 
indicating conscious states are located in the top right part
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Fig. 9  Different features for patient S7. From left to right and then from top to bottom: relative powers of θ and β , ERR, iCOH, SEF95, LZC and wSMI. 
The recording lasted for around 24 h: from 15:44 until 15:50 the next day. The shaded areas represent the night time. The different features showed 
diverging results. For example, a drop/increase between the time frame delimited in red. Higher values of each feature are representative of higher 
levels of consciousness and inversely. Given the values of the individual features throughout the whole recording, it can be inferred that the patient 
was certainly conscious all along
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Fig. 10  Estimated consciousness level for patient S7 obtained with the average ensemble. The gray area represents night time. The x-axis 
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of the eyes, Na/nv: scoring unavailable due to some technical problems. The blank areas represent the time frames during which no eyes scoring 
were recorded. Eyes scoring was available only during night time (from 23:00 to 05:00)
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measures ( ≥ 1 ) in particular, it can be inferred that the 
patient was conscious during most of the recording.

Figure  10 illustrates the results of the ensemble 
clustering analysis. An increase can be seen during the 
same time frame delimited in the red rectangles in Fig. 9, 
when compared to the estimated consciousness levels. It 
appears as the algorithm performed a kind of majority 
upon with the results of the different features. Figure 11 
shows the eyes scoring of MCS patient S7. The scoring 
was available only from 23:00 to 05:00.

3.2.2 � Features contributions
Table  3 displays the contribution of each feature to the 
final level of consciousness estimation for patient S7. 
First of all, Ptheta and wSMI contributed highly but 
negatively to the final result. The other features, on the 
other hand, are positively but only moderately correlated 
with the estimated consciousness levels. Furthermore, 
LZC and iCOH for FCM, and ERR and LZC, which 
are, respectively, the pairs of features with the lowest 

inter-cluster distances, are also the EEG characteristics 
that correlated the less to the estimated consciousness 
levels.

The clustering results between the two most 
contributing features obtained from FCM and GMM are 
illustrated in Figs. 12 and 13. In Fig. 12, the conscious and 
unconscious clusters obtained from FCM are practically 
indistinguishable, with a very low inter-cluster difference 
of 0.0067. The dissimilarities were computed on the 
normalised features. Additionally, the average degree of 
membership to the conscious cluster of all the data points 
is 0.4979 (green colour in the figure). The clustering 
analysis results also showed that iCOHθ and LZC 
display the lowest inter-cluster difference with 0.0019. 
Both values are extremely low, so in the figure, they are 
practically overlapping.

The degrees of membership obtained from the GMM 
clustering analysis cover more value ranges, although 
there was no smooth transition from unconscious to 
conscious states. As seen in Fig. 9 and Table 3, Ptheta and 
wSMI contradict those of the other features. Particularly, 
low values of wSMI and Ptheta belong to the conscious 
cluster, and inversely. These observations are also con-
tradicting the hypothesis established in the previous sec-
tion. wSMI and Ptheta also display the largest inter-cluster 
distance with a value of 0.2662. The lowest distance is 
observed between LZC and ERR with 0.0125.

3.3 � Performance of the approach
Overall, the proposed approach was able to estimate 
consciousness levels of 20 of the 23 patients. In gen-
eral, analogous to a majority vote, the estimations of 
consciousness levels from both FCM and GMM are 
positively correlated with the majority of the individual 

Table 3  Spearman correlation coefficients for MCS patient S7 
between all features and estimated levels of consciousness

The cells in grey represent the correlation coefficients with p > 0.05

FCM GMM Ensemble

Ptheta   − 0.5660 − 0.7500 − 0.7181

Pbeta   0.3920 0.3223 0.3550

SEF95 0.5771 0.4907 0.5294

ERR 0.3611 0.1181 0.1655

LZC 0.3113 0.0547 0.0910

iCOH 0.1535 0.1283 0.1330

wSMI − 0.7443 − 0.7511 − 0.7423
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Fig. 12  FCM clustering results representing the largest inter-cluster 
differences for patient S7. Unconsciousness is represented in blue, 
while consciousness is in red
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Fig. 13  GMM clustering results representing the largest inter-cluster 
differences for patient S7. Unconsciousness is represented in blue, 
while consciousness is in red
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features. In other words, the approach was able to con-
vey the increases and decreases of the patients’ levels of 
consciousness from them. On the other hand, the accu-
racy of these estimations depends on the overall inter-
cluster differences. First of all, the levels of consciousness 
values were highly influenced by the features with the 
largest inter-cluster distance and vice versa. The correla-
tion coefficients between the features and the estimated 
levels of consciousness from the clustering analysis are 
reported in Additional file 1.

