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Abstract 

Introduction Logically valid deductive arguments are clear examples of abstract recursive computational proce‑
dures on propositions or on probabilities. However, it is not known if the cortical time‑consuming inferential pro‑
cesses in which logical arguments are eventually realized in the brain are in fact physically different from other kinds 
of inferential processes.

Methods In order to determine whether an electrical EEG discernible pattern of logical deduction exists or not, 
a new experimental paradigm is proposed contrasting logically valid and invalid inferences with exactly the same 
content (same premises and same relational variables) and distinct logical complexity (propositional truth‑functional 
operators). Electroencephalographic signals from 19 subjects (24.2 ± 3.3 years) were acquired in a two‑condition para‑
digm (100 trials for each condition). After the initial general analysis, a trial‑by‑trial approach in beta‑2 band allowed to 
uncover not only evoked but also phase asynchronous activity between trials.

Results showed that (i) deductive inferences with the same content evoked the same response pattern in logically 
valid and invalid conditions, (ii) mean response time in logically valid inferences is 61.54% higher, (iii) logically valid 
inferences are subjected to an early (400 ms) and a late reprocessing (600 ms) verified by two distinct beta‑2 activa‑
tions (p‑value < 0,01, Wilcoxon signed rank test).

Conclusion We found evidence of a subtle but measurable electrical trait of logical validity. Results put forward the 
hypothesis that some logically valid deductions are recursive or computational cortical events.

Keywords Beta‑2 band, Evoked potentials, Induced potentials, Deductive inference, Logical validity, Cortical bases of 
logical reasoning

1 Introduction
Even though the study of deduction is one of the old-
est sciences, it is still a current source of challenges and 
open problems for contemporary cognitive neurosci-
ence. While the formalistic validity-centered approach 
to deductive phenomena has been overcome [1, 2], the 
underlying neural processes associated to valid deduc-
tions is still an open issue. This paper focus on proposi-
tional logically valid truth functional arguments which 
are also probabilistically valid in Adam’s sense [3]. At an 
abstract computational or normative level [4, 5] these 
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arguments demonstrably preserve the truth, probability 
and demonstrability of their inputs whichever content 
they may have [6]. In this regard, one crucial question 
is: are there any neural patterns characterizing logically 
valid deductions as inferential events? When arguments 
are not considered as abstract relations among proposi-
tions or probabilities, but as cortical time-consuming 
events, are deductive inferences genuinely distinct? Two 
opposing trends make this question relevant for neu-
rocognitive science. On the one hand, if there are valid 
deductions, some neural events literally (not only meta-
phorically) compute inferential conclusions. On the 
other hand, there may be no valid deductions at all as 
cortical events, as suggested by the inconstant [7, 8] and 
weak [9] psychometrical evidence for the distinction 
between deductive and inductive inferences. From this 
perspective, the existence of valid deductions as cortical 
phenomena is not presupposed, opening up the method-
ological chance to verify or refute them.

In the last 20  years, research on the neural basis of 
deductive reasoning has achieved relevant conclusions. 
The first generation of experimental results was system-
atized by Knauff [10, 11] Goel [12] and Prado [13, 14] 
showing how different neural networks corresponded to 
propositional, relational, or categorical deductive infer-
ences. The ulterior generation of studies focused on 
relational [15] propositional [16] or categorical [17] rea-
soning, where spatial and linguistic neural circuits are 
distinguished according to the type of inference and not 
according to the format of the stimuli (visual, linguistic, 
or agentual). A proper understanding of neural depend-
encies between different types of inference and formats 
is still lacking, even if the last reviews [18, 19] and meta-
nalyses [17, 20] contribute to systematize the complex 
functional relations between the neural correlates of 
linguistic and deductive processes. Moreover, research 
has determined the presence in valid deductive reason-
ing [16] of double processing or re-processing in a late 
temporal phase. This temporal retardment phenomenon 
has been also verified in inhibitory control tasks [21] and 
after logical training [22, 23].

Neural analyses of propositional inferences have 
focused on premise-conclusion integration, which 
consists of premises and conclusions literally sharing 
variables [12, 24, 25]. Both linguistic terms and visual ele-
ments are shared in integrable inferential processes, for 
example, from the premises {(if ∙, then ♣), ∙}, it is integra-
ble to deduce ♣, but not integrable to deduce ♥ or other 
unrelated or irrelevant conclusions such as “Hong Kong 
is in Asia”. Research on the spatial cerebral [12, 24, 26, 
27] and temporal neuroelectrical [28–32], dynamics of 
these processes has proven the neural impact of integra-
tion and has located its processing partially in typically 

linguistic areas of the brain [33]. From a neuroelectrical 
perspective, previous research on propositional infer-
ences has revealed significant attentional (P200, N250), 
premise integration (P300), semantic processing (N400) 
and late reprocessing (P600) ERPs. In linguistically codi-
fied inferences, such as conditional or categorical infer-
ence, P200 is associated with selective attention and 
attentional demand [34, 35] with increased presence in 
non-integrable premisses. However, in visual inferences, 
the attentional component is rather N250 [36, 37]. P3 
ERPs have been reported to be associated with informa-
tion monitoring, cognitive control and memory updating 
[38, 39] and in particular the presence of this component 
in human reasoning premise integration has been proven 
in [30, 31] The P600 component is associated with syn-
tactic analysis and syntactic rule following [40, 41]. In 
the case of logical reasoning, research has observed 
enhanced P600 amplitudes attributed to reprocess-
ing [16, 42]. In contrast with P300 and P600, the N400 
component is generally associated with semantical con-
tent processing both in linguistic and visual settings [43, 
44]. A complete picture of relevant neuroelectrical tech-
niques in this study includes time–frequency analysis, in 
which power and phase information in the EEG signal are 
separated across different frequencies thus obtaining cru-
cial data about the oscillations contained in the EEG sig-
nal [45, 46]. The literature shows that both logically valid 
and invalid propositional reasoning involve left frontopa-
rietal circuits. Also, in simple valid deductive inferences 
(such as Modus Ponens and Disjunctive Syllogism), the 
neural processing is determined by relational complex-
ity and not by logical complexity. From this integrative 
approach to deduction, we may interpret that valid and 
invalid deduction are developed over the same neural 
substrate, which basically depends on the semantic con-
tent and not on the logical structure of the information. 
This is not an isolated cognitive discovery, but a consist-
ent trend correcting previous formalistic approaches to 
deduction [47]. Nevertheless, research has not yet devel-
oped tools for the measurement of integration in visual 
inferences (see [48] for a proposal). More importantly, 
premise integration excludes a wide family of deductive 
inferences which are valid, but not integrable. For exam-
ple, logically valid inferences sharing no common con-
tent, such as arbitrary propositions validly deduced from 
contradictions, or such as tautologies validly deduced 
from adventitious propositions. These are in fact eventu-
ally taken as control or baseline in deductive reasoning 
experiments because their conclusions are not integra-
ble with their premises. In this regard, integration does 
not offer a single neural support for deductive and non-
deductive inferences since valid deductive inferences are 
excluded.
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A second research line has focused on studying the 
complexity and not on integration of the neural corre-
lates of deduction. Logical complexity is the number of 
occurrences of logical operators in a cognitive task, while 
the relational complexity is the number of variables or 
memory load of that cognitive task. The strategy of Monti 
[37, 50, 51] and [52, 53], is to study the neural effect of 
increasing logical complexity in reasoning tasks. In this 
regard, the cerebral correlates of logical complexity are 
experimentally identified and dissociated from semantic 
content processing. The research methodology has been 
progressively refined over the years and, as a result, a 
wide range of studies has shown the implication of spe-
cifically deductive “core” frontal areas (including both the 
mesial Brodmann Area 8, BA8, and the left rostrolateral 
prefrontal cortex, BA10), which do not match with the 
linguistic areas identified by the integrational perspective 
[52, 54]. Our experimental setting is designed to measure 
the neuroelectrical balance between content and logical 
complexity and thus eventually bringing together these 
two research lines.

In order to tackle the methodological challenge 
involved in making logical validity a measurable corti-
cal magnitude, it is essential to recall the existence of 
metamathematical and probabilistic measures of validity 
which are complete, precise, and decidable [6]; although 
they are abstract computational procedures, which do 
not directly correspond to any spatio-temporal process 
in the brain. Cognitive science has searched for factive 
deductive measures that were experimentally viable, as 
the early works of Rips [55] and Wilhelm [56] show. Heit 
and Rotello [57] proposed the ratio “number of words/
impact of validity” to distinguish deductive from non-
deductive inferences. In the field of neuroscience, two 
indexes have been proposed and employed by Reverberi 
et al. [27, 58] associating physical magnitudes with logical 
validity. Other researchers [42] have systematized semi-
recursive deductive measures corresponding to logical 
operators such as order, identity and repetition. The new 
experimental paradigm presented in this paper avoids 
any need to measure relational complexity, because it 
remains fixed or unaltered along the experiment. Logical 
complexity is measured in the usual way with the number 
of occurrences of logical operators [59].

The number and content of relational variables deter-
mines variations in the non-logical cognitive load of the 
tasks (relational complexity of the task), while the num-
ber of logical operators determine variations in the logical 
complexity of inferences (logical complexity of the task). 
The new experimental paradigm here presented fixes the 
same set of relational variables for valid (deductive) and 
invalid conditions, while only in the valid condition an 
increase in logical complexity appears. The objective of 

this study is to verify or refute the following hypothesis: 
there are specific EEG measurable neural activity pat-
terns associated with logically valid deductive inferences. 
Methodologically, the new paradigm is designed to 
increase logical complexity in inferences with exactly the 
same content. Since valid deductive inferences depend on 
logical complexity, differences in neural activity between 
valid and invalid conditions with the same content could 
only be attributed to the deductive computational nature 
of valid inferences. The electroencephalographic (EEG) 
signals recorded during the experiment are extensively 
analyzed and compared between both valid deductive 
and non-valid conditions. Methodologically, the research 
(i) does not a priori assume the existence of factual dif-
ferences between logically valid and non-valid deductive 
inferences, (ii) does not dismiss non-integrable content-
independent deductive inferences, and (iii) does not 
exacerbate the logical complexity of tasks to measure the 
difference between the neural processing of logical and 
relational complexity using EEG.