The results showed that there is no common best or 
worst feature shared by all patients. Each individual is 
different, and so are the most and less efficient features 
for each of them. In addition, when the dissimilarities are 
large enough, the estimated levels of consciousness are 
remarkably accurate when matched with the outcomes 
of each individual measure (as is the case of patient L1). 
However, when it is not the case, i.e. the inter-cluster dis-
tances are small, the estimations are not correctly con-
veyed. This latter case was observed for patients L13 and 
S13 in addition to patient S7 which case was presented in 
the following section.

To further evaluate the performance of the proposed 
approach, the obtained estimations of consciousness 
levels were binarised and compared to the eyes states. 
The values below the threshold were set to 0 and those 
above it, to 1. Similarly, values of 1 were assigned to open 
eyes (“O”), and 0 was appointed to periods of closed eyes 
(“C”). Accordingly, only the data with available eyes scor-
ing were used. The threshold values range from 0.3 to 0.7 
with a 0.1 increment, given that 0.5 could not possibly 
mean the separation between conscious and unconscious 
states. The performance accuracy was computed for all 

threshold values using Eq.  (13), in which TP: true posi-
tive, TN: true negative, FP: false positive, and FN: false 
negative:

Figure 14 shows the obtained results. On average, MCS 
patients achieved the highest accuracies for the different 
threshold values. However, one of the MCS patients 
(S17) also achieved the lowest accuracy with 22.22%. The 
highest accuracy for VS patients was achieved by patient 
L8 with 70.11%.

4 � Discussion
In this paper, a method to assess patients consciousness 
levels using a soft clustering analysis of a feature vector 
consisting of the combination of several EEG signatures 
is presented. The idea behind integrating multiple 
features was to increase the chances of detecting hidden 
characteristics that were missed by the other features, 
consequently maximising the probability of correctly 
estimating the patients’ actual state. The different 
features used in this work were weighted equally. Each 
of the features extracts a particular characteristic of the 
EEG signal. This work was based on the hypothesis that 
conscious states are defined by an increase of each of 
these signal attributes. Considering that the individual 
features may give conflicting results, the clustering 
analyses appear to find a consensus that conveys their 
combined variations. The results obtained from all 
patients suggest that the approach proposed in this 
paper works best when the data cover all possible 

(13)Accuracy = TP+TN

TP+TN+FP+FN
.

Fig. 14  Performance of the approach. Overall, highest accuracies were obtained by MCS patients
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consciousness states. This constitutes a major challenge 
considering the difficulty to record such patients’ data.

The obtained results are also consistent with the 
eyes scoring when available, i.e. conscious states were 
predicted mostly during periods of opened eyes, and 
inversely. First, eyes closed do not necessarily mean 
unconscious and inversely. However, it can be assumed 
that eyes closed correspond to unconsciousness since 
most of the scoring were done at night. Indeed, studies 
about DoC patients’ sleep patterns showed that open 
and closed eyes indicate periods of circadian sleep–
wake [9, 10, 55]. More precisely, for this particular 
dataset, MCS patients showed increased values of high-
to-low frequency power ratio and permutation entropy 
during the day, although no changes were detected 
for the VS patients [10]. Moreover, MCS patients also 
display sleep behaviour comparable to that of healthy 
subjects using permutation entropy on their EEG sig-
nals. This was not observed for VS patients [9]. Con-
sequently, at least for the MCS patients, this shows the 
efficiency of the approach.

5 � Conclusion
An approach to evaluate patients’ consciousness lev-
els was described in this paper. The ultimate aim is to 
apply it to EEG data recorded from CLIS patients. Nev-
ertheless, in this study it was tested on data from DoC 
patients under the assumption that if it works for them, 
it will presumably also work for CLIS patients. This 
assumption was made considering that locked-in state 
is not a disorder of consciousness, and that accord-
ing to previous research, CLIS patients preserve their 
cognitive functions. This has been proven in a study 
including one CLIS patients [56]. The results show 
that the presented method was able to depict the dif-
ferent increases and decreases of the chosen EEG sig-
natures, accurately determining the consciousness 
levels of most of the patients. The accuracy of the esti-
mated level depends on the distance between the clus-
ters centroids, i.e. there should be enough data so that 
all possible states (from unconscious to conscious) are 
represented.

All features were weighted equally during the analysis 
and no feature selection was performed. Given that 
some features may be more relevant than others for 
each individual, future work will primarily focus on 
tailoring them to each patient. Moreover, additional 
EEG characteristics can be included to gather more 
hidden patterns and improve the system. Likewise, 
other soft-clustering approaches could also be 
investigated in place of FCM and GMM. The approach 
proposed here can be used as an additional tool to the 

traditional behavioural tests to help clinicians reduce 
the misdiagnosis rate, especially for (completely) 
locked-in patients.
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