2  Material and methods
2.1  Participants
The database was composed by 19 young right-handed 
subjects (10 males and 9 females), with a mean age of 
24.2 years (standard deviation 3.3). One anomalous reg-
ister was excluded from the final analysis. All participants 
were recruited during the months of March and May 
2019 from the University of León (Spain) and received 
academic credit for their participation. Participants did 
not report any significant neurological or psychopatho-
logical conditions, or any psychoactive drug intake dur-
ing EEG recordings. Each participant went through two 
experimental tasks sequentially. To neutralize eventual 
learning effects, the invalid condition was first applied to 
the subjects. First, they performed a LOGICALLY INVA-
LID DEDUCTION paradigm task; afterwards they per-
formed a LOGICALLY VALID DEDUCTION paradigm 
task. The responding hand for each condition was coun-
terbalanced across subjects. All participants signed an 
informed consent form before their participation in this 
study, following the guidelines of the Declaration of Hel-
sinki. The project was approved by the University of León 
and received the approval of the Ethics Committee (the 
code of ethics for research is 0-181, dated 11-06-2019). 
After the pandemic stop, raw data have been analyzed in 
a trial-by-trial approach at the University of León (Spain).

The experiment was programmed and administered 
using E-PRIME software. The screen has a sampling rate 
of 60  Hz, and a resolution of 1024 × 768 pixels. Items 
were presented against a black background. In both 
tasks, the index fingers of both hands pressed the keys 
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on a computer keyboard to answer. Participants were 
sitting 60  cm in front of the screen in a quiet dimly lit 
environment.

2.2  Experimental design paradigm task
The experiment contrasts two inferential tasks which 
contain the same stimuli (i.e. the same relational vari-
ables with the same content and properties), the same 
premises (relevant cards’ features: figure, color, number 
and filling) and the conclusion in both tasks is deductive 
(no new contents beyond the premises are used). The 
logically valid task applies an explicit rule with logical 
operators (AND, OR, NOT, IF), while the invalid task is a 
search task on the contents.

In the invalid task, the subject does not receive any spe-
cific deductive rule; instead, they are shown a set of visual 
stimuli and informed about the cards’ features (figure, 
color, number, and filling). The instructions for the inva-
lid task were: “If an item follows a rule based on color, 
figure, number, or filling, press the ‘Ctrl’ key, otherwise 
press the space-bar”. Thus, the invalid task manages cards’ 
featured contents without introducing new elements. 
The invalid task is deductive in the sense that no addi-
tional information to the contents given in the premises 
are used to infer conclusions. Moreover, the invalid task 
inference is not designed to preserve neither truth nor 
certainty. Examples of this uncertain or logically invalid 
deduction are common in the reasoning literature, such 
as (Feeney, Aidan; [47]).

In the logically valid task, subjects must validly deduce 
their answer given the definition of what makes up a 
SET after being shown a trio of cards (i.e. an item) with 
the same contents as in the invalid condition. The logi-
cal properties of a SET allow one to determine by logical 
deduction if any given trio is (or is not) a SET, exclusively 
applying tools from propositional elementary logic. Any 
given trio is a SET if all the cards have two or more prop-
erties in common. The deductive instruction is: “Press 
the ‘Ctrl’ key if the presented trio is a SET, otherwise 
press the space-bar”.

The deduction of the answer (is a SET/is not a SET) 
is stated without any previous training. It is an integra-
ble inference in all trials, since premises contain all the 
predicates used in conclusions (see Introduction) and 
crucially depends on the definition of SET, hence exclud-
ing any non-deductive heuristics. It is essential to recog-
nize that the valid task, even if it is simple, has a non-null 
logical complexity. In summary, the experimental design 
presents two tasks with the same relational complexity 
(same viso-semantical content and same relevant cat-
egories) but distinct logical complexity (logical opera-
tors). Following Friston [60], the content-complextity of 
a neural task (they call it “cost”) is formalized as mutual 

information between hidden sates (i.e. perceptual cat-
egories) and sensory outcomes (stimuli) under each task 
condition. A formal proof is not needed to confirm that 
both conditions in this paradigm have broadly the same 
informational content. In fact, only in the valid condition 
there is also certain measurable logical complexity given 
by the propositional operators defining SET. The experi-
ment tries to demonstrate or refute neuroelectrical EEG 
measurable differences between logically valid inferences 
based on logical operators and not logically valid infer-
ences based on visosemantical content.

2.3  Stimuli
The items in the study were trios of cards from the game 
SET (Set Enterprise, 2019). Each card has a variation 
of the following four features: figure (diamond, ovoid, 
or squiggle), color (green, red, or black), cardinality (1 
or 2), filling (filled or empty).  None of the participants 
was familiar with the game or its rules. The experiment 
included the same 200 randomly ordered trials in both 
conditions. Presenting the same stimuli ensures that the 
relational complexity of both conditions is exactly the 
same; that is, they include the same set of cards and are 
described with the same nomenclature and lexical card 
descriptions. On the other hand, instructions for the valid 
condition (SET definition and logical constants) ensure 
that the valid task has a measurable logical complexity.

Any given trio of cards either does or does not share 
the same relevant features: figure, color, number, and 
filling. Figure  1 displays examples of trios which do not 
share any features (case 1), share one feature (case 2), 
share two features (case 3), or share three features (case 
4).

(1)

No feature in common

(2)

One feature in common (figure)

(3)

Two features in common (figure and color)

(4)

Three features in common (color, number, and filling)

Fig. 1 Example of items of SET in both conditions: valid and invalid 
deductions.
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Both valid and invalid tasks are ecological and user-
friendly since the paradigm is inspired and presented 
as a game. The design does not allow the researchers to 
describe the precise inference pattern followed by any 
subject in any trial. For cases (3) and (4) (see Fig.  1), 
positive propositional inferences are enough, particu-
larly connectives and the Modus Ponens rule (deduce 
B from {A, if A then B}). Cases (1) and (2) can be nega-
tively treated with connectives and the Modus Tollens 
rule (deduce not A from {not B, if A then B}). The point 
of the experiment is not to follow the neural processing 
of any specific pattern, but to study any deductively valid 
inference.

2.4  Time chart
The beginning of the trial was signaled by a cross ( +) 
presented in the center of the screen for 300 ms, which 
was then followed by the appearance of the items on the 
screen  for 3500  ms. Then, the items disappeared, and 
the central dot reappeared for 450 ms. Participants were 
asked to respond quickly (within 3000  ms). The time 
chart is presented in Fig. 2.

2.5  Recording and preprocessing of EEG signals
The EEG was recorded with a 64-channel amplifier 
(Neuronic System, Cuba) and specific acquisition soft-
ware (Neuronic EEG/Edition EEG Software) with a 
sampling rate of 200  Hz. Reference electrodes were 
placed on the earlobes. In addition, electrooculogra-
phy (EOG) signals were acquired using three pairs of 
sensors in order to acquire the horizontal and vertical 
movement of the eyes. Electrode impedance was kept 
below 5 kΩ. Extracephalic channels were removed for 
the subsequent analyses thus keeping 58 EEG channels 
according to 10–10 system:: FP1, FP2, F3, F4, C3, C4, 
P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, FZ, CZ, PZ, F1, 
F2, P1, P2, AF3, AF4, P5, P6, FC5, FC6, C5, C6, TP7, 
TP8, PO7, PO8, FPZ, FCZ, CPZ, POZ, OZ, PO3, PO4, 
CP1, CP2, CP3, CP4, C1, C2, F5, F6, FC3, FC4, FC1, 
FC2, CP5, CP6, TP9, and TP10. Furthermore, EEG 

channels were grouped in 13 regions of interest (ROIs) 
according to Table 1.

The preprocessing consisted on 4 steps: (i) applica-
tion of bandpass (1–70  Hz) and notch (49.8–50.2  Hz) 
Finite Impulse Response (FIR) filters with a Hamming 
window to limit noise bandwidth and to remove power-
line noise, respectively; (ii) artifact rejection by means 
of independent component analysis (with special care 
to remove eye-derived artifacts, see Additional file  1: 
Figures  S1 and S2); (iii) selection of 1.5-s useful trials; 
and (iv) thresholding to remove noisy trials [61]. The 
useful trial selection consisted of localizing a stimulus 
followed by a correct response and another stimulus, 
thus discarding stimulus with more (or less) than one 
response. The trial length was 1.5  s comprising two 
intervals: 0.5  s before the stimulus, acting as baseline, 
and 1 s after the stimulus. Furthermore, the trials whose 
response time (i.e. time elapsed between the stimulus 
and the response) was less than 1  s were discarded to 
minimize the influence of the motor responses in the 
event-related potentials (ERPs).

Fig. 2 Timeline of stimuli in milliseconds for a generic trial

Table 1 Correspondence between ROIs and EEG channels

Channels ROI

FP1, FP2, AF3, AF4, FPz Prefrontal

F4, F8, FC6, F6, FC4 Right frontal

F3, F7, FC3, F5, FC5 Left frontal

Fz, F1, F2, FCz, FC1, FC2 Medial frontal

T4, T6, TP8, TP10 Right temporal

T3, T5, TP7, TP9 Left temporal

C4, C6, CP4, CP6 Right central

C3, C5, CP3, CP5 Left central

Cz, CPz, CP1, CP2, C1, C2 Medial central

P4, P6, PO8, PO4 Right parietal

P3, P5, PO7, PO3 Left parietal

Pz, P1, P2, POz Medial parietal

O1, O2, Oz Occipital
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2.6  Evoked potentials: synchronized averaging of trials
Firstly, the evoked potentials were analyzed to study 
the electrophysiological response of both experimen-
tal deductive conditions (valid and invalid). For this 
task, all the trials of each condition were averaged to 
study P3, N4, and P6 components, as they are related 
with deductive processing (premise integration in P300, 
semantic analysis in N400 and second processing in 
P600). Furthermore, the topographic distribution of the 
potentials was also analyzed.

2.7  Time–frequency analyses: trial‑by‑trial approach
The properties of EEG signals are not stationary but 
they vary over time [62]. Thus, methods as Fourier 
transform that require stationarity should not be used 
to analyze the time-varying properties of ERPs. In line 
with that, continuous wavelet transform (CWT) pro-
vides a framework to study the dynamical properties of 
the frequency content of the ERP signals. A wavelet is 
a function with zero-mean with a localization in time 
and frequency [63]. We have chosen as mother wavelet 
the complex Morlet, as it has been proven to provide a 
good fit with biological data [61]. To carry out the anal-
ysis, the complex Morlet is dilated and translated to 
generate a wavelet family that is able to capture the fast 
time-varying properties of the signal with a high fre-
quency resolution [64]. The dilation factor sweeps from 
1 to 70 Hz with equally spaced intervals of 0.5 Hz [61]. 
Wavelet analysis offers a solution to analyze signals 
with a high temporal resolution while keeping the fre-
quential resolution also high [64]. It is possible because 
of its variable time–frequency resolution, with shorter 
time windows used for higher frequencies and longer 
windows used for lower frequencies. Deeper insights 
about wavelets can be found in [64].

From the wavelet decomposition obtained after 
applying the previous analysis, the wavelet scalogram 
was computed for each ERP trial. Then, wavelet coef-
ficients were squared and normalized by the baseline, 
thus converting them into normalized wavelet power 
coefficients. This normalization is employed to unveil 
event-related dynamics that otherwise may remain 
concealed [65]. They summarize the power distribution 
of the wavelet in the time–frequency plane. This time–
frequency representation of the energy of each trial can 
be used to identify the spectral content associated to 
specific frequency ranges. In this study, we have consid-
ered the conventional EEG frequency bands: delta (δ, 
1–4 Hz), theta (θ, 4–8 Hz), alpha (α, 8–13 Hz), beta-1 
(β1, 13–19  Hz), beta-2 (β2, 19–30  Hz), and gamma (γ, 
30–70 Hz).

2.8  Statistical analysis
Data distributions were tested in an exploratory analy-
sis to assess normality and homoscedasticity. The first 
one was tested using Lilliefors test, while the latter with 
Bartlett test. Response time distributions, peak ampli-
tude distributions, ERPs and wavelets did not meet the 
normality and homoscedasticity hypotheses; there-
fore, Wilcoxon signed rank tests were used to assess 
differences between valid and invalid conditions. Fur-
thermore, to assess the correlation between the time 
courses of the evoked potentials, Spearman tests were 
employed, as this method can detect both linear and 
nonlinear correlations.

2.9  Data availability
Scripts to calculate wavelets including raw and preproc-
essed data are available in: Víctor Rodríguez, Francisco 
Salto, Carmen Requena (2022), “Invalid and Valid Deduc-
tive Processes”, Mendeley Data, V2, https:// doi. org/ 10. 
17632/ w95n6 rc6fs.2

Victor Rodriguez. (2022). < i > Invalid and Valid Deduc-
tive Processes < /i > [Data set]. Mendeley. https:// doi. org/ 
10. 17632/ GM49M M6WHW.1

Victor Rodriguez. (2022). < i > Invalid and Valid Deduc-
tive Processes < /i > [Data set]. Mendeley. https:// doi. org/ 
10. 17632/ W95N6 RC6FS.2

3  Results
3.1  Behavioral data
Response time (RT) was obtained for each subject and 
condition within a temporal window of 3  s. Statisti-
cally significant higher RTs were observed for the valid 
deductive condition than for the invalid condition 
(p-value < 0.0001, Wilcoxon test; see Table 2).

In the logically valid condition, the subjects answered 
correctly 96.14% of the trials. The incorrect responses 
were not considered in the analysis. In the invalid con-
dition, there were no evaluable correct or incorrect 
answers.

3.2  Event‑related potential data
Figure 3 shows the averaged time courses for all the ROIs 
and conditions. For each ROI, the potentials associated 
with valid deductive and invalid inferences are depicted 

Table 2 Descriptive data associated with response time for each 
condition: invalid deductive and valid deductive

Valid condition Invalid condition

Mean (ms.) 2890.35 1977.84

Median (ms.) 2660.00 1705.00

Standard deviation (ms.) 1368.59 917.89

https://doi.org/10.17632/w95n6rc6fs.2
https://doi.org/10.17632/w95n6rc6fs.2
https://doi.org/10.17632/GM49MM6WHW.1
https://doi.org/10.17632/GM49MM6WHW.1
https://doi.org/10.17632/W95N6RC6FS.2
https://doi.org/10.17632/W95N6RC6FS.2
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simultaneously to ease the comparisons between them. 
Remarkably, the temporal evolution of both invalid and 
valid deductions is very similar. Their correlations were 
tested, showing a mean correlation value of 0.30 (p < 0.05, 
Spearman correlation test). In the time courses of the 
evoked potentials, four (positive or negative) peaks are 
identified likely corresponding to N250, P300, N400 and 
P600 potentials for both valid and invalid conditions. 
Since N250 is an attentional component identical in both 
conditions, it has not been included in the analysis. At 
some points, a deviance could be appreciated between 
invalid and valid deductive processes (e.g., right frontal 
ROI around 300  ms). Nonetheless, no statistically sig-
nificant differences were found when evaluating both 
peak and mean amplitude in the potentials P300 (220–
250 ms), N400 (300–350 ms), and P600 (500–550 ms).

Other perspective of the time courses of the evoked 
potentials is provided in Fig.  4, and Fig.  5. In them, it 
could also be appreciated the evoked potentials (N250, 
P300, N400 and P600) that occur in a similar way for 
both conditions. Nonetheless, in some ROIs and time 
intervals, a deviant behavior was found around 400 and 
600 ms. Here, it is also relevant Fig. 6, which depicts the 
difference between both invalid and valid deduction in 

each time interval. Observing these differences yielded us 
to conduct more detailed analyses in order to isolate the 
brain patterns that provoke them.

3.3  Time–frequency analysis
In Additional file 1: Figure S3 it is depicted the time–fre-
quency activation for the different conditions (logically 
invalid and logically valid). It is shown that the activation 
process associated to the experiment mainly occurs in 
slow bands (delta and theta) from 0.25 s on. No observa-
ble differences can be appreciated between the time–fre-
quency activations between invalid and valid conditions.

To evaluate whether is it possible to find differentiat-
ing patterns between conditions (logically invalid and 
logically valid), we repeated the time–frequency anal-
ysis focusing on the ROIs involved in deduction pro-
cesses. We calculated the wavelet activation for each 
subject, ROI, and condition. Afterwards, to look for 
differentiating patterns, we performed an exploratory 
statistical analysis by comparing them for each time–
frequency bin. The results of this analysis are depicted 
in Fig. 7. As no statistical correction was applied due to 
the high number of time–frequency bins, these results 
can be considered exploratory. Nonetheless, it could 

Fig. 3 Averaged time courses of the ERPs for all the ROIs and conditions
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be appreciated that some statistically significant dif-
ferences arose in left central and left temporal regions 
around 400 and 600 ms.

Finally, the topographical distribution of the patterns 
that shows a deviance between both conditions was 
assessed. In Fig. 8, it is depicted the difference between 
logically invalid and valid conditions for different time 
windows. Of note, these patterns correspond with the 
trial-by-trial time–frequency analysis in beta-2, where 
these differentiating patters can be appreciated. It can 
be observed that this deviant behavior mainly occurs 
around the left temporal region between 400 and 
600 ms.

4  Discussion
In this study, we introduce a new paradigm that com-
pares the neural activity of logically valid versus invalid 
deductive inferences with precisely the same content 
(same premises with the same relational variables) and 
different logical complexity. The evoked response of 
logically valid and invalid conditions follows a similar 
neural pattern and latencies. Nonetheless, a fine-grain 
trial-by-trial analysis shows significant differences in the 
time–frequency activation of beta-2 band in left central 
and left temporal areas after 400  ms (i.e., after premise 
integration phase [15, 24, 26, 27] and after 600  ms (i.e., 
reprocessing phase [16, 66]). Logically valid and invalid 

Fig. 4 Spatial distribution for the baseline‑corrected evoked potentials for the invalid deductive condition using a sliding window of 0.1 s

Fig. 5 Spatial distribution for the baseline‑corrected evoked potentials for the valid deductive condition using a sliding window of 0.1 s
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conditions present congruent deflations at N250 (per-
ceptual task), P300 (premise integration), and N400 
(semantical content). However, the logically valid 

deductive condition presents specific electrical features: 
(i) increased beta-2 band activation at initial (400  ms.) 
and late (600  ms.) phases in central and left temporal 

Fig. 6 Spatial distribution for the baseline‑corrected evoked potentials for the difference between invalid and valid deductive conditions using a 
sliding window of 0.1 s

Fig. 7 Statistically significant differences (p‑values < 0.01, Wilcoxon signed rank test) found between logically invalid and logically valid conditions 
for: A left temporal; B left central. Baseline period has been shaded. In left axis, the conventional EEG frequency
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areas, and (ii) slower reaction times (61.54%). These 
findings suggest that semantical content mostly but not 
completely determines all the inferential brain electrical 
activity, since processing of logical complexity in the valid 
condition involves subtle but measurable temporal and 
time–frequency differences.

(i)  Same evoked potentials and same topography: Log-
ically Valid and Invalid deductive inferences with 
the same content evoke the same response pattern

Evoked potentials in both conditions include the same 
positive deflection at 250  ms (perceptive recognition of 
stimuli) [67], as well as the same P300 and N400 poten-
tials (see Figs.  3, 4). P300 has been extensively associ-
ated with premise integration both by the neuroelectric 
literature [28–31] and by magnetic resonance research 
[20]. Its presence is explained by the fact that both con-
ditions are equally integrable (they share all relational 
variables). The congruence in the potentials evoked by 
valid and invalid inferences (Figs. 3, 4) can be explained 
because both tasks have the same content, namely the 
same relational variables from the same SET cards with 
the same relevant properties in both conditions. In this 
regard, it is content and not logical form that determines 
the evoked patterns produced by the neural processing of 
these inferences, both logically valid and invalid. This fact 
is particularly relevant for the understanding of deduc-
tive reasoning and coincides with other non-formalistic 
results [2, 47] in which semantical content (and not logi-
cal form) determines not only invalid but also valid infer-
ences [33, 68, 69].

Moreover, the initial topographical analysis does not 
show noticeable significant differences between logically 

valid and invalid inferences (See Figs. 4, 5 and 6). These 
results do not support with EEG data any specific core 
region of deductive processing. In particular, left fron-
tal areas [33] and cingulo-opercular regions [19], typi-
cally associated with semantic processing, are similar in 
both conditions, which is reasonable as they depend on 
the same visual content also in both conditions. In other 
neurophysiological studies on inferential tasks, the corti-
cal topography did not show relevant changes either, as 
it is the case in [70], where reasoning and attention are 
equivalent.

 (ii) Forward Inference Methodology: Sensitivity and 
validity of the paradigm

Forward methodologies for the neural study of infer-
ence have been explicitly defined by Heit [71] to associate 
cognitive inferential processes with neural events. Any 
hypothesis stating that the same cognitive process under-
lies logically valid and invalid inferences is refuted by 
neural differences in (regions)x(potentials)x(frequencies) 
between the two conditions. In this paper, we infer that 
the same cognitive processing is not supported because 
of slight differences found in beta-2 in two specific ROIs.

Statistically significant differences (p-values < 0.01) 
were found in left temporal and left central regions for 
beta-2 oscillations. By forward inference [71], the valid 
condition corresponds to a distinct frequential pattern 
suggesting a distinct cognitive process. The specific tem-
poral location of this beta-2 activity verifies the adequacy 
and sensibility of the experimental design, since only 
a strong coherence among time-dependent ERP trials 
explains the specific temporal location of beta-2 band 
activity [72].

Fig. 8 Spatial distribution of the difference of the wavelet activation in beta‑2 between invalid and valid conditions using a sliding window of 0.1 s
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Logically valid inferences are homogeneous in their 
electrical features in cases (1), (2) just as in cases (3), (4). 
Even if reasoners in the logically valid condition are free 
to choose the order of premises and logical operators, the 
neuroelectrical responses are homogeneously late, slow-
responsive, time-extended, and differentially accompa-
nied by beta-2 oscillations.

 (iii) Beta-2 oscillations in logically valid inferences

The beta-2 activation occurs consistently in both left 
areas (see Figs. 7, 8) where it appears in two distinctive 
time intervals: (i) around 400 ms, and (ii) around 600 ms. 
Moreover, the differences in beta-2 oscillations are exclu-
sively found in these time intervals and these two left 
brain areas. The early literature [73] already associated 
beta band with logical tasks, and ulterior research has 
verified its presence in top-down cognitive control [74], 
cognitive load [75], grammar [76], and false reasoning 
[77]. Even if a comprehensive theoretical explanation of 
the role of beta-2 in deductive reasoning is still lacking 
[78, 79], neurocomputational research has shown its role 
in the maintenance of repeatable or abstract properties 
in the same information (Bernhard [80, 81]. Limanow-
ski and Friston found sensory/cognitive differential 
interaction effects in beta also related to rule-following 
instructions [82] and recent MEG [83] and EEG (Álva-
rez-Merino, 2019) research associate beta-2 band activ-
ity with logical reasoning in the early premise integration 
phase (300–350 ms) and again later in the re-processing 
phase (600–650 ms). Two salient features in the temporal 
and spatial distribution of beta waves are the following:

 a) The first beta-2 differences are temporally located 
just after the premise integration phase (see Figs. 7, 
8). Since the content of premises in both conditions 
is exactly the same and, moreover, it is integrable 
(contents are shared by premises and conclusions), 
the differences in beta-2 oscillations must be linked 
not with content but with logical complexity, that 
it is only explicitly present in the valid condition. 
Beta oscillations accompanying positive (nega-
tion free) logical operators (conjunction, disjunc-
tion, material conditional) have been reported in 
the literature in semantical [84] and visuo-seman-
tical contexts (Álvarez-Merino, 2019). Two other 
experiments with the same SET paradigm applied 
in MEG studies on amplitude [83] and connectivity 
(to appear) found similar beta-2 activations at the 
early stages of the deductive inferential process.

 b) The second time region of differences in beta-2 
(see Figs.  7, 8) is a late oscillation accompanying 
the “second processing” typically present in infer-
ences with propositional operators [16]. As for the 

previous differences, they are probably provoked 
by the different logical complexity between condi-
tions. The time extended duration (400-650 ms) of 
the differences in beta-2 activity between the two 
conditions, as well as its late beginning, is not to 
be attributed to the memory charge or the rela-
tional complexity of the task (as in [75], since they 
are the same in both conditions. It is plausible to 
interpret beta-2 activity in the second processing 
not only as control and monitorization [74, 78], but 
as the result of a specific logically valid computa-
tion. Significantly, the role of cognitive beta band 
oscillations has been verified in rule selection [84] 
and both beta-2 activation are consistent with rule-
determined computations in the valid condition.

 (iv) Spatial distribution of beta-2 oscillations in logi-
cally valid inferences.

The spatial limitations of EEG measures notwithstand-
ing, there are important facts about the spatial distribu-
tion of beta-2 in the left central and left temporal regions 
since its presence throws some light on the cortical rela-
tionships between language and valid deductive infer-
ence. Visual inferences in both experimental conditions 
are processed fundamentally in the left hemisphere, as 
some other cerebral studies on deduction have shown 
[24, 33, 83]. In this study, there is no electrical evidence 
of deductive core areas in the valid condition, but beta-2 
oscillations coincide with opercular and triangular 
activity described by deductive meta-studies [19]. Sig-
nificantly, left frontal and parietal regions do not show 
statistically significant differences between the two con-
ditions (See Additional file 1: Figure S4). Previous studies 
have associated increased beta-2 activity and connectiv-
ity with logically valid inferences [83] also in opercular 
and triangular areas. There are no differences in theta 
band activity between conditions, suggesting their similar 
visuo-semantical processing. These results confirm the 
multiple functionalities of opercular circuits in linguis-
tic and visual inferences [33], as well as the involvement 
of the same opercular areas in linguistic and deductive 
tasks, but with specific beta-2 activation in deductive 
valid inferences. Since medial theta band activity has 
been associated with semantical content (Duprez, Gulbi-
naite, & Cohen, 2020) the absence of differences in theta 
band suggests that the presence of beta-2 is linked not 
with semantical content (in this case visuo-semantical) as 
in [54] and [85], but with logical operators.

(v) Recursive processing hypothesis

The fact that reaction time in the logically valid 
condition is 61.54% slower, is not to be explained by 
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general control processes as they also apply to the inva-
lid condition that has the same content. The literature 
on the neural correlates of propositional reasoning has 
identified and studied this kind of late re-processing 
in linguistic and visual formats [16]. interpret late re-
processing in propositional logically valid inference by 
means of mental model semantics. [52, 53], interpret 
similar late propositional re-processing not by seman-
tical processing, but by logical complexity. The elec-
trophysiological results in this paper don’t settle the 
question but confirm a similar spatial distribution of 
cortical deductive activity in visuo-semantic and logical 
processing and a slight frequential divergence between 
semantic and logical processing [20, 33]. Logically 
valid inferences are (i) homogeneously late (see Fig. 7), 
(ii) time-extended (see Fig.  8), (iii) slow-reactive (see 
Table 2), and (iv) with noticeable beta-2 presence in left 
central and left temporal regions (see Fig.  7). Is there 
a common explanation to these apparently opposing 
features?

A plausible answer is the recursive nature of valid 
deductions as cortical events. The literature has asso-
ciated automatic rule-following processes with exactly 
the kind of beta-band hypoactivity we find in valid 
deductions [74, 86]. In the case of logically valid proofs 
of the elementary kind involved in SET inferences, if 
automaticity is understood as the ability to perform a 
routinized task with minimal effort [87], logically valid 
deductions manifest themselves as slow automatable 
processes. In fact, logically valid deductions, as abstract 
objects, are demonstrably recursive or computable [6, 
88], and as slow, hypoactive and homogeneous cortical 
events, they may be understood as explicitly routinized 
automatable neural processes. Thus, the remarkable 
delay in the valid deductive processing can be explained 
by the recursive nature of valid inferences, which are in 
fact, unlike invalid inferences with the same content, 
deductive proofs of SET properties. Notice that recur-
sive computational procedures are faster and more 
efficient than simple iterations [89], but they are still 
slow compositional processes based on strict routines 
and they exclude abbreviated procedures or heuristic 
jumps. Consider for example Modus Ponens deduc-
tions (deduce B from {A, If A then B}) in visual [90] 
and motor [91] contexts. In SET, recursive computa-
tions correspond to step-by-step procedures or proofs 
that are consistent with retarded and automatable pro-
cesses. The paradigm does not allow us to determine 
which specific sequence is followed in the valid con-
dition, but we know that some kind of valid ordered 
sequence of SET rules is successfully followed. Other 
EEG studies are consistent with understanding valid 

logical deductions as slow automatisms, given their 
higher mean duration [92].

5  Conclusion
This study presents some limitations regarding its sam-
ple size, the exploratory nature of the statistical analy-
sis and the spatial resolution of the EEG techniques 
employed. Future research with this paradigm will 
introduce an additional perceptual baseline to control 
eventual instruction effects. However, the new experi-
mental paradigm proposed in this study is effective 
and capable of identifying differential neural patterns 
between logically valid and invalid reasoning with-
out following any specific logical operator. Results in 
potentials, latencies, amplitudes, and topologies are 
consistent and point to the absence of any specific EEG 
discriminable cerebral locus nor potential for logically 
valid deductions. Content and not logical form deter-
mines most of the electrical features of deductive rea-
soning irrespective of its normative status (logically 
valid or invalid). However, there are in fact specific 
cortical features of logically valid inferences in terms of 
temporal delay and beta-2 late processing after 400 ms 
and after 600 ms, specifically in the valid condition and 
left temporal and central areas. These frequential dif-
ferences are sufficient to consider logically valid deduc-
tions as distinct neural processes. It is hypothesized 
that the recursive nature of logically valid deductions 
explains the electrical relevance of logical validity. The 
evidence offered shows that certain neuroelectrical 
conditions are sufficient for logically valid deductions, 
but it does not show that they are necessary.
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cally significant differencesfound between invalid and valid conditions 
for: A): left frontal; B): left parietal. Baseline period has been shaded. In left 
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tagged. Red points indicate statistically significant differences for which 
